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Diffuse x-ray scattering from 311 defects in Si
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311 defects are extended, rod-like defects which play a central role in the processing of Si during
integrated circuit manufacturing. Diffuse x-ray scattering techniques provide a non-destructive
means to detect defects in solids. However, to date there has been no knowledge of what the x-ray
scattering pattern from 311 defects looks like. Using a recently introduced fully atomistic modeling
scheme, I calculate the diffuse x-ray scattering patterns from 311 defects. The results demonstrate
how 311 defects can be detected, how the main varieties of 311 defect can be distinguished, and how
both the defect width and length can be derived from the scattering.

PACS numbers: 61.72.Dd,61.72.Nn,61.82.Fk,61.80.Jh

I. INTRODUCTION

When the damage produced by ion implantation of Si
is annealed, several types of interstitial-like defects are
present in the implanted region1. The vast majority of
these defects have to be removed in order to produce
working semiconductor devices, so the properties of
these defects are of great interest. The most important
extended defects are so called “311” defects, stacking
faults, and perfect dislocation loops. Although all
of these defects can be detected using transmission
electron microscopy (TEM), it would be beneficial to
have complementary, preferably non-destructive means
to detect the same defects. Diffuse X-ray diffraction
methods can be used as such a method2–6.

Although the basic theory of diffuse x-ray scattering
from defects is well established7, applying this theory to
extended defects is not straightforward. The numerical
calculations of Ehrhart et al.8 predict the x-ray scattering
for two of the aforementioned three defect types, i.e.
stacking faults and perfect dislocation loops. However,
to my knowledge there are no calculations of the nature
of the diffuse x-ray scattering from 311 defects. The
likely reason to this is the complicated nature of these
defects9–13. TEM experiments show that they have the
form of interstitial platelets, with widths of typically 10 -
1000 Å, and lengths which can be of the order of microns
(because of the large aspect ratio, the defects are also
often called “rod-like”). The platelets are observed on
{311} lattice planes, which gives the defects their name.
In the platelet, the extra atoms lie in configurations
containing 5-, 7- and 8-membered atom rings, whereas
perfect Si only contains 6-membered rings. However, in
a perfect 311 defect all Si atoms still have exactly 4 bonds
(as in perfect Si), which makes the defects very stable.

To calculate the x-ray scattering from 311 defects, I
use a recently developed fully atomistic modeling scheme
to obtain the x-ray scattering14,15. This scheme enables
prediction of the x-ray scattering for any defect for which
an atomic configuration is known, although computer
capacity currently limits the method to defects with sizes
at most of the order of 100 Å.

Here I use the method to calculate the scattering for
the two configurations of 311 defects which are believed

to be the most abundant ones in experiments, the
“1HeXZD” and “IRD” defects11.

II. METHOD

A. Calculation of x-ray scattering

The atomistic calculation scheme used here has been
presented in detail in Refs. 14, 15, and been shown to
be useful in analyzing experimental results on defects in
semiconductors6,16. Hence I describe here only the most
central features and the aspects which are specific to the
present study.
To obtain the x-ray scattering for a defect, the

coordinates of the defect atoms and atoms in the
immediate vicinity are embedded into a large (in this
paper normally 600 Å in diameter) sphere of atoms
at perfect lattice sites15. The coordinates of all the
atoms are then relaxed to the closest potential energy
minimum using an optimized conjugate gradient scheme.
The relaxation gives realistic coordinates of atoms Ri

describing the strain field surrounding the defect. To
ensure that the choice of the potential energy model
does not affect the result, I did some calculations
with two different interatomic potential models17,18.
No significant difference in the scattering shapes or
intensities were observed.
The x-ray scattering within the kinematical approxi-

mation is obtained by straightforward summation,
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Here K is a reciprocal lattice vector, Ri the atom
position, a the lattice constant, fK the atomic form
factor, and N(σ/a) a normalization factor. When the
interest is only in the qualitative shape of the scattering
pattern, one can set f = 1 and N = 1. To make the
results comparable to x-ray experiments (which usually
measure the average over a very large number of defects),
I average the scattering over all equivalent orientations
of the defect in the crystal.
The convolution factor exp(−σ2
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of broadening the x-ray scattering somewhat. This



complicates quantitative comparison of scattering inten-
sities with experiments. By using a normalizing factor
N(x) =

√
2x3/(4π

√
π) the three-dimensional integral of

the Bragg peaks becomes independent of σ (since the
Bragg peak is practically symmetric about the maximum,
this integral can be evaluated from a one-dimensional
scan over the peak). But I found that the integral
over the diffuse scattering intensity still may depend on
σ, probably because the convolution factor can affect
the complex streak patterns obtained in this work in a
different manner from that of the Bragg peaks. But if the
resolution of the experiments is known, the calculations
could be carried out with the same convolution factor.
In that manner the ratio between the integrated diffuse
intensity and the integrated Bragg peak intensities could
be used for a comparison with experimental intensities.
I emphasize that the convolution factor does not

affect the qualitative shape of the scattering discussed
in sections III A - III C, but has to be considered when
studying the quantitative defect size effects, section III D.
Unless otherwise mentioned, the calculations in this

paper have been carried out using σ = 0.1, which
was about the smallest value for which no artificial
truncation ripples19 were observed anywhere in the
scattering patterns for the 600 Å diameter atom spheres.

B. 311 defect structures

In this work, I used defect coordinates calculated by
Parisini and Bourret11 as the seed defect configuration
in the calculations. I focused on two configurations, the
“IRD” and “1HexZD” defects, which were shown to be
the lowest-energy one within the model used, and agree
well with experimental observations on 311 defects20,11.
The nature of these defects is illustrated schematically in
Fig. 1 (for an atomic picture, see Ref. 11). In the figure,
the thick dashed line indicates where the interstitial
atoms are in the core of the defect. The other lines
indicate the crystal directions in and perpendicular to
the defect plane. In the IRD defect, the interstitial atoms
lie in a single (113) crystal plane. In the 1HexZD defect
the extra atoms lie in a zig-zag pattern, with interstitial
atoms alternatingly on (113) and (113) planes. The
net effect then is that the 1HexZD plane on average is
perpendicular to a 〈100〉 crystal direction. In both cases,
the defect “length” direction is a 〈110〉 direction, whereas
the “width” directions are different. The thickness of the
atom plane with interstitials is only a few atom planes.
The 311 cells of Parisini and Bourret have lengths of

only about 4 Å, and widths of 30 Å (1HexZD) and 50
Å (IRD). In their modeling, the defects were repeated
periodically to infinity. In this study, I repeated the
seed cells periodically a finite number of times to obtain
different widths w and lengths l of the defect. This gave
seed cells of varying sizes, which where then embedded
into perfect Si crystal as usual in the x-ray calculation.
This way, the model describes realistically real finite-
sized 311 defects. The embedding was done in such
a way that no atoms in the 311 defect plane initially
came unrealistically close to atoms in the surrounding

perfect lattice. The conjugate gradient energy relaxation
then moved the atoms to the closest minimum. I also
performed MD annealing at 600 K on one cell, which
did reduce the number of coordination defects at the
edges of the 311 defect. However, the effect on the x-
ray scattering pattern was negligible.

In reality, the 311 defects are not necessarily perfect,
but may contain defects and impurities in their structure.
At high concentrations these defects in the 311 defect
could affect the scattering pattern, but I do not explore
this issue in the present paper.

III. RESULTS

In the following, I always use unitless Miller indices
(“(hkl)” notation) to present the results. Since carrying
out an exhaustive search of reciprocal space would be
prohibitively expensive computationally, I focus on a few
Bragg peaks and planes in reciprocal space, which are
frequently studied in experiments as well.

To give an impression of the overall scattering pattern,
I illustrate in Fig. 2 a) and b) the scattering from an IRD
and 1HexZD defects, both with a size of about 100 ×
100 Å2. It is readily apparent that there is significant
structure in the scattering outside the Bragg peaks, with
pronounced streak-like features. I next discuss in detail
the scattering patterns emanating from these two defects.
I focus on the 111 peak, but also mention features around
other peaks.
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FIG. 1. Schematic illustration of the orientation of the
planes containing interstitial atoms in 311 defects. The
plane where the extra atoms lie is indicated by thick, dashed
lines. The vectors and numbers show crystal directions and
their Miller indices. The defect names and the orientation
information is from Ref. 11. a) IRD defect, b) 1HexZD defect.
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FIG. 2. X-ray scattering pattern of 311 defects of width
100 Å and length 100 Å. The lines are iso-intensity curves, so
that 2 curves indicate a difference of one order of magnitude
in scattering intensity. The figure shows the plane spanned
by the [110] and [001] crystal directions. Also indicated by
arrows and numbers are the locations of Bragg peaks. a) IRD
defect, b) 1HexZD defect.

A. IRD

Figure 3 a) illustrates the X-ray scattering near the
111 Bragg peak for the IRD defect with a width and
length of almost exactly 100 Å. There are two strong
streaks emanating from the 111 Bragg peak, one in the
[113] direction, the other in the [113] direction. The
reason to the presence of these streaks can be understood
by comparing with the x-ray scattering from stacking
faults in Si. In an interstitial-like stacking fault, the
fault plane produces a discontinuity in the lattice in a
[111] direction. This is experimentally known to produce
streaks in the x-ray scattering pattern in 〈111〉 directions,
a feature which is correctly reproduced by numerical
models and our simulations6,8. This can be understood
as an analogical effect to the “crystal truncation rods”
produced by surfaces, where there also is a discontinuity
in the lattice21. Moreover, the streaks from stacking
faults can be asymmetric, i.e. the streak in the 〈111〉
need not equal that in the 〈111〉 direction8. In the IRD
configuration there is a discontinuity in the lattice in a
{311} plane (see Fig. 1 a). Hence both the origin of the
asymmetric 〈113〉 streaks, and their asymmetry, can be
understood with analogy to the production of the streaks
from stacking faults.
There also seem to be weak, secondary streaks outside

the Bragg peak, and repetitive weak peaks in the 111
direction off from the 111 Bragg peaks. However, since
these would probably be difficult to detect experimentally
due to their low intensity, I do not analyze them in more
detail. Moreover, for the weakest features visible in the
patterns I can not rule out that numerical problems affect
the results. But all the patterns discussed in the text have
been verified not to be due to numerical inaccuracies.
I also observed similar 〈113〉 streaks emanating from

other Bragg peaks. The 220 peak was observed to have
streaks in all 〈113〉 directions lying in the plane spanned
by the [001] and [110] directions, whereas the 311 peak
itself did not have very well-defined streaks, at least for
this small 311 defects.

B. 1HexZD

Figure 3 b) illustrates the X-ray scattering around the
111 peak for the 1HexZD configuration with a width of 92
Å and length of almost exactly 100 Å. Several interesting
features in the scattering pattern are evident from the
figure. First, there is a strong streak emanating from
the 111 peak in the [001] and [001] directions. Similarly
to the IRD defect, the reason for the existence for this
streak can be understood by considering Fig. 1 b). The
average plane of the 1HexZD defect is a 〈100〉 direction,
and hence the discontinuity of the crystal in this direction
can give rise to a streak, as for the IRD 311 defect and
the stacking fault6. There are no visible streaks in 〈311〉
directions in this case. Although these directions do play
a role in the zig-zag pattern of the 1HexZD defect, the
distance between two segments in the zig-zag pattern is so
short (about 15 Å) that the possible streak effect appears
to cancel efficiently.
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FIG. 3. X-ray scattering pattern of 311 defects of width 100
Å and length 100 Å around the 111 Bragg peak. The lines
are iso-intensity curves, so that 2 curves indicate a difference
of one order of magnitude in scattering intensity. The figure
shows the plane spanned by the [110] (x axis in figure) and
[001] (y axis) crystal directions. Also indicated by thick lines
are the directions of the main streaks, as well as the scan
directions giving the defect widths. a) IRD defect, b) 1HexZD
defect.

Secondly, there seem to be weaker streaks also in the
001 direction, parallel to the main streak but separated
from it by about 0.21 1/Å along [110] in reciprocal space.
I believe this is due to the regular repetition of the zig-
zag pattern in the [110] direction of the defect (cf. Fig.
1 b)). The distance between the streaks corresponds to a
distance of 2π/(0.21 1/Å) = 30 Å, which matches almost
perfectly the repetition distance of 31 Å in the atomic
configuration. Moreover, these secondary streaks are not
visible in simulation of zig-zag defects with no repetition
of the pattern.
Several other peaks also had streaks in some {001}

direction. The 311 peak had a strong streak in the [001]
direction, see Fig. 2 b), as did the 333 peak. The 220
peak has streaks in both the [001] and [001] directions.
Similarly to the IRD defect, the Bragg peaks of the

1HexZD defect cells also have secondary peaks along the
111 direction, but these are again weaker in intensity
than the streaks.

C. Scattering around (1.3 1.3 0)

I also observe a local maximum around (1.25 1.25 0)
– (1.3 1.3 0) in reciprocal space for both types of 311
defects (see Fig. 2). This peak is very close to the
peak at about (1.2 1.2 0) observed in electron diffraction
experiments, which has been recognized as the (0002)
hexagonal Bragg peak due to a single layer of hexagonal
silicon at the center of the defect20. It appears that the
peak I observe is slightly higher in reciprocal space, which
is likely to be related to compressive strain in the core
of the defect. Since the experimental peak is lower, it
appears the atomistic model overestimates this strain.
The shape of the scattering is quite different for the two

types of defects, see Fig. 4, so in principle this region of
reciprocal space could also be used to distinguish between

the two types of defects. Even if the fine structure can
not be measured, this region may be useful for detecting
whether any 311 defects are present in the sample.
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FIG. 4. X-ray scattering pattern of 311 defects of width
100 Å and length 100 Å around (1.3 1.3 0) in reciprocal space.
The lines are iso-intensity curves, so that 4 curves indicate a
difference of one order of magnitude in scattering intensity.
The figure shows the plane spanned by the [110] (x axis in
figure) and [001] (y axis) crystal directions. a) IRD defect, b)
1HexZD defect.

D. Defect width and length effects

I also performed systematic simulations of IRD and
1HexZD defects of sizes ranging from 30 Å to 150 Å in
width and length to examine size effects on the scattering.
For the IRD defect, I found that the width of the 〈311〉

streaks is related to the width and length of the defect
according to the crystal direction. To be specific, the IRD
defect width direction [332] is reflected in the width of the
[113] streak along the [332] direction in reciprocal space.
Similarly, the width of the streak in the [110] direction is
proportional to the length of the defect, which is the [110]
direction. The same dependence was found for 1HexZD
for the [001] streaks in directions corresponding to the
defect width and length.
A similar size dependence has been previously reported

for stacking faults8, but this dependence was on the
average radius of the defect only and did not distinguish
between defect length and width. In the stacking fault
work, the streak width in reciprocal space was derived to
be simply proportional to the inverse of the defect size in
real space. Hence I use the same functional form for the
311 defects.
I first discuss in detail the defect widths. The width

dependence is illustrated in Fig. 5 a) for the IRD defect.
It shows a cross-sectional scan along the [332] direction
through the [113] streak emanating from the 111 Bragg
peaks. The direction of this scan is illustrated in Fig. 3
a). The x axis is given as the unitless distance from (1.1
1.1 1.3) in reciprocal (hkl) space. It is readily apparent
that the streak width is independent of the defect length
l, but clearly dependent on the defect width w. The
inset shows the full width at half maximum (fwhm) of
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the streaks as a function of the defect width. The line is
fwhm = 4.96 Å/w. Because of the good quality of the fit,
it is plausible that this equation can be used to estimate
the widths of even much larger IRD-like 311 defects.

The same process was repeated for the 1HexZD defect
with a scan along [110] through the streak, centered at
(1.0 1.0 1.45), see Fig. 5 b). The direction of this scan
is illustrated in Fig. 3 b). Again the streak width
is proportional to the defect width, although for the
smallest defects there is some variation, probably due
to overlap with other features in the scattering. The fit
in the inset gives my best fit of fwhm = 4.0 Å/w, which
does describe quite well the defects with width larger
than 30 Å.
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FIG. 5. Dependence of the streak width on the width of
311 defects. The maximum in the scattering intensity is
normalized to 1 to allow for easy comparison of the widths.
The insets show the fwhm of the intensity peak as a function
of the defect width for all the defects studied. a) IRD defect,
b) 1HexZD defect.
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FIG. 6. Dependence of the streak width on the length
of 311 defects. The maximum in the scattering intensity is
normalized to 1 to allow for easy comparison of the widths.
The inset shows the fwhm of the intensity peak as a function
of the defect length for all the defects studied. a) IRD defect,
b) 1HexZD defect.

The length of the defects behaves very similarly, see
Fig. 6. Now the scan is in the [110] direction for both
defects (out of the plane in Fig. 3, and the functional
dependence found is fwhm = 4.81 Å/l for the IRD defect,
and 4.8 Å/l for the 1HexZD defect. The fit is again very
good for the IRD defect, but somewhat poorer for the
1HexZD defect.

I did not report the statistical uncertainty of the fits
because the main source of uncertainty here is systematic
errors the σ convolution factor. The influence of the σ
factor was assessed by repeating some of the calculations
described above as a function of σ, for σ values in the
range 0.05 – 0.30. These tests showed that both the
width and the length do depend on sigma, but in a fairly
smooth manner, enabling interpolation or extrapolation
to any value of σ . 0.3. I estimated that for σ . 0.10 (the
range likely to be relevant for experiments) the effect is
not more than roughly 30 %. Hence the size dependencies
presented above are valid for a first estimate of defect
size. A more accurate estimate can obtained by carrying
out the modeling for a σ value corresponding to the
experimental resolution of a given set of experiments.

As an aside, I note that for stacking faults we have pre-
viously found the dependence fwhm = 6.8 Å/diameter6,
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so the streak width dependence of the defect size seems
to be of the same order of magnitude for many different
kinds of defects. Moreover, this dependence agreed with
independent analytical calculations22, giving additional
confidence that the σ parameter at most causes a minor
correction in the dependence.

IV. CONCLUSIONS

Using an atomistic scheme to calculate the diffuse x-
ray scattering, I have shown what the expected scattering
patter for the two most common 311 defects is expected
to look like. The “IRD” variety has pronounced streaks
in 〈311〉 directions, while the “1HexZD” variety has
streaks in 〈100〉 directions in reciprocal space. Moreover,
I showed how cross-sectional scans of these streaks
could be used to determine approximately the defect
width and length separately, and discussed how the
first approximation presented here could be made more
accurate in connection with experiments.
Since a stacking fault has streaks in 〈111〉 directions,

and the perfect loop no streaks, our results mean that
using x-rays the two varieties of the 311 defect could
be distinguished both from each other, and the other
important extended defects which play a role in Si
processing.
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