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Elastic parameters of IVB transition-metal mononitrides, TiN, ZrN, and HfN in the cubic NaCl crystal
structure have been calculated by means of density-functional theory with the generalized gradient approxi-
mation. The elastic constants c11, c12, and c44 were shown to be sufficiently converged with the density of the
k-point mesh in the deformed Brillouin zone to discuss the elastic anisotropy of the systems. It was found that
the anisotropy coefficient ���c11−c12� /2c44 increases with the atomic number of the metal element, i.e., HfN
exhibits as strong anisotropy as �=2.02. The Young’s modulus of HfN along �100� is approximately two times
higher than that along �111�. Moreover, analysis of the deformation energy by the applied strain modes shows
that this elastic anisotropy originates from the strong covalent bonding between metal and nitrogen atoms
along �100�.
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I. INTRODUCTION

The transition metal nitrides have attracted considerable
attention during the past three decades due to their interest-
ing combination of mechanical, electrical, and chemical
properties. This has led to their wide application as hard
coatings and thin films for electronic devices �for a review,
see Ref. 1�. In particular, their high activation energy against
electromigration, coupled with superior electrical conductiv-
ity, high melting point, and excellent chemical stability has
made these “refractory hard metals” extensively used for
diffusion/reaction barriers in metallization schemes for semi-
conductor and photovoltaic technology, and desirable candi-
dates for new materials in electronic devices.2–5 Furthermore,
the discovery of ZrN and HfN-based new layer-structured
high Tc superconductors,6–8 as well as the recent synthesis of
superconducting nitrides with a new structure �Zr3N4 and
Hf3N4�9 has attracted much attention to these materials.
However, the main interest in transition metal nitrides is as-
sociated with their superior mechanical properties, partially
related to electronic structure,10 that are usually tailored by
the selection of specific deposition conditions,11,12 or modi-
fied by post-growth ion treatment.13–15

Surprisingly enough, despite common reference to the
“extreme hardness” and “significant Young’s modulus” of
transition metal nitrides, there is considerable confusion re-
garding what the acceptable values of the mechanical char-
acteristics are. Various authors have reported inconsistent re-
sults for HfN thin films, that are relatively rarely examined,
as well as for widely investigated TiN and ZrN. Indeed, the
discrepancy in HfN hardness measured by various authors
spans from 16 to 60 GPa,16–21 which made Nowak et al.22

question the appropriateness of indentation tests in the case

of nitride hard films on silicon substrates. Moreover, a recent
ab initio calculation work by Zhang and He23 alerted that
two “widely accepted,” but considerably different values of
the Young’s modulus for TiN are nowadays in common use,
namely, 250 and 640 GPa.

The above evidence raises serious reservations towards
results of the majority of the research that is related to the
mechanical properties of the metal nitride films. The exten-
sive documentation of ultrahigh internal stresses that are
generated in TiN, ZrN, and HfN during deposition serves as
an example of a field that would be much affected by drastic
correction of the accepted values, since the methods of stress
evaluation employ equations that inevitably require accurate
knowledge of elastic parameters for both the film and
substrate.13–15,24,25 Furthermore, there is still uncertainty con-
cerning the origin and scale of the anisotropic lattice distor-
tion and related elastic anisotropy exhibited by the transition
of metal nitride films26 that was never addressed in a system-
atic manner so far.

Hence, the present paper provides a thorough study of the
elastic anisotropy of HfN, ZrN, and TiN, by employing ad-
vanced ab initio calculations, which frequently start with the
determination of electronic structure using density-functional
theory �DFT� within the local density approximation �LDA�
and generalized gradient approximation �GGA�.27 In contrast
to the few previously reported ab initio calculations of elastic
constants of hard refractory metals with pseudopotentials21,28

or the full-potential augmented plane wave method
�FLAPW�,29 which used a fixed density wave vector k-point
mesh within the Brillouin zone, the current work presents a
methodical mesh-dependent convergence analysis of the re-
sults. The first explanation of the nature of the elastic aniso-
tropy is offered, enabling distinguishing the elastic aniso-
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tropy of HfN with respect to ZrN and TiN. The theoretically
evaluated anisotropy of the Young’s modulus for TiN, ZrN,
and HfN appears to be in agreement with the only available
literature values obtained from x-ray diffraction experiments
by Perry.30

The additional motivation of our calculations is to obtain
the parameters that are necessary to construct the analytical
interatomic potentials for HfN, which in turn should allow us
to carry out molecular dynamics simulations of phenomena
involving large numbers of atoms such as nanoindentation
surface deformation or ion irradiation effects.31–35

II. COMPUTATIONAL DETAILS

The present DFT calculations on the IVB metal nitrides
have been carried out by employing the ESPRESSO/PWSCF

software package.36 We use Vanderbilt ultrasoft
pseudopotentials37 with GGA, where a scalar-relativistic cal-
culation is applied for the transition metal elements, and a
nonrelativistic one for nitrogen. These pseudopotentials have
been confirmed to give proper electronic band structure and
density of states �DoS� for the cubic NaCl structure for the
nitrides, similar to those obtained by FLAPW.29 Each self-
consistent field calculation is converged to give high accu-
racy of the total energy within 1.0�10−9 Ry. The kinemati-
cal cutoff energy of the wave function is selected to be
80 Ry, as higher cutoff energy of 100 and 120 Ry have been
found not to change the results.

The stress theory of Nielsen and Martin38 enables us to
calculate the stress tensor �ij of a given crystal structure
from a self-consistent field obtained by DFT. By this theory,
the equilibrium lattice constant a0 can be linearly interpo-
lated at the pressure P=0 in between different lattice con-
stants, while the bulk modulus is given by

B = −
a0

3
�dP

da
�

a=a0

, �1�

for a cubic system. To obtain the independent elastic con-
stants of a cubic system, namely c11, c12, and c44 in Voigt
notation, we apply volume-conserving homogeneous defor-
mations on the equilibrium unit cell �see Fig. 1�. The strain
tensor uij of the orthorhombic deformation is denoted by a
single strain parameter � as

�uij� = 	� 0 0

0 − �/�1 + �� 0

0 0 0

 , �2�

and that of the shear deformation by � as

�uij� = 	 0 �/2 0

�/2 0 0

0 0 0

 . �3�

Under the condition �, ��1. Hooke’s law gives

c11 − c12 = ��1 − �2��� +
�

1 + �
�−1

, �4�

c44 = �4/� , �5�

also in Voigt notation. Since the bulk modulus is related to
the elastic constants as

B =
1

3
�c11 + 2c12� , �6�

we consequently obtain the elastic constants

c11 = B +
2

3
�c11 − c12� , �7�

c12 = B −
1

3
�c11 − c12� , �8�

using B from Eq. �1�.
Here the smallest strain �=�=0.002 that assures sufficient

numerical accuracy of the calculated pressure, i.e., of the
elastic constants, is selected.

Since the materials are metallic, special care should be
taken about electrons in the vicinity of the Fermi energy. The
first order Methfessel-Paxton smearing function applied here
is known to give rapid but not monotonic convergence of the
integration over the Brillouin zone with an increasing num-
ber of sampling k points.39 The broadening energy of the
smearing is selected to 10 mRy for accurate calculations. To
assure the convergence of elastic constants calculations, a
series of self-consistent field calculations are achieved for
various densities of k points, where the standard Monkhorst-
Pack method40 is applied to generate a homogeneous k-point
mesh in the irreducible Brillouin zone of each deformed unit
cell. Figure 2 shows the convergence of physical parameter
calculations such as the total energy, lattice constant, bulk
modulus, and elastic constants �c11–c12� and c44 calculated
with the wide range of the number of k points from 29 up to
6992, which correspond to a 8�8�8 mesh in the irreduc-
ible Brillouin zone of the cubic structure and a 30�30
�30 mesh in the one under shear strain. Due to the high
symmetry of the cubic structure preserved for the homoge-
neous expansion, the convergence of the bulk modulus and
lattice constant is rapid enough to give meaningful values
within the possible numerical errors at the smallest number
of k points. In contrast, the elastic constants require a denser
k-point mesh to converge within a an error of a few percent;
at least 1500 and 4000 k points for c44 and �c11–c12�, respec-

FIG. 1. Schematic drawing of the two-dimensional deformation
modes applied to the HfN crystal with lattice constant a. Ortho-
rhombic deformation �a� is denoted by the strain �, and simple
shear deformation �b� by �=tan �.
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tively. The total energies of the deformed unit cells corre-
sponding to these elastic constants remains within about
1 mRy for the whole range of the number of k points, and
converged to less than 0.1 mRy for accurate elastic constant
calculations.

Note that both of these elastic constants are robust against
the shift of the equilibrium cell size under zero pressure.
Such a shift happens when the k mesh is changed, and in-
duces some amount of hydrostatic pressure. For shear defor-

mation, Eq. �5� uses only a nondiagonal component of the
stress tensor that never appears at the equilibrium point.
Orthorhombic deformation activates the diagonal compo-
nents of the stress, but the effect of hydrostatic pressure is
canceled out in Eq. �4�. Thus the elastic constants calcula-
tions are not affected by the shift during the k convergence
test.

III. RESULTS AND DISCUSSION

The calculated elastic constants are listed in Table I to-
gether with the values available in the recent literature. Er-
rors of the results are estimated from the standard deviations
of several data toward k convergence. The present lattice
constants and bulk moduli show good agreement with those
from other calculations, in particular, those obtained with
GGA. However, the elastic constants obtained in the present
calculations tend to show smaller values than those in the
literature. The likely reason to this discrepancy is the density
of sampling k points in the Brillouin zone. The k point
meshes in the references are less dense than the density that
gives convergence of elastic constants in the present study.

Based on the obtained elastic constants, the anisotropic
Young’s modulus E can be examined for the materials. If we
describe the crystallographic direction represented by

	 =
h2k2 + k2l2 + l2h2

�h2 + k2 + l2�2 , �9�

we can write E of a cubic system as a function of 	:

FIG. 2. Convergence of elastic parameters with increasing sam-
pling k points in the irreducible Brillouin zone.

TABLE I. Equilibrium lattice constant a0 �Å�, bulk modulus B, elastic constants c11, c12, and c44 �GPa� of HfN, ZrN, and TiN in the NaCl
structure. Errors in the table are estimated from the standard deviations of several data toward k convergence. Other figures by recent GGA
and LDA studies are listed for comparison.

System Method a0 B c11 c12 c44

HfN Present work GGA 4.539 279.8�2� 597�1� 121�1� 118�2�
APW+loa LDA 4.53 284 733 124 182

GGA 664 115 154

FLAPWb LDA 4.37 320

GGA 4.54 278

ABINITc LDA 306 694 112 134

ZrN Present work GGA 4.593 257.9�1� 537�1� 118�1� 120�3�
FLAPWb GGA 4.57 264

LDA 4.53 292

ABINITc LDA 285 611 117 129

TiN Present work GGA 4.246 286.6�5� 585�4� 137�2� 165�3�
APW+loa GGA 598 154 168

LDA 4.18 318 669 160 215

FLAPWb GGA 4.26 286

LDA 4.18 322

aReference 28, with 4�4�4 k-point mesh.
bReference 29, with 8�8�8 k-point mesh.
cReference 21, with 16�16�16 k-point mesh.
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E = s11 − 2�s11 − s12 −
1

2
s44�	�−1

, �10�

where the components of the compliance tensor s11, s12, and
s44 are derived from the elastic constants by a standard
procedure.41 This function is plotted for HfN, ZrN, and TiN
in Fig. 3, and the values of E at some special 	 are listed in
Table II, namely E�100� at 3	=0, E�111� at 3	=1, and Ebulk at
3	=0.6. The latter value is accepted for bulk polycrystalline
materials �see the note added in Ref. 30�. Also, the aniso-
tropy coefficients ���c11−c12� /2c44 are shown for the sys-
tems in the same table. It is obvious that HfN has strong
anisotropy in the elasticity as �
2; E�100� is almost two
times higher than E�111�. On the contrary, TiN behaves close
to isotropic materials, despite of the cubic symmetry of the
NaCl crystal structure.

For comparison with the x-ray diffraction �XRD� experi-
ments by Perry,30 the intercept lattice constants ahkl in the
article are converted into anisotropic Young’s modulus as
follows:

Ehkl = Ebulk
abulk − a0

ahkl − a0
. �11�

The values of a0 and abulk are as they appeared in his paper,
while the Young’s modulus for bulk polycrystalline materials
Ebulk, which is taken from the literature, is replaced with our

calculated values. The obtained Ehkl are also plotted in Fig. 3,
where the error bars are drawn only for the current discus-
sion by assuming the intercept lattice constants have an un-
certainty of 0.002 Å. Even though these experimental values
may be affected by the textured structure in the thin films,
the measured anisotropy follows the calculated Young’s
modulus. This is one evidence that the macroscopic elasticity
of these hard materials is mainly controlled by the original
property of crystals, not by microstructures in each speci-
men.

To figure out the origin of the anisotropy variation among
these material systems, one has to consider the relationship
between the deformation energy and the changes of bonding
geometry in the NaCl crystal structure. The bond length
LM–M, LM–N and the angle �M–M–N in the deformed crystal
can approximately be written by the strain parameters � /2
and � �see Table III�. Here M represents a metal element and
N nitrogen. Neglecting the second order effects, we can see
the shear deformation changes only �M–M–N, while the ortho-
rhombic deformation changes both LM–M and �M–M–N. Hence
the contributions of the bond angle deviation to the deforma-
tion energy are of the same order in both deformation modes
under the condition of

�/2 = � . �12�

Using this constraint we can compare the deformation ener-
gies of applied orthorhombic and shear strain on the cubic
systems �see Fig. 4�. These energies are given by parabolic
functions as follows:

Uortho/V0 =
1

2
c11�2 +

�2

�1 + ��2� − c12
�2

1 + �
� �c11 − c12��2,

�13�

Ushear/V0 =
1

2
c44�

2. �14�

Since both the deformation modes conserve the unit-cell vol-
ume V0, the anisotropy coefficient � can be written as the
ratio of these deformation energies:

� = Uortho/Ushear, �15�

under the same constraint �12�. In Fig. 4, lines indicate the
theoretical deformation energy based on the present elastic
constants, and symbols indicate the calculated energy from
the self-consistent field obtained with 1550 k points by the
18�18�18 mesh for the shear mode and 4505 k points by
the 32�32�32 mesh for the orthorhombic mode. It is

FIG. 3. Anisotropic Young’s moduli E derived from the calcu-
lated elastic constants of HfN, ZrN, and TiN. The data in Ref. 30
are rescaled at 3	=0.6 and plotted with error bars that are given by
the assumption that the intercept lattice constants have an uncer-
tainty of 0.002 Å.

TABLE II. Anisotropic Young’s moduli and anisotropy coeffi-
cients ���c11−c12� /2c44 of HfN, ZrN and TiN.

System Ebulk E�100� E�111� �

HfN 376 557 309 2.02

ZrN 365 494 311 1.75

TiN 456 533 416 1.36

TABLE III. Deviation of the bond lengths and angle of metal
mononitrides in the NaCl crystal structure with the orthorhombic
and shear strain. See Fig. 1 for the definition of the strains repre-
sented by � and �.

Mode �LM-N/LM-N �LM-M/LM-M ��M-M-N

Ortho. ±� �2 �

Shear �2 /2 ±�2 /2 � /2

NAGAO, NORDLUND, AND NOWAK PHYSICAL REVIEW B 73, 144113 �2006�

144113-4



clearly seen that Ushear of these three materials are similar to
each other, but Uortho is different. Furthermore, the difference
between Uortho and Ushear which indicates the contribution of
�LM–M is small for TiN ��=1.36�, but large for HfN ��
=2.02�. This means the high deformation energy of these
materials are mainly caused by the resistance of the angle
between M-M-N bondings in �100�,10 but the elastic aniso-
tropy itself by the radial atomic distance of metal-nitrogen
covalent bond.

IV. CONCLUDING REMARKS

Ab initio calculations of elastic constants in TiN, ZrN, and
HfN with systematic verifications of k-point convergence
showed that a much larger set of k points than has been

previously employed, is needed to achieve good convergence
in all elastic constants. The good convergence allowed a dis-
cussion of the anisotropy of the elastic properties for IVB
transition-metal nitrides. The results obtained for these ma-
terials exhibit an anisotropy according to the cubic NaCl
structure, and agree with the anisotropic lattice distortions
detected by XRD. It is surprising that the experimentally
observed lattice distortions in thin films can be explained
based only on the elastic properties of the system, without
modeling of the microstructures in the specimen. Further-
more, the anisotropy coefficient increases with the atomic
number of the transition metal element. Due to the strong
anisotropy, the Young’s modulus of HfN varies from
300 GPa to approximately 600 GPa depending on the crys-
tallographic direction. Hence, it is difficult to determine a
single averaged value of the Young’s modulus for a bulk
polycrystalline specimen.

The discussion of the deformation energy revealed that
the anisotropy comes from the covalent metal-nitrogen bond-
ing along �100�, although the high deformation energy is
caused by the angular deviation between M-M-N bonding in
the �001� plane. This connects the variation of the elastic
anisotropy among HfN, ZrN, and TiN to the different quan-
tum numbers of the hybridized covalent bonding.

Overall, the present study encourages obtaining further
understanding of the macroscopic elasticity of hard metal
nitrides from the intrinsic properties of the atomic and elec-
tronic structure in the crystal systems.
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