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special issue of which it is intended to be part, but also, more broadly, to guide future 

advances concerning interatomic potentials applied to problems related to structural 

nuclear materials, especially steels.

Best regards,

The Authors

Cover Letter



Comparison of empirical interatomic potentials for iron applied to radiation 
damage studies

L. Malerba1,*, M.C. Marinica2, N. Anento3, C. Björkas4, H. Nguyen5, C. Domain6, F. Djurabekova4, 
P. Olsson6, K. Nordlund4, A. Serra3, D. Terentyev1, F. Willaime2, C.S. Becquart5

1Structural Materials Group, Institute of Nuclear Materials Science, SCKCEN, Boeretang 200, B-2400 Mol, Belgium
2CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191, Gif-sur-Yvette, France
3Department Matemàtica Aplicada III, E.T.S. Enginyeria de Camins, Universitat Politècnica de Catalunya, Jordi 
Girona 1-3, 08034 Barcelona, Spain
4Accelerator Laboratory, P.O. Box 43, FI-00014 University of Helsinki, Finland
5Laboratoire de Métallurgie Physique et Génie des Matériaux, UMR 8517, Université Lille-1, F-59655 Villeneuve 
d'Ascq Cédex, France
6Dept. MMC, EDF-R&D, Site des Renardières, F-77218 Moret-sur-Loing, France

Abstract

The performance of four recent semi-empirical interatomic potentials for iron, developed or used 

within the FP6 Perfect Project, is evaluated by comparing them between themselves and with 

available experimental or, more often, density functional theory data. The quantities chosen for the 

comparison are of specific interest for radiation damage studies, i.e. they concern mainly properties 

of point-defects and their clusters, as well as dislocations. For completeness, an earlier, widely used 

(also within the Project) iron potential is also included in the comparison exercise. This exercise 

allows conclusions to be drawn about the reliability of the available potentials, while providing a 

snapshot of the state-of-the-art concerning fundamental properties of iron, thereby being also useful 

as a kind of handbook and as a framework for the validation of future semi-empirical interatomic 

potentials for iron. It is found that Mendelev-type potentials are currently the best choice in order to 

“extend density functional theory” to larger scales and this justifies their widespread use, also for 

the development of iron alloy potentials. However, a fully reliable description of self-interstitial 

atom clusters and dislocations with interatomic potentials remains largely an elusive objective that 

calls for further effort within the concerned scientific community.

1. Introduction

A little before the start of the FP6 PERFECT project (henceforth simply the Project), a set of new 

semi-empirical interatomic potentials for body-centred-cubic iron (bcc-Fe) was published by 

Mendelev et al. [1-Mendelev03]. Despite using a formalism that was far from new, i.e. the so-called 

embedded atom method [2-Daw84], this set of potentials turned out to represent a significant 

advance, compared to the past. On the one hand, the fitting procedure was extremely careful and 

made use of a large set of fitting and validation data, including properties of the liquid phase and the 
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melting point. On the other hand, point-defect energies calculated little before by means of density 

functional theory (DFT) techniques, especially the then-surprising energy difference between the 

dumbbell and crowdion configurations of the self-interstitial atom (SIA) in body-centred-cubic iron 

(bcc-Fe) [3-Domain01], were used as a reference for the development of the potential. In particular, 

the potential “number 2” in [1-Mendelev03] revealed itself as especially accurate to describe a large 

number of properties involving defects in bulk bcc-Fe, from small SIA clusters [4-Willaime05] to 

dislocations [5-Domain05], when compared to DFT results and also experiments. This potential 

will be hereafter denoted as M03. At the beginning of the Project, a slight modification of M03 was 

proposed as part of a potential for the FeP binary alloy [6-Ackland04] (henceforth denoted as A04). 

Either of these two potentials, M03 and A04, has been next extensively used, within and without the 

Project, both for studies of defect properties in pure Fe, often in comparison with other potentials or 

DFT results [4-Willaime05, 5-Domain05, 7-Terentyev06cask, 8-Terentyev07prb, 9-

Terentyev07edge-loop, 10-Björkas07nimb, 11-Marinica07, 12-Terentyev08prl, 13-

Terentyev08taos, 14-Terentyev08TMS, 15-Terentyev08IOP], and as a basis for the development of 

alloy potentials [16-Caro05FeCr, 17-Olsson05FeCr, 18-Pasianot07FeCu, 19-20-

Bonny09FeNi&FeNiCu, 21HepburnFeC].

Within the Project, two more potentials for bcc-Fe have been developed: the so-called ‘magnetic’ 

potential proposed in [22-Dudarev05] and the set of Mendelev-type potentials still being worked on 

at CEA-Saclay. The former is based on a combination of the Stoner and the Ginzburg-Landau 

models and introduces, via a specific embedding functional form, an explicit magnetic contribution 

to the energy of interaction between atoms in -Fe. The version herein used corresponds to case 

study II in [22-Dudarev05] and is denoted as D05. The latter uses exactly the same formalism as for 

M03 and A04, but aims at better fitting a number of properties of importance for Fe that the original 

M03 and A04 are found not to reproduce satisfactorily. The version used here, denoted as M07, is 

briefly described in terms of parameters in the Appendix; full details about this set of potentials will 

be published elsewhere. Both D05 and M07 were produced having as reference the latest data 

concerning, in particular, the description of SIAs in bcc-Fe, from DFT calculations [3-Domain01, 4-

Willaime05, 23-Fu04].

In the present work, a number of results obtained with these four potentials (M03, A04, D05 and 

M07) are compared between themselves and with available experimental or, more often, DFT data. 

The quantities chosen for the comparison are of specific interest for radiation damage studies, i.e. 

they concern mainly properties of point-defects and their clusters, as well as dislocations. In most 

cases they are the result of static calculations, but a few results from dynamic studies (effective 



migration energies, displacement cascades, …) are also presented. For completeness, the bcc-Fe 

potential developed in [24-Ackland97], here denoted as A97, is also included in the comparison 

exercise. A97 is indeed a good example of an early many-body potential, i.e. fitted without allowing 

for the information that came from DFT since the year 2000. A97 has been widely used (also within 

the Project) for a variety of studies concerning radiation defect production, stability, mobility and 

interaction in bcc-Fe and FeCu alloys, especially on loops and dislocations [25-Pelfort01, 26-

Marian01, 27-Marian02, 28-Marian02prl, 29-Puigvi03, 30-Puigvi04, 31-Osetsky03edge, 32-

Osetsky03voids, 33-Osetsky04PML, 34-Rong05PM, 35-Rong05Pmdrag, 36-Rong05MSE]. It is 

therefore important to verify how the new potentials perform as compared to it.

This comparison exercise allows conclusions to be drawn about the reliability of the available 

potentials, by providing a snapshot of the state-of-the-art concerning fundamental properties of Fe 

that, in many cases, are not accessible to experiments. As such, this exercise is also useful as a kind 

of handbook (many values will be of use for example for kinetic Monte Carlo simulations or rate 

theory models) and as a framework for the validation of future semi-empirical interatomic 

potentials or, in general, cohesive models for bcc-Fe.

Recently, a bond-order-type potential for Fe, also fitted to the DFT description of the relative 

stability of SIA, has been proposed [37-Müller07]. The attractive feature of such a potential is its 

ability to describe the - transition of Fe. Nonetheless, since this potential was neither produced, 

nor used within the Project, it is not included in the present comparison exercise. In the article 

where the potential is proposed there is, however, a quite extensive comparison with some of the 

potentials compared here. Concerning displacement cascades, a comparison has been made in [10-

Björkas07nimb]. These results will be taken into account for the discussion.

In Section 2 we report the results of calculating basic properties such as elastic constants, lattice 

expansion and melting point. In Section 3 the fundamental properties of point-defects and small 

clusters thereof (mainly characteristic energies) are addressed. In Section 4 selected properties of 

dislocations and dislocation loops are explored. In Section 5 results concerning damage production 

in displacement cascades are given. In Section 6 a discussion and a few concluding remarks are 

provided.

For the details of the calculations in most cases the reader is necessarily referred to previous 

publications. Whenever the value has been taken from a published work, the reference is given. 

Almost all of such values have been, however, also re-calculated and verified. In some cases more 



than one value is reported, corresponding to slightly different calculation methods (different codes, 

different algorithms, …). By reporting all values we provide an idea of the uncertainty related to 

these calculations, generally not larger than 0.1 eV for characteristic energies (the largest part of the 

reported database).

2 Basic properties

Table 1 shows a summary of basic properties of Fe, unrelated to radiation damage, as calculated 

with the different potentials and compared with experimental and DFT indications. Except for the 

melting point, all are the results of static calculations performed in standard way, i.e. by minimising 

the energy of the system in the situation of interest or, in the case of elastic and lattice properties, by 

tracing the energy and force variation when applying appropriate lattice deformation. Zero 

temperature and pressure were assumed. Figures 1 and 2 provide information about lattice 

expansion and phonon properties, respectively. The lattice expansion was calculated by performing 

constant pressure molecular dynamics simulations, while the procedure for obtaining the phonon 

dispersion curves is detailed in [11-Marinica07]. The reported melting points come from different 

estimations. The thermodynamic integration result for A97 comes from the construction of the 

whole phase diagram using the methodology described in [48-Lopasso03]. The coexistence 

temperature method searches iteratively the temperature corresponding to zero values of the stresses 

in the bulk crystal and liquid phase and is briefly described in [1-Mendelev03], where references are 

also given. The moving interface method is rougher, but based on the same idea as the latter (see 

e.g. [ErcolessiMD]): solid and liquid phases are put in contact and the melting point is contained in 

the interval between the highest studied temperature at which the interface moves towards the 

liquid, thereby increasing the fraction of solid, and the lowest studied temperature at which the 

opposite occurs.

The cohesive energies and equilibrium lattice parameters are different depending on the potential. 

They are both, however, only reference values. These differences between potentials and with 

respect to the experimental value do not represent, therefore, a major shortcoming for the 

comparison, so long as the comparison is made between differences with respect to the reference, as 

is generally done. Concerning the energy difference between fcc and bcc structures, seen the scatter 

in DFT and experimental values, all potentials can be considered reasonable. However, this single 

value is hardly of any significance, as the whole equation of state for the two phases should be 

sampled in order to draw conclusions about the capability of the potential to describe them. In fact, 

none of the considered potentials is able to reproduce spontaneously the bcc-to-fcc transformation 

with rising temperature. As mentioned above, it is only very recently that a bond-order potential for 



Fe capable of doing so has been published [Müller07]. The elastic constants are well reproduced by 

all potentials; they are, however, standard fitting parameters, so any defendable potential is 

expected to reproduce them. It is difficult to make conclusions concerning surface energies, having 

only one reference value available; it stands out, however, that all potentials provide similar 

numbers, except M07, which invariably gives higher values, closer to the only available 

experimental indication. The melting point is reasonably well predicted only by M03 and A04. The 

thermal expansion is acceptably reproduced by all potentials, except D05, which predicts thermal 

contraction instead (also M03 provides negative values at very low temperature, see inset in Fig. 1). 

The phonon properties and ambient pressure are reasonably well predicted by all potentials. 

However, the stiffening of phonon modes under pressure is underestimated, when compared to data 

in [Klotz00], by M03 – which predicts a softening - and by A04; this probably explains also why 

the thermal expansion tends to be somewhat underestimated by these potentials.

3 Fundamental properties of point-defects and their clusters

3.1 Calculation methods

Almost all values reported in this section are the result of static calculations. The largest amount of 

them are characteristic energies, i.e. formation, binding and migration energies. These are all

equilibrium energy differences calculated with respect to a reference state, so discrepancies in the 

cohesive energy and equilibrium lattice parameters predicted by the different potentials do not 

question the validity of the comparison.

The formation energy is defined as the energy difference between the system with and without 

defect, at constant number of atoms. The binding energy is the difference between the formation 

energy of the system when the two involved defects are far apart and close to each other, according 

to the specified configuration: positive binding energies denote, therefore, attraction (the energy 

decreases by putting the defects together), while negative binding energies denote repulsion (the 

energy increases by putting the defects together). Finally, the migration energy is, by definition, the 

difference between the energy of the system at the saddle point of the transition corresponding to a 

specific diffusion jump of the defect and the energy of the system before the transition.

In static calculations the system is typically set in the configuration of interest and the energy is 

minimised by letting the atoms reach their equilibrium positions in such a configuration at zero 

temperature. Different methods can be used for this minimisation, e.g. quasi-dynamic quench [46-



Beeler72, 47-Bennett75] or conjugate gradient procedures [48-Press01]. In addition, the calculation 

can be performed at constant volume or constant pressure. Finally, the number of atoms included in 

the simulation box may differ. Altogether, this causes slight differences in the obtained values to be 

possible, even using the same potential and for the same defect, depending on the method. These 

are, however, generally negligible. Here, if the difference was of the order of 1/100 eV, it was 

neglected altogether; otherwise, the different values have been reported, as an indication of the 

uncertainty that may be associated with the calculation of that specific quantity.

In addition to characteristic energies, in the case of self-interstitial type defects the formation 

vibrational entropy has been calculated, as well. The calculation was performed in the harmonic 

approximation, by diagonalising the dynamic matrix, as detailed in [11-Marinica07]. Finally, for 

single point defects the formation volume has been estimated by performing a constant pressure 

relaxation, i.e. by minimizing the energy also with respect to the cell geometry.

A few words are necessary concerning the reference data used for comparison. Experimental values 

for characteristic energies of defects are scarce and limited to single point-defects. In all other cases, 

the only possible reference data for comparison are those from DFT calculations. While these are 

clearly more reliable than empirical potential data and are supposed to be ab initio, i.e. not to 

require the use of fitted parameters, quantitative differences in the results nevertheless exist,

depending on the used DFT method. The values reported here, for all of which a precise reference is 

given (values calculated as part of this work have been always performed according to published 

methodology), have been obtained either with the SIESTA code [49-Soler02, 23-Fu04, 4-

Willaime05], or with the VASP code [50-Kresse93-96]. In the SIESTA code valence electrons are 

described as linear combinations of numerical pseudoatomic orbitals using a basis set of localised 

functions. Core electrons are replaced by non-local norm-conserving pseudopotentials and the 

calculations were performed using the generalised gradient approximation (GGA) functional 

proposed by Perdew, Burke and Ernzerhof [51-Perdew96]. In contrast, VASP is a plane-wave code 

in which core electrons can be represented using either the projector-augmented wave (PAW) 

approach [52-Blöchl94, 53-Kresse99], or ultra-soft pseudo potentials (USPP) [54-Vanderbilt90, 55-

Kresse96]. The calculations were performed using the GGA functional of Perdew et al. [56-

Perdew92]. PAW calculations are more accurate than USPP calculations, especially for magnetic 

materials, and most VASP reference data reported here have been obtained with this method. 

Nonetheless, USPP have been extensively used as well in the past and some of the reference values 

reported here have been indeed calculated in this way, too. In turn, plane-wave codes are more 

accurate than pseudoatomic orbitals codes such as SIESTA, which are, however, faster for many 



applications and for this reason have been, and still are, widely used. Thus, a large number of 

reference data reported here has been produced using SIESTA, too. In most cases, particularly when 

it comes to binding and migration energies, the difference between using one code or another, one 

approach or another, is qualitatively (and largely also quantitatively) negligible. In a few cases, 

however, the discrepancy can be significant, as will be seen. Thus, also the reference data must be 

taken with care, by not forgetting that they, too, are affected by uncertainties, such a consideration 

including of course also experimental measurements.

Dynamic calculations are of use especially in order to estimate the effective migration energy of 

point-defects and their clusters, allowing for all possible migration mechanisms, as well as possible 

entropy effects. When feasible they are, however, computationally heavy. For this reason in this 

comparison exercise only a limited number of dynamic migration energies is reported. The 

calculation method may vary significantly and therefore in each case the reader is referred to the 

specific work for details. A few calculations were performed expressly for this work, namely for the 

self-interstitial migration energy with A04, D05 and M07. In these, the number of self-interstitial 

jumps was dynamically determined as Nj = R2/r1nn
2 [57-Nordlund98], where R2 is the mean 

square displacement, obtained as sum of the displacements of all atoms in the simulation cell during

the simulated time in a long run (this approach has the advantage that one does not need to define 

and track defect positions), and r1nn is the 1st nearest neighbour distance (jump distance). Both 

pressure and temperature control were used in the simulation; simulations without this control

revealed only a small effect of 0.5% variation on the results for the activation energy. No 

correlation factor was used in the calculations, but if a constant factor is assumed in the temperature 

range of interest (in this case 300 to 600 K), the activation energy would not be affected; if, on the 

other hand, the factor grew with temperature, the energy would shift slightly upwards.

3.2 Vacancy-type defects

Tables 2 and 3 compare the descriptions given by the different potentials for small vacancy-type 

defects in terms of, respectively, formation and binding energies (Table 2), and migration energies

(Table 3). In addition to the single vacancy, clusters of up to four vacancies are considered. Fig. 3

depicts the possible configurations for the di-vacancy and the possible transitions between 

configurations (the configurations for the tri- and tetra-vacancy are depicted directly on Table 2). 

Fig. 4 summarises the binding energy landscape as a function of di-vacancy configuration (upper

panel) and vacancy-cluster size (lower panel). Fig. 5 shows the energy profile followed by the 

single-vacancy during a diffusion jump (i.e. exchange of position with a 1st nearest neighbour atom) 



according to the different potentials and DFT. Finally, Fig. 6 provides a simplified energy landscape 

for the process of di-vacancy migration (only the energy of the possible configurations and the 

saddle points of the transitions between them are represented).

The vacancy formation energy is underestimated by all potentials, except M07 and - to a lesser 

extent - D05, as compared to DFT (large uncertainty exists concerning the experimental value). The 

binding energies of small clusters (Table 2 and Fig. 4) are reasonably well reproduced by all 

potentials, although none reproduces the relatively strong binding for the di-vacancy at 4th and 5th

nearest neighbour distances and D05 generally overestimates the binding, particularly for the 1st

nearest neighbour di-vacancy configuration, which is as tightly bound as the 2nd nearest neighbour 

one (ground state).

The migration energy of the vacancy tends to be overestimated by potentials as compared to DFT 

and even more as compared to experiment, the best performance being given by M03 and A04 

(Table 3). The latter are also the potentials that reproduce most closely the energy barrier landscape 

for the migration of the di-vacancy, as compared to DFT (Fig. 6). However, these two potentials (as 

well as D05) predict a double-humped energy profile for the vacancy migration (Fig. 5), which is 

physically of unclear significance and does not appear in the DFT calculation (this problem is 

removed in M07 and hardly appears in A97).

It is worth mentioning here that different methods for the obtainment of the vacancy migration 

energy profile (i.e. drag method [65-Henkelman00] versus NEB [65-Henkelmann00, 66-Mills94-

95], slightly different choices of initial and final conditions, different accuracy in the relaxation, …) 

have been observed to lead to somewhat different paths, particularly at the two extremes; however, 

the saddle point and the energy profile in the region of the saddle point are generally found to be 

independent of the used calculation method.

3.3 Self-interstitial-type defects

Tables 4 and 5 provide a detailed account of the description that each potential gives for, 

respectively, the different configurations and migration mechanisms of the single SIA (the 

configurations are dumbbells, i.e. two atoms sharing the same lattice site, oriented in the specified 

crystallographic direction; the considered migration mechanisms are pictorially represented directly 

on Table 5). The migration energy values per mechanism and potentials are also summarised in 

Fig. 7. Tables 6, 7 and 8 contain the properties predicted for the different possible configurations of, 



respectively, di-SIA, tri-SIA, and tetra- and penta-SIA together (the configurations are depicted on 

the tables themselves). Finally, Fig. 8 shows the relative stability of the different configurations 

with respect to the (supposed) ground state, i.e. parallel 110 dumbbells, as a function of cluster 

size. The chosen configurations correspond in general to parallel dumbbells, oriented along three 

crystallographic directions, namely 110, 111 and 100. The first seems the most natural choice, 

because the stable single SIA is a 110 dumbbell. However, experimentally it is long known that 

interstitial loops in iron have either a 111 or a 100 orientation [78-Eyre65]. For this reason, these 

are the orientations typically studied (see e.g. [4-Willaime05]). However, it has been recently 

discovered that SIA clusters can be stable also in configurations where the dumbbells are not 

parallel [12-Terentyev08prl]. These non-parallel configurations (NPCs), as discussed in [12-

Terentyev08prl, 79-MalerbaWPII1ThisVol], have a number of peculiarities and are deemed to be of 

importance for a more correct description of the microstructure evolution in iron and iron alloys 

under irradiation.

The largely improved description of self-interstitials as compared to DFT is the strong point of the 

most recent potentials (M03, A04, D05 and M07) when compared to the older A97. The four of 

them reproduce correctly the sequence of stability of the different single SIA configurations 

(Table 4), although with non-negligible quantitative discrepancies, particularly for the tetrahedral 

configuration (Fig. 8B). However, D05 exhibits the oddity of predicting a negative volume of 

formation for the single SIA. The four potentials reproduce also satisfactorily, with only subtle 

differences, the relative stability of 111 versus 110 configurations, M03 and A04 being overall 

the closest to DFT (Fig. 8A). The relative stability of non-parallel configurations (NPCs) is, 

however, generally not satisfactorily reproduced (Fig. 8B): no potential predicts, for example, the 

DFT fact that the NPC is the ground state for the di-SIA. For larger NPC clusters, important 

discrepancies exist even between DFT methods [12-Terentyev08prl], this being the most flagrant 

example that also reference DFT data must be taken with care, as anticipated in Section 3.1. If 

VASP/PAW results are taken as the most reliable ones, we see that, by chance, D05 predicts the 

correct stability for the tetra-SIA NPC and M07 (as well as A97) assign to this configuration the 

role of ground state, in qualitative agreement with the message conveyed by the VASP/PAW 

values. However, the supposedly correct trend is never reproduced. Concerning 100

configurations, these clusters are difficult to stabilise, both using potentials and DFT, so it is 

difficult to draw conclusions and any way these would be of unclear significance. The different case 

of large 100 versus ½111 SIA clusters (loops) is addressed in section 4.2. Overall, it appears 

clear that SIA-type defects pose more problems than vacancies, because they may exist in different 

configurations and orientations, not always sufficiently stable to be easily and reliably analysed. 



Their relaxation must be performed with care and small differences in the used procedure may lead 

to relatively large discrepancies. It is therefore not surprising that in the tables devoted to these 

defects the largest amount of different reported values for the same quantity is found.

Concerning migration mechanisms, the energy barriers for those studied here are best reproduced 

by M07, but all most recent potentials provide overall good predictions. In particular, the main 

migration mechanism, i.e. translation-rotation of the 110 dumbbell (mechanism 1), has a correct 

barrier with all of them (note difference with respect to A97) and the on-site rotation of the 110to 

the 111 crowdion (mechanism 6) is not expected to occur according to any of them, except at 

extremely high temperature (contrary to the prediction of the older A97). Note also that all except 

A97 predict the correct value (vs. DFT) also for the on-site rotation between different 110

directions (mechanism 5), though not for the jump to 2nn (mechanism 3). A04 may allow at high 

temperature mechanisms that should not occur (parallel translation to 1nn position of the 110

dumbbell, mechanism 2), and 110 jump to 3nn position, mechanism 4), but the improvement with 

respect to A97, which allows almost all mechanisms, is clear. A detailed discussion of the migration

energy of clusters would be out of the scope of the present work and the interested reader is referred 

for this to [8-Terentyev07prb, 12-Terentyev08prl] and to the extensive literature cited therein.

4 Dislocations

4.1 Dislocation lines

The properties of dislocation lines are determined by a relatively large number of parameters and an 

exhaustive study is well beyond the scope of the present work. Here we limit ourselves to a few 

quantities of some importance, namely the core structure of the screw dislocation (in Fig. 9); the so-

called -line, i.e. the energy profile when two adjacent atomic planes are made to glide rigidly one 

respect to the other (generalised stacking fault energy, in Fig. 10); and the dislocation strain energy 

as a function of the radial distance from the dislocation line, i.e. the elastic energy stored in 

cylinders of growing radius whose axis is the dislocation line itself (in Fig. 11).

In Fig. 9 the core structure of the screw dislocation, as predicted by the different potentials and by 

DFT calculations performed using VASP/PAW, is shown in the Vitek representation [80-Vitek74].

According to this representation, the crystal is looked at from the 111 direction, i.e. normal to the 

dislocation line, thereby appearing as a triangular network. The length of the arrows joining the 



vertices of the triangles, that represent in fact atomic 111 columns, is proportional to the 

disregistry (difference between actual and perfect-lattice interplane spacing as fraction of the 

perfect-lattice interplane spacing) between the concerned atomic columns. (Note that the atoms at 

each of the vertices of the same triangle lie in fact on different parallel atomic planes). The triangle 

with the longest arrows, i.e. the largest disregistry, identifies the screw dislocation core. It can be 

seen that the core is compact, or non-degenerate, as in DFT, only according to the Mendelev-type 

potentials: A04 and M07 (M03, though not reported here, not only gives the same result as A04, but 

provided also the first evidence of double kink mechanism for screw dislocation glide in a 

molecular dynamics simulation [5-Domain05prl], reproducing the motion of this type of dislocation 

on {110} planes, in agreement with experiments and theory). On the other hand, both the older A97 

and D05 predict a three-fold, spread (or degenerate) core. In partial contrast with this prediction, the 

Mendelev-type potentials provide the lowest -line (Fig. 10), i.e. require the lowest energy to make 

two atomic planes shift one respect to the other, significantly less than according to DFT. A priori, 

this should suggest a more pronounced tendency of the dislocation core to spread than with other 

potentials, but the core structures of Fig. 9 suggest exactly the opposite. Thus, the relationship 

between these two static results - the only ones for which, however, DFT results can be produced 

for comparison – is not obvious, as well as it is not obvious how to link them with the actual 

dynamic behaviour of the dislocation. Dynamically, Mendelev-type potentials provide sensible 

results, as demonstrated at least in the case of M03 [5-Domain05prl]. Finally, in spite of the clear 

difference between potentials concerning screw dislocation core description and -line, the 

dislocation strain energy is largely the same for all potentials, with the only exception of a 

somewhat higher value predicted by D05 for the screw dislocation (as a consequence of a somewhat 

different core energy). In this case, however, no DFT reference data is available for comparison, as 

the required simulation volume would be far too large for DFT methods to be applicable.

4.2 Dislocation loops

Dislocation loops are in fact clusters of SIA in the form of platelets of parallel dumbbells (or better 

crowdions), large enough to be able to say that, in the central region of the platelet, the crystal is 

close to being perfect. When this happens, the disturbance is confined to the edge of the platelet, 

thereby effectively creating a closed edge dislocation line, with Burgers vector normal, or almost 

normal, to the loop habit plane (the plane of the platelet of parallel dumbbells or crowdions). In 

iron, two types of loops are observed experimentally: with Burgers vector ½111 and with Burgers 

vector 100 [78-Eyre65].



A clearcut size criterion to establish when a cluster of SIA should be better called loop cannot be 

provided,, but a Burgers vector can already be identified in clusters containing 30-40 SIA and 

already this size is hardly accessible to DFT. Visible loops are even larger and their study therefore 

requires the use of simulation volumes containing several tens of thousands of atoms, totally 

inaccessible to DFT. Thus, in the case of loops we have no DFT reference data and for their study 

we can only rely on potentials, without clear and direct indications to decide which potential is 

more correct.

As in the case of dislocation lines, the properties of loops are determined by a large number of 

parameters. Here we report on two only: the strain field at the habit plane, in terms of atomic 

disregistry parallel to the loop Burgers vector (Fig. 12), and the formation (or self-) energy versus 

loop size (Fig. 13). Both these quantities are hardly accessible to experiments, so it is impossible to 

make any firm conclusion about the relative accuracy of the different potentials. The only 

considerations that can be made are qualitative. For example, it appears that 111 loops are very 

similarly described by all potentials, while discrepancies appear in the description of 100 loops 

(Fig. 12). This different description of 100 loops depending on the potential is reflected also in the 

formation energies as a function of size (Fig. 12): A97, M03 and A04 provide similar qualitative 

trends: the 111 loops are energetically favoured for all sizes, with slight energy differences 

(negligible with A04) depending on the habit plane of 100 loops. In D05 the difference between 

100 and 111 loops is the largest, with no influence of the habit plane of 100 loops, thereby 

fully agreeing with the isotropic elasticity theory picture [81-Kroupa60]. On the contrary, M07 

predicts an inversion of relative stability above a certain size. If this was proven to be true, it would 

explain the appearance in Fe of 100 loops. However, experimentally both types of loops are 

observed for similar sizes [78-Eyre65] and recent work suggests in fact that temperature, more than 

size, may have an important role in determining the stability of 100 versus 111 loops [12-

Terentyev08prl, 82-Dudarev08prl].

5. Damage production

5.1 Threshold displacement energies

The threshold displacement energy is defined as the minimum energy that must be provided to an 

atom in order to definitively displace it from its lattice site, so as to form a stable Frenkel pair (FP), 

i.e. a vacancy and a SIA that do not recombine spontaneously. Despite its apparent simplicity and 

clearness, this definition is ambiguous and does not provide a clearcut criterion for the 



determination of the threshold energy, especially by means of atomistic simulation, because in 

practice it is never true that above a certain energy value a stable Frenkel pair is always produced, 

and never below. This issue has been discussed in [83-Nordlund06], where all the possible 

interpretations of the definition and the difficulties encountered for its application in practice are 

discussed and an accurate methodology for threshold energy calculation using molecular dynamics 

and interatomic potentials is provided. This methodology has been used to produce the data of 

Table 9.

All potentials (D05 only after re-stiffening, i.e. after modifying the way the equilibrium potential is 

joined to a more appropriate potential for the treatment of short distance encounters [10-Björkas07]) 

provide reasonable threshold energies when compared to experimental indications . This, however, 

is a priori only a necessary, not sufficient condition to believe that they are reliable for 

displacement cascade simulations [88-Becquart00, 89-Malerba06].

5.2 Displacement cascades

The influence of the interatomic potential on the result of the simulation of displacement cascades 

(specifically in Fe) has been first studied in [88-Becquart00] and, more recently, in [7-

Terentyev06csk] and [10-Björkas07]. A review of results of displacement cascades for Fe is 

provided in [89-Malerba06]. We refer to these works for the description of the cascade process and 

of the simulation method. Fig. 14 compares the results obtained with the potentials of interest in this 

work (all except M03 which is, however, extremely similar to A04 and therefore not expected to 

provide significantly different results). These are given in terms of (i) number of FPs left at the end 

of the cascade process and (ii) fraction of SIA and vacancies found to form clusters after 

appropriate analysis. As expected [89-Malerba06], no large difference in the number of FPs is 

observed from one potential to the other except, perhaps, at high energies, where different 

subcascade production may have a role in determining the number of surviving defects. More 

pronounced differences emerge in the defect clustered fraction versus cascade energy. Qualitatively, 

it can be said that the predictions of D05 and M07 are intermediate between A04 (highest clustered 

vacancy fraction) and A97 (highest clustered SIA fraction). As discussed in [7-Terentyev06, 88-

Becquart00, 89-Malerba06], it is impossible to explain the differences between predicted clustered 

fraction in terms of one or two single factors specific for the used potential. Nonetheless, as shown 

in [10-Björkas07], it is possible to observe a trend to reduce the scatter when the most recent 

potentials are used. This convergence of results, which is likely to be the consequence of the fact 

that these potentials predict similar stability and mobility of SIAs, in addition to having similar 



repulsive parts, may be interpreted, in itself, as a sign that overall some progress has indeed been 

made on the path of developing more reliable interatomic potentials for Fe.

6 Concluding remarks

The growth to present-day standards of the speed and efficiency of computers allowed in the last 

decade an impressively large DFT dataset to be produced for defect properties in Fe. This dataset 

has been partly used here to assess the performance of the most recent interatomic potentials for this 

metal, as compared to earlier ones, when applied to radiation damage studies. Since these potentials 

have been fitted having in mind a few key DFT data, unsurprisingly they globally provide results 

closer than ever to this class of data. Since DFT data are accepted to be highly reliable, this is of 

course in itself a significant improvement, epitomised by the excellent agreement found, for the first 

time in the history of MD simulations of Fe, between the dynamically calculated migration energy 

of the single SIA and its experimental value (Table 5) [8-Terentyev07prb], as well as by the 

spontaneous prediction of the double kink mechanism for the screw dislocation motion [5-

Domain05prl]. However, the number of cases in which a direct comparison of interatomic potential 

results with experimental measurements can be made is limited, so essentially what is mainly 

checked here is how close the interatomic potentials results are to DFT, for cases not considered at 

all in the fitting procedure. From this point of view, the Mendelev-type potentials, especially M03 

and A04, perform very well, globally much better than, for example, the equally recent and possibly 

physically more grounded ‘magnetic’ potential, D05. In the latter case, it is necessary to distinguish 

between the mathematical formalism of D05, which can be interesting in itself and may represent a 

conceptual improvement, and the accuracy of the fitting that provided the specific set of parameters, 

which is clearly better in the case of the Mendelev-type potentials. It is, on the other hand, difficult 

to make a statement concerning the performance of the bond-order potential developed in [37]: it is 

certainly attractive to reproduce spontaneously the - transition, but the description of SIA and 

dislocation properties with this potential remains largely to be verified. At the moment, therefore, 

Mendelev-type potentials appear to be the first choice in order to “extend DFT” to larger scales and 

this justifies their widespread use, also for the development of Fe alloy potentials [16-Caro05FeCr, 

17-Olsson05FeCr, 18-Pasianot07FeCu, 19,20-BonnyFeNi&FeNiCu, 21-HepburnFeC]. Much can 

certainly be learnt by exploiting these potentials as they are.

Nonetheless, many limitations remain. In particular, it is difficult to decide about the reliability of 

these potentials when applied to cases for which there is no DFT reference, as experiments provide 

more qualitative, than quantitative, indications. The clear example of this situation are SIA loops, 



which are, on the other hand, key to understanding and quantifying radiation damage evolution. In 

addition, even when a DFT reference does exist, the performance is not always satisfactory, as 

shown in the case of the non-parallel SIA cluster configurations or, to a lesser extent, in the case of 

dislocations. In spite of all efforts, a fully reliable description of SIA clusters and dislocations with 

interatomic potentials remains, therefore, an elusive objective that calls for further effort within the 

concerned scientific community.
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Appendix

The M07 potential benchmarked in this article was developed following the same approach as for 

the M03 and A04 potentials. The same analytical form was used, namely with an embedding 

function including a term proportional to the square of the density in addition to the square root 

term characteristic of tight-binding potentials in the second moment approximation, such as Finnis-

Sinclair potentials [90-Finnis84]. As in Ref. [1-Mendelev03], the pairwise term and the density 

function are written as cubic splines, but the number of parameters was re-equilibrated between the 

two parts, by reducing from 15 to 13 the number of nodes in the pairwise term, and increasing it 

from 3 to 5 in the density function. The database used for the fit of the parameters was slightly 

modified. Concerning ab initio data, no data from liquid iron were used, instead more 

configurations were considered for the self-interstitial formation energies (i.e. including the 

tetrahedral and octahedral configurations) and the vacancy formation and migration energies were 

added. For the latter, we used the values obtained from DFT-GGA calculations carried out with the 

SIESTA code using 250 atom cells. As in Ref. [1-Mendelev03], an exponential function ensures a 

smooth connexion with the Biersack-Ziegler repulsion at short distance. The ab initio values of the 

fcc lattice parameter as well as the fcc-bcc energy difference were also taken into account. Among 

the tests performed on the obtained potentials, a particular attention was paid to improve, with 

respect to M03 and A04, on the one hand, the thermal expansion and, on the other hand, the 

vacancy migration barrier, as compared to experiment / ab initio results.



We have adopted as fitting tool the ASSIMPOT code (T. Dagusé, unpublished), which is based on

the principle of variational assimilation. The deviation between the results provided by a set of 

parameters and the target values of the fitting database is quantified using an objective function. 

This objective function is minimized using conjugate gradient technique. We tried to include the 

defect configurations, i.e. their relaxed ab initio atomic positions, in the database by including the 

forces, with a zero target value, in the objective function. In practice, it turns out that it is 

impossible to fit energies and forces simultaneously: if one relaxes the positions with the obtained 

potential, relaxed energies deviate from their objective values. In other words, DFT-GGA and EAM 

force fields around defects differ significantly. This type of fitting is therefore used only in the first 

step. Then, the atomic positions are no longer considered in the fit and, for every defect, the 

energies are calculated using the atomic positions relaxed for the previous set of parameters. This 

procedure is iterated until convergence. Several converged sets of parameters were obtained using 

this methodology. The set of parameters selected for the present paper is given in Table 10.

References

[1-Mendelev03] M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. sun, M. Asta, Philos. 
Mag. 83(35) (2003) 3977.

[2-Daw84] M.S. Daw, M.I. Baskes, Phys. Rev. B 29 (1984) 6443.
[3-Domain01] C. Domain, C.S. Becquart, Phys. Rev. B 65 (2001) 024103.
[4-Willaime05] F. Willaime, C.C. Fu, M.C. Marinica and J. Dalla Torre, Nucl. Inst. Meth. B 192 

(2005) 228.
[5-Domain05] C. Domain, G. Monnet, Phys. Rev. Lett. 95 (2005) 215506.
[6-Ackland04] G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, A.V. Barashev, J. Phys. : 

Condens. Matter 16 (2004) 1.
[7-Terentyev06cask] D. Terentyev, C. Lagerstedt, P. Olsson, K. Nordlund, J. Wallenius, C.S. Becquart, L. 

Malerba, J. Nucl. Mater. 351 (2006) 65.
[8-Terentyev07prb] D. Terentyev, L. Malerba, M. Hou, Phys. Rev. B 75 (2007) 104018.
[9-Terentyev07edge-loop] D. Terentyev, L. Malerba, D.J. Bacon, Yu.N. Osetsky, J. Phys.: Condens. 

Matter 19 (2007) 456211.
[10-Björkas07nimb] C. Björkas and K. Nordlund, Nucl. Instr. Meth. Phys. Res. B. 259 (2007) 853-860.
[11-Marinica07] M.-C. Marinica, F. Willaime, Sol. State Phen. 129 (2007) 67.
[12-Terentyev08prl] D. Terentyev, T.P.C. Klaver, P. Olsson, M.-C. Marinica, F. Willaime, C. Domain, L. 

Malerba, Phys. Rev. Lett. 100 (2008) 145503.
[13-Terentyev08taos] D. Terentyev and L. Malerba, J. Nucl. Mater. 377 (2008) 141.
[14-Terentyev08TMS] D. Terentyev, L. Malerba, P. Klaver, P. Olsson, J. Nucl. Mater. 382 (2008) 126.
[15-Terentyev08IOP] D. Terentyev, D.J. Bacon, Yu.N. Osetsky, J. Phys.: Condens. Matter 20 (2008) 

445007.
[16-Caro05FeCr] A. Caro, D.A. Crowson, M. Caro, Phys. Rev. Lett. 95 (2005) 075702.
[17-Olsson05FeCr] P. Olsson, J. Wallenius, C. Domain, K. Nordlund, L. Malerba, Phys. Rev. B 72 

(2005) 214119.
[18-Pasianot07FeCu] R.C. Pasianot, L. Malerba, J. Nucl. Mater. 360 (2007) 118.
[19-Bonny09FeNi] G. Bonny, R.C. Pasianot, L. Malerba, Modell. & Simul. in Mater. Sci. & Eng., 

accepted.
[20-Bonny09FeNiCu] G. Bonny, R.C. Pasianot, L. Malerba, J. Appl. Phys., submitted.
[21-Hepburn08] D.J. Hepburn, G.J. Ackland, Phys. Rev. B 78 (2008) 165115.
[22-Dudarev05] S. Dudarev and P. Derlet, J. Physics: Condens. Matter, 17 (2005) 7097, “case study 

II”.



[23-Fu04] C.-C. Fu, F. Willaime, P. Ordejón, Phys. Rev. Lett. 92 (17)(2004) 175503.
[24-Ackland97] G.J. Ackland, D.J. Bacon, A.F. Calder, T. Harris, Philos. Mag. A 75(3) (1997) 713.
[25-Pelfort01] M. Pelfort, Yu.N. Osestky, A. Serra, Philos. Mag. 81 (2001) 803.
[26-Marian01] J. Marian, B.D. Wirth, J.M. Perlado, G.R. Odette, T. Díaz de la Rubia, Phys. Rev. B 

64 (2001) 094303.
[27-Marian02] J. Marian, B.D. Wirth, A. Caro, B. Sadigh, G.R. Odette, J.M. Perlado, T. Díaz de la 

Rubia, Phys. Rev. B 65 (2002) 144102.
[28-Marian02prl] J. Marian, B.D. Wirth, J.M. Perlado, Phys. Rev. Lett. 88 (2002) 255507.
[29-Puigvi03] M.A. Puigvi, Yu.N. Osetsky, A. Serra, Philos. Mag. 83 (2003) 857.
[30-Puigvi04] M.A. Puigvi, Yu.N. Osetsky, A. Serra, Mater. Sci. & Eng. A 365 (2004) 101.
[31-Osetsky03edge] Yu.N. Osetsky, D.J. Bacon, Model. & Sim. Mater. Sci. & Eng. 11 (2003) 427.
[32-Osetsky03voids] Yu.N. Osetsky, D.J. Bacon, J. Nucl. Mater. 323 (2003) 268.
[33-Osetsky04PML] Yu.N. Osetsky, D.J. Bacon, Z. Rong, B.N. Singh, Philos. Mag. Lett. 84 (2004) 745.
[34-Rong05PM] Z. Rong, V. Mohles, D.J. Bacon, Yu.N. Osetsky, Philos. Mag. 85 (2005) 171.
[35-Rong05PMdrag] Z. Rong, Yu.N. Osetsky, D.J. Bacon, Philos. Mag. 85 (2005) 1473.
[36-Rong05MSE] Z. Rong, D.J. Bacon, Yu.N. Osetsky, Mater. Sci. & Eng. A 400-401 (2005) 378.
[37-Müller07] M. Müller, P. Erhart, K. Albe, J. Phys.: Condens. Matter 19 (2007) 326220.
[38-Simmons71] G. Simmons and H. Wang,”Single Crystal Elastic Constants and Calculated 

Aggregate Properties: A handbook”, MIT Press, Cambridge (1971)
[39-Kittel87] C. Kittel, « Introduction to Solid State Physics », John Wiley and Sons, Inc., New 

York, Chichester, Brisbane, Toronto, Singapore, sixth edition, (1987).
[40-Moroni97] E..G. Moroni, G. Kresse, J. Hafner and J. Furthmüller, Phys. Rev. B 56 (1997) 

15629.
[41-Kraft93] T. Kraft, M. Methfessel, M. van Schilfaarde and M. Scheffler, Phys. Rev. B 47 

(1993) 9862.
[42-Bendick82] W. Bendick, W. Pepperhof, Acta Metall. 30 (1982) 679.
[43-Rayne61] J.A. Rayne and B.S. Chandrasekhar, Phys. Rev. B 122 (1961) 1714.
[44-Brockouse67] B.N. Brockouse, H.E. Abou-Helal and E.D. Hallman, Solid State Commun. 5 (1967) 

211.
[45-Smithells67] C.J. Smithells, Metals Reference book, London Butterwoths (1967).
[46-Lide04] D.R. Lide (Ed.), Handbook of Chemistry and Physics, 85th edition, CRC Press (Boca 

Raton, FL, 2004).
[47-VanZwol07] P. Van Zwol, P.M. Derlet, H. Van Swygenhoven and S.L. Dudarev, Surface Science

601(16) (2007) 3512.
[48-Lopasso03] E. Lopasso, M. Caro, A. Caro, P.E.A. Turchi, Phys. Rev. B 68 (2003) 214205.
[49-ErcolessiMD] F. Ercolessi, “A molecular dynamics primer”, Spring College in Computational 

Physics, ICTP, Trieste, June 1997, http://www.fisica.uniud.it/~ercolessi/md/md/
[45-Klotz00] S. Klotz, M. Braden, Phys. Rev. Lett. 85(15) (2000) 3209.
[46-Beeler72] J.R. Beeler and G.L Kulcinski, Interatomic Potentials and Simulation of Lattice 

Defects, edited by P.C. Gehlen, J.R. Beeler and R.I. Jaffee, Plenum, New York 
(1972) 735.

[47-Bennett75] C. H. Bennett, Diffusion in Solids, Recent Developments, edited by A.S. Norwick 
and J.J. Burton (Academic, New York) (1975) 85.

[48-Press01] W.H. Press et al., “Numerical recipes in Fortran 77: the art of scientific 
computing”, 2nd ed., Cambridge University Press, 2001, ISBN 0-521-43064-3.

[49-Soler02] J.M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. 
Sanchez-Portal, J. Phys. Condens. Matter 14 (2002) 2745.

[50-Kresse93-96] G. Kresse and J. Hafner, Phys. Rev. B 47 (1993) 558; ibid. 49 (1994) 14251; G. 
Kresse and J. Furthmüller, Phys. Rev. B 54 (1996) 11169; G. Kresse and J. 
Furthmüller, Comput. Mat. Sci. 6 (1996) 15.

[51-Perdew96] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[52-Blöchl94] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953.
[53-Kresse99] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.
[54-Vanderbilt90] D.Vanderbilt, Phys. Rev. B 41 (1990) 7892.
[55-Kresse96] G. Kresse and J. Hafner, J. Phys.: Condens. Mater. 6 (1996) 8245
[56-Perdew92] J. P. Perdew, J. A. Chevary, S.H. Vosko, K. A. Jackson, M. R. Pederson and C. 

Fiolhais, Phys. Rev. B 46 (1992) 6671.



[57-Nordlund98] K. Nordlund and R.S. Averback, Phys. Rev. Lett. 80(19) (1998) 4201.
[58-Schaefer77] H.E. Schaefer, K. Maier, M. Weller, D. Herlach, A. Seeger and J. Diehl, Scripta 

Met. 11 (1977) 803.
[59-Schepper83] L.D. Schepper, D. Segers, L. Dorikens-Vanpraet, M. Dorikens, G. Knuyt, L.M. Stals 

and P. Moser, Phys. Rev. B 27 (1983) 5257.
[60-Olsson07] P. Olsson, C. Domain, J. Wallenius, Phys. Rev. B 75 (2007) 014110.
[61-Erhart86] P. Ehrhart, K.H. Robrock, and H.R. Schober, in Physics of Radiation Effects in 

Crystals, edited by R.A. Johnson and A.N. Orlov, Elsevier, Amsterdam, 1986, p. 63.
[62-Becquart03] C.S. Becquart, C. Domain, Nucl. Instr. & Meth. in Phys. Res. B 202 (2003) 44.
[63-Fu05] C.-C. Fu, J. Dalla Torre, F. Willaime, J.-L. Bocquet, A. Barbu, Nature Mater. 4 

(2005) 68.
[64-Djurabekova07] F.G. Djurabekova, L. Malerba, C. Domain, C. Becquart, Nucl. Instr. Meth. in Phys. 

Res. B 255 (2007) 47.
[65-Henkelman00] G. Henkelman, G. Jóhannesson, and H. Jónsson, in: Progress on Theoretical 

Chemistry and Physics, Ed. S. D. Schwartz, Kluwer Academic Publishers, (2000) 
269.

[66-Mills94-95] G. Mills and H. Jónsson, Phys. Rev. Lett. 72 (1994) 1124; G. Mills, H. Jónsson and 
G. Schenter, Surf. Sci. 324 (1995) 305.

[67-Djurabekova09] F. Djurabekova, L. Malerba, R.C. Pasianot, P. Olsson, Europhys. Lett., submitted.
[68-Vehanen82] A. Vehanen, P. Hautojärvi, J. Johansson, J. Yli-Kauppila and P. Moser, Phys. Rev. 

B 25 (1982) 762.
[69-Cuddy68] L.J. Cuddy, Acta Metall. 16 (1968) 23
[70-Tabata83] T. Tabata et al., Scr. Metall. 14 (1983) 1317.
[71-Wollenberger96] H. Wollenberger, in: R. Cahn, P. Haasen (Eds.), Physical Metallurgy, vol. 2, North-

Holland, 1996.
[72-Gordon05] S.M.J. Gordon, S.D. Kenny, R. Smith, Phys. Rev. B 72 (2005) 214104.
[73-Hivert70] V. Hivert, R. Pichon, H. Bilger, P. Bichon, J. Verdone, D. Dautreppe, P. Moser, J. 

Phys. Chem. Solids 31 (1970) 1843.
[74-Verdone74] J. Verdone, W. Chambron, P. Moser, Phys. Stat. Sol. B 61 (1974) K41.
[75-Takaki83] S. Takaki, J. Fuss, H. Kugler, U. Dedek, H. Schultz, Rad. Eff. 79 (1983) 87.
[76-Gao03] F. Gao, G. Henkelman, W.J. Weber, L.R. Corrales, H. Jónsson, Nucl. Instr. & Meth. 

in Phys. Res. B 202 (2003) 1.
[77-Osetsky97] Yu.N. Osetsky, A. Serra, Defect Diffus. Forum 143-147 (1997) 155.
[78-Eyre65] B.L. Eyre, A.F. Bartlett, Philos. Mag. 12 (1965) 261.
[79-Malerba09] L. Malerba, G.J. Ackland, C.S. Becquart, G. Bonny, C. Domain, S. Dudarev, C.-C. 

Fu, D. Hepburn, M.C. Marinica, P. Olsson, R.C. Pasianot, J.M. Raulot, F. Soisson, 
D. Terentyev, E. Vincent, F. Willaime, “Ab initio calculations and interatomic 
potentials for iron and iron alloys: achievements within the FP6/Perfect project”, J. 
Nucl. Mater., this volume.

[80-Vitek74] V. Vitek, Cryst. Latt. Def. 5 (1974) 1.
[81-Kroupa60] F. Kroupa, Czech. J. Phys. B 10 (1960) 284.
[82-Dudarev08prl] S.L. Dudarev, R. Bullough, P.M. Derlet, Phys. Rev. Lett. 100 (2008) 135503.
[83-Nordlund06] K. Nordlund, J. Wallenius, L. Malerba, Nucl. Instr. & Meth. In Phys. Res. B 246 

(2006) 322.
[84-Maury76] F. Maury, M. Biget, P. Vajda, A. Lucasson and P. Lucasson, Phys. Rev. B 14 (1976)

5303
[85-Wallner88] G. Wallner, M.S. Anand, L.R. Greenwood, M.A. Kirk, W. Mansel, W. 

Waschkowski, J. Nucl. Mater. 152 (1988) 146.
[86-ASTM94] Annual Book of ASTM Standard E693-94, vol. 12.02, 1994.
[87-Broeders04] C.H.M. Broeders, A.Yu. Konobeyev, J. Nucl. Mater. 328 (2004) 197.
[88-Becquart00] C.S. Becquart, C. Domain, A. Legris, J.C. Van Duysen, J. Nucl. Mater. 280 (2000) 

73.
[89-Malerba06] L. Malerba, J. Nucl. Mater. 351 (2006) 28.
[90-Finnis84] M.W. Finnis and J.E. Sinclair, Philos. Mag. A 50 (1984) 45.



Tables

Table 1 – Basic properties of Fe as predicted by the different potentials and compared with either 
experimental or ab initio (in italics) data. Legend: a0 lattice parameter (RT room temperature); Ecoh

cohesive energy (at 0 K and equilibrium lattice parameter); Efcc-bcc cohesive energy difference 
between bcc and fcc structures (in the case of the fcc phase: FM ferromagnetic, NM non-magnetic); 
Cij elastic constants; ijk surface energy for (ijk) surface; Tm melting temperature; N/A not available.

Description A97 M03 A04 D05 M07
Exp. and/or 
ab initio

a0 (bcc) (Å)* 2.866a,b 2.855a,b 2.855c 2.866b 2.856
2.860 (0 K)d

2.870 (RT)e

a0 (fcc) (Å) 3.680a,b 3.658b 3.658 3.608b 3.668 3.658a

Ecoh (bcc) 
(eV/atom)

4.316a,b 4.122a, 
4.127b 4.013a 4.316b,f 4.122 4.280e

bccfccE 
(eV/atom)

0.054a 0.121b 0.121g
0.086b, 0.1355f

(FM); 0.2216f

(NM)
0.122

0.122a, 0.035h, 
0.08i, 0.050j

C11    (GPa) 243.4a 243.4a 243.3 243.4 243.3
243k,233l,237m,
226n

C12    (GPa) 145a 145a 145 145, 138b 144
138k,135l,141m, 
140n

C44    (GPa) 116a 116a 116 121 121
122k,118l,116m,

n

100 (mJ m-2) 1810a 1762a 1752 1799p 2012 2179a

110 (mJ m-2) 1580 1651 1617 1624 1869 N/A
111 (mJ m-2) 1997 1998 1964 1998 2315 N/A

Tm (K)

2358a

(coexistence 
temperature), 
234020b

(moving 
interface),
2396q 

(thermodynamic 
integration)

1772a 

(coexistence 
temperature), 
176020b

(moving 
interface)

175025r 

(moving 
interface)

216020b, 
217525r 

(moving 
interface)

225050
(moving 
interface)

1811e

*See Fig. 1 for thermal expansion
aRef. [1-Mendelev03]
bRef. [37-Müller07]
cRef. [6-Ackland04]
dRef. [38-Simmons71]
eRef. [39-Kittel87]
fRef. [22-Dudarev05]
gRef. [7-Terentyev06cask]
hRef. [40-Moroni97]
iRef. [41-Kraft93]
jRef. [42-Bendick82] (high temperature value)
kRef. [43-Rayne61]
lRef. [44-Brockouse67]   
mRef. [45-Smithells67]
nRef. [46-Lide04]
pRef. [47-VanZwol07]
qRef. [48-Lopasso03]
rRef. [10-Björkas07]



Table 2 – Properties of vacancy-type defects in Fe (formation and binding energies mainly), as 
predicted by the different potentials in static calculations and compared with either experimental or, 
more often, ab initio (in italics) data. Legend: E stands for energy (V for volume, in units of atomic 
volumes, 0=a0

3/2); superscripts for and bind stand for formation and binding, respectively; the 
subscripts Xvac denote X vacancies in the considered cluster; Xnn stands for Xth nearest neighbour. In 
the case of tri- and tetra-vacancy, the removed vacancy is indicated by a square around it in the 
inserted figure. For the difference between SIESTA and VASP-USPP/PAW (data obtained with the 
latter appear in bold), see section 3.1.

Description A97 M03 A04 D05 M07
Exp. and/or ab 
initio

for
vacE1 (eV) 1.70a,b 1.71b, 1.73c 1.71d

,1.74 1.86b,1.98 2.10

1.53e, 2f,
1.95g, 2.07h, 
2.02-2.15i

(depending on 
used DFT 
method)

for
vacV1 (0) 0.82a,b 0.77b 0.77d 0.59b, 0.83 0.90 0.95j

bind
vacE2 (eV) 1nn 0.14a,0.15 0.12, 0.13 0.13, 0.14d 0.25 0.13, 0.14

0.14k, 
0.15g,0.14/0.16l

bind
vacE2 (eV) 2nn 0.18, 0.19a 0.23, 0.24 0.23, 0.24d 0.25, 0.26 0.32, 0.33

0.28k, 0.29g, 
0.28/0.23l, 0.30m

bind
vacE2 (eV) 3nn -0.06 -0.02 -0.02 -0.03 -0.03 -0.02/-0.015l

bind
vacE2 (eV) 4nn 0.04 0.03 0.03 0.04 0.04 0.09/0.05l

bind
vacE2 (eV) 5nn -0.02 -0.02 -0.02 -0.01 -0.02 0.06/0.06l

bind
vacvacE 2 (eV)

0.34 0.28, 0.30 0.30 0.52 0.33 0.36g,k, 0.37m

bind
vacvacE 3 (eV)

0.62, 0.63 0.55, 0.57 0.58 0.82 0.75 0.70g,k, 0.62m

aRef. [24-Ackland97]
bRef. [37-Müller07] (the origin of the relatively large discrepancy with presently calculated values is unknown)
cRef. [1-Mendelev03]
dRef. [6-Ackland04]
eRef. [58-Schaefer77]
fRef. [59-Schepper83]
gRef. [3-Domain01]
h Ref. [23-Fu04]
iRef. [60-Olsson07]
jRef. [61-Ehrhart86]
kRef. [62-Becquart03]
lThis work, DFT-VASP-USPP/PAW (see [60-Olsson07] for calculation details)
mRef. [63-Fu05] 



Table 3 – Properties of vacancy-type defects in Fe (migration energies), as predicted by the 
different potentials in calculations performed in different ways, compared with either experimental 
or, more often, ab initio (in italics) data. Legend: Emig stands for migration energy, the subscript 2nd

vac in di-vac denotes the second vacancy in a di-vacancy (the transitions to which the energy 
barriers refer are pictorially indicated in Fig. 3); Xnn stands for Xth nearest neighbour; AKMC is 
Atomistic Kinetic Monte Carlo (see [64-Djurabekova07] for methodology); NEB is Nudged Elastic 
Bands (see [65-Henkelman00, 66-Mills94-95] for methodology). 4nn and 1nn mechanisms are two 
different jump sequences for the di-vacancy (stable configuration is 2nn) to migrate: one vacancy 
jumps to 4nn and the other follows, or one vacancy jumps to 1nn and the other jumps away to 2nn (see 
[67-Djurabekova09] for further discussion). Effective values are those characteristic of the whole
cluster. For the difference between USPP and PAW (data obtained with the latter are in bold), see 
section 3.1.

Description A97 M03 A04 D05 M07 Exp. and/or ab initio

Static mig
vacE1 (eV)

[in parenthesis, height of 
double saddle point – see 
Fig. 4 for energy profiles]*

0.78a, 0.79b 0.63(0.11)c, 
0.65(0.12)

0.63a,b, 
0.64(0.12)

0.84b, 
0.85(0.06)

0.68 0.55d,e, 0.570.14f,
0.64g,0.67h

mig

vacdiinvacndE
2

(eV)

[1nn2nn/2nn1nn (w3/w4)]

0.85/0.89, 
0.86/0.90

0.60/0.69, 
0.61/0.71

0.62/0.70, 
0.62/0.72

0.89/0.89
0.61/0.81, 
0.62/0.82

0.61/0.72-0.58/0.67i

mig

vacdiinvacndE
2

(eV)

[1nn3nn/3nn1nn (w3
’/w4

’)]
1.04/0.83

0.83/0.67, 
0.84/0.69

0.85/0.67, 
0.86/0.69

1.10/0.82 0.94/0.77 0.87/0.71-0.82/0.64 i

mig

vacdiinvacndE
2

(eV)

[1nn5nn/5nn1nn

(w3
’’/w4

’’)]

0.83/0.66, 
0.83/0.67

0.72/0.56, 
0.73/0.57

0.74/0.56, 
0.74/0.58

0.89/0.62, 
0.89/0.63

0.78/0.62, 
0.77/0.61

0.70/0.62-0.68/0.58 i

mig

vacdiinvacndE
2

(eV)

[2nn4nn/4nn2nn (w5/w6)]

0.75/0.60, 
0.76/0.62

0.63/0.42, 
0.63/0.43

0.64/0.43, 
0.64/0.44

0.83/0.61
0.70/0.41, 
0.72/0.43

0.67/0.47-0.68/0.50 i

mig
vacE2 (eV) [effective value]

0.75 
(AKMC)b

0.74 (NEB, 
4nn mech.)
0.89 (NEB, 
1nn mech.)

0.62 
(AKMC)b

0.62 (NEB, 
4nn mech.)

0.63 
(AKMC)b

0.63 (NEB, 
4nn mech.)
0.71 (NEB, 
1nn mech.)

0.83 
(AKMC)b

0.83 (NEB, 
4nn mech.)
0.89 (NEB, 
1nn mech.)

0.70 (NEB, 
4nn mech.)
0.77 (NEB, 
1nn mech.)

0.62 (static, 1nn

mechanism)h, 0.68-0.66
(AKMC based on ab initio
barriers: USPP-PAW)

mig
vacE3 (eV) [effective value]

0.83 (static, 
NEB)

N/A
0.46 
(AKMC)b

0.45 (NEB)
0.80 (NEB)

0.53 
(NEB)c 0.35 (static)h

*Further data from Ref. [37] exist but are not included because they are suspiciously low, suggesting a systematic mistake in them
aRef. [24-Ackland97]
bRef. [63-Djurabekova07]
cRef. [1-Mendelev03]
dRef. [68-Vehanen82]
eRef. [69-Cuddy68]
fRef. [70-Tabata83]
gRef. [62-Becquart03]
hRef. [63-Fu05]
iThis work, DFT-VASP USPP/PAW (see [60-Olsson07] for calculation details)



Table 4 – Properties of single SIA configurations in Fe (formation energies, volumes and 
entropies), as predicted by the different potentials in static calculations, compared with either 
experimental or, more often, ab initio (in italics) data. Legend: Efor, Vfor and Sfor stand for formation 
energy, volume and entropy, respectively (Vfor is expressed in units of atomic volume, 0=a0

3/2; Sfor

is calculated at constant volume [11-Marinica07] end expressed in units of Boltzmann’s constant, 
kB); ijk denote the orientation of the dumbbell or crowdion; TET and OCT stand for tetraedral and 
octahedral interstitial position, respectively; N/A not available. For the differences between DFT 
methods, see section 3.1.

Description A97 M03 A04 D05 M07
Exp. and/or ab 
initio

forE 110 (eV) 4.87a,b,4.70c 3.50b,3.53d 3.53, 3.57, 3.59e, 3.65b,f 3.69, 3.73

4.7-5g

3.64h, 3.77i, 
3.94j, 3.64-4.03
(range 
depending on 
used DFT 
method)k

forV 110 (0) 0.76a,b 0.21, 0.22b 0.25 -0.57b 0.50 N/A

for
SIAS 110 (kB) -11.05l 1.41l 2.8l -21.0l -1.9 N/A

forE 111 (eV) 5.00a, 5.01b, 4.83c 3.99b, 4.02d

4.00, 4.01, 
(constrained, 
otherwise 
becomes 110)d

4.24b,f

(dumbbell), 4.13
(crowdion)

4.36, 4.39

4.34j, 4.49h,
4.34-4.72
(depending on 
used DFT 
method,)k

forV 111 (0) 0.64a -0.03 -0.001 -0.34 0.29 N/A

for
SIAS 111 (kB) -4.15l 4.41l 9.6l Unstablel 6.4 N/A

for
TETE (eV) 5.63 4.16d 4.15 4.29 4.31 4.28i

forE 100 (eV)

6.10b 

(constrained, 
otherwise 
unstable)

4.33c

4.32b, 4.34 
(constrained, 
otherwise 
becomes Oct)d

4.58b, 4.60f, 
(constrained, 
otherwise 
becomes Oct)c

4.76, 4.78

4.80i, 5.04j,
4.64-5.13
(depending on 
used DFT 
method)k

for
SIAS 100 (kB) Unstablel 2.73l 1.8l Unstable -2.0 N/A

for
OCTE (eV) 6.00 4.19d 4.17, 4.22e 4.48f 4.90 4.97 (unstable)i

110111 E (eV) 0.13a,c,0.14b 0.49b,d 0.44a,c, 0.47

0.59b,f (dumbbell 
versus dumbbell), 
0.49 (crowdion 
versus 
dumbbell)c

0.68

0.70h, 0.72i,j, 
0.70-0.72
(depending on 
used DFT 
method)k

aRef. [24-Ackland97]
bRef. [37-Müller07] 
cVersion of the potential modified at short distances (A. Serra, unpublished work)
dRef. [4-Willaime05]
eRef. [6-Ackland04]
fRef. [22-Dudarev05]
gRef. [71-Wollenberger96]
hRef. [23-Fu04]
iThis work, DFT/SIESTA (see [4-Willaime05] for calculations details)
jRef. [3-Domain01]
kRef. [60-Olsson07]
lRef. [11-Marinica07]
mRef. [7-Terentyev06cask]



Table 5 – Migration energy of single SIA ( mig
SIAE ) in Fe, according to the different potentials, 

compared with either experimental or, more often, ab initio (in italics) data. Values have been 
statically calculated for each possible mechanism (pictorially described and numbered from 1 to 6), 
as well as for crowdion. Dynamically calculated values (effective values) are also provided. N/A 
stands for not available.

Description A97 M03 A04 D05 M07
Exp. and/or 
ab initio

Static
mig
SIAE (eV) (main jump mechanism) (1)

0.18 0.31a
0.31 (static), 
0.304 (dimer 
method)b

0.26, 0.32c 0.29 0.300.03d

0.34e

Static 
mig
SIAE 1nn transl. (eV) (2) 

0.17 0.44a 0.46 0.49 0.64 0.78e

Static 
mig
SIAE 2nn (eV) (3) 

0.75 0.64a 0.61 0.73 0.61 0.50e

Static 
mig
SIAE 3nn (eV) (4)

1.14 0.70a 0.57 0.84 1.22 1.18e

Static 
mig
SIAE [110]-[011] rotation (eV) (5)

0.23 0.43a 0.45 0.39 0.50 0.56e

Static 
mig
SIAE [110]-[111] rotation (eV) (6)

0.16 (dimer 
method)f,0.17

0.50a 0.52 0.59 0.68 0.72,0.76e

Static 
mig
SIAE crowdion glide (eV)

0.002 (dimer 
method)f 0.003 0.003 0.004 0.002 N/A

Dynamic
mig
SIAE (eV) 0.055h, 0.127i N/Al 0.260.01j, 

0.27, 0.31k 0.250.01j 0.270.01l 0.300.03d

aRef. [4-Willaime05]
bRef. [72-Gordon05]
cRef. [22-Dudarev05]
dRefs. [73-Hivert70, 74-Verdone74, 75-Takaki83]
eRef. [23-Fu04]
fRef. [76-Gao03]
gThis work, SIESTA (see [4-Willaime05] for calculations details)
hRef. [77-Osetsky97]
lRef. [27-Marian02]
jThis work (see text), using method from [57-Nordlund98]
kRef. [8-Terentyev07PRB]
lExpected to be coincident with A04



Table 6 – Properties of di-SIA configurations in Fe (formation energies and entropies, migration 
energies), as predicted by the different potentials in both static and dynamic calculations, compared 
with either experimental or, more often, ab initio (in italics) data. Legend: Efor and Sfor stand for 
formation energy and entropy, respectively (Sfor expressed in units of Boltzmann’s constant, kB); 
ijk denotes the orientation of the configuration (pictorially represented for better clarity), NPC 
stands for non-parallel configuration [12-Terentyev08PRL]; N/A not available. For the differences 
between SIESTA and VASP-PAW, see section 3.1.

Description A97 M03 A04 D05 M07
Exp. and/or ab 
initio

for
SIAdiE 110 (eV) 

8.57 6.14, 6.21a, 6.31
6.21, 6.23b, 6.29, 
6.31

6.42, 6.45 6.30
6.99 (SIESTA)c, 
7.15 (VASP-
PAW)c

for
SIAdiS 110 (kB) -15.29d 2.06d 3.7c, 4.0d -32.1d -3.6 N/A

for
SIAdiE 111 (eV) 

8.58 6.84a 6.74b 6.95 7.31 7.74 (SIESTA)c

for
SIAdiS 111 (kB) -10.16d 10.03d 11.4c,d -23.6d 1.2 N/A

for
NPCSIAdiE _ (eV)

8.73 6.49, 6.61 6.51, 6.54c,6.58 6.76, 6.79 6.41
6.95 (SIESTA)c, 
7.04 (VASP-
PAW)c,

for
NPCSIAdiS _ (kB) -20.6 10.2 10.2c -13.2 0.5 N/A

for
SIAdiE 100 (eV)

Unstable 
(turns to 
111)

6.67a, 6.69, 
unstable (turns 
to 211)a

6.70, unstable 
(turns to 211)a Unstable 6.80 7.10 (SIESTA)a

for
SIAdiS 100 (kB) Unstabled 3.92 (value for 

211 config.)d
4.73 (value for 
211 config.)d

-38.5 (for 
metastable 
config. which 
has no 100
orientation)d

-2.3 N/A

mig
SIAdiE  (eV)

(static)

0.16 (110
config.) 

0.31a

0.31 (110
config.), 
0.34/0.55 (one 
jumps after the 
other / the two 
jump together)

0.26 (110
config.)

0.33 (110
config.)

0.42e, 0.43f

(static for 110
config.)

mig
SIAdiE  (eV)

(dynamic)
0.084g N/Ah 0.31, 0.33b N/A N/A ~0.42i

aRef. [4-Willaime05]
bRef. [8-Terentyev07prb]
cRef. [12-Terentyev08prl]
dRef. [11]Marinica07]
eRef. [23-Fu04]
f[Fu05] Ref. [63]
g[Marian02] Ref. [27]
hExpected to be the same as for A04
iRef. [75-Takaki83] (based on interpretation of resistivity recovery data)
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Table 7 – Properties of tri-SIA configurations in Fe (formation energies and entropies, 
migration energies), as predicted by the different potentials in both static and dynamic 
calculations, compared with ab initio (in italics) data. Legend: see Table 6 caption.

Description A97 M03 A04 D05 M07 Ab initio
for

SIAtriE 110

(eV)
12.13 8.85, 9.03a 8.84, 8.87b, 

9.00, 9.04a 9.15, 9.22a 8.95

9.81
(SIESTA)c, 
10.25
(VASP/PAW)c

for
SIAtriS 110

(kB)
-17.15d 3.12d 5.0c,5.4d, -42.9 -3.5 N/A

for
SIAtriE 111

(eV)
11.37e, 11.83 9.31, 9.37f 9.28, 9.36b, 

9.38
9.31 9.41

10.17 
(SIESTA)c

for
SIAtriS 111

(kB)
-12.65d 17.23d 19.7c,d -25.3d 10.1 N/A

for
NPCSIAtriE _

(eV)
12.53 9.53, 9.81a 9.60, 9.66c, 

9.75a 9.80, 9.85a 9.21

10.48 
(SIESTA)c, 
10.19 
(VASP/PAW)c

for
NPCSIAtriS _

(kB)
-24.7 13.0 15.0c -26.4 6.2 N/A

for
SIAtriE 100

(eV)
12.10 10.53f 10.54

Unstable 
(turns to 
110)

10.05
11.43
(SIESTA)f

for
SIAtriS 100

(kB)
Unstabled 6.39d 14.0d

-38.6d (not in 
100
config.)

-2.3 N/A

mig
SIAtriE 

(eV)

0.074 
(dynamic)g N/A

0.14b, 0.15 
(both values 
dynamic)

N/A N/A
0.43 (static for 
110 config.)h

a250 atoms
bRef. [8-Terentyev07prb]
cRef. [12-Terentyev08prl]
dRef. [11-Marinica07]
eVersion of the potential modified at short distances (A. Serra, unpublished work)
fRef. [4-Willaime05]
gRef. [27-Marian02]
hRef. [63-Fu05]
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Table 8 – Properties of tetra- and penta-SIA configurations in Fe (formation energies 
and entropies, migration energies), as predicted by the different potentials in both static 
and dynamic calculations, compared with ab initio (in italics) data. Legend: see Table 6 
caption.

Description A97 M03 A04 D05 M07 Ab initio
for

SIAtetraE 110

(eV)
14.24a, 
15.04

10.81 (after 
“shaking” at 
finite 
temperature), 
11.05b

11.05c, 11.04 11.47 10.94

12.31 
(SIESTA)d, 
13.30 
(VASP/PAW)d

for
SIAtetraS 110 (kB) -23.11e 7.81e 9.7c,e -43.8e 0.5 N/A

for
SIAtetraE 111

(eV)
13.73a, 
14.31

11.36b 11.18, 11.22c 11.30 11.74
12.42
(SIESTA)d

for
SIAtetraS 111 (kB) -17.42e 13.78e 15.9d,e -35.7e 10.6 N/A

for
NPCSIAtetraE _

(eV)
14.03 11.14 11.30c 11.52 10.83

12.89 
(SIESTA)d, 
13.37 
(VASP/PAW)d

for
NPCSIAtetraS _

(kB)
-30.3 22.60 22.6d -35.1 9.3 N/A

for
SIAtetraE 100

(eV)

Unstabl
e

12.14b 12.04 12.15 12.79
13 .38  
(SIESTA)b

for
SIAtetraS 100 (kB) Unstabl

ed 6.24e 16.0e -57.3e 1.8 N/A

for
SIApentaE 110

(eV)

Unstabl
e

13.25b 13.42c 13.36 13.47
14.18
(SIESTA)b

for
SIApentaS 110

(kB)

Unstabl
ee 11.37e 15.2e -52.2e 1.9 N/A

for
SIApentaE 111

(eV)
16.93 13.36b 13.49c 13.11 13.83

13.88
(SIESTA)b

for
SIApentaS 111

(kB)
-19.21e 20.01e 22.0e -36.3e 9.5 N/A

for
SIApentaE 100

(eV)
20.83 15.49b 15.44 15.66 16.77

16.45
(SIESTA)b

for
SIApentaS 100

(kB)
-25.23d 12.07d 15.2d -69.3d 4.5 N/A

aVersion of the potential modified at short distances (A. Serra, unpublished work)
bRef. [4-Willaime05]
cRef. [8-Terentyev07prb]
dRef. [12-Terentyev08prl]
eRef. [11-Marinica07]
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Table 9 – Threshold displacement energies depending on primary knock-on atom 
(PKA) direction, as well as mean (and median), according to the different potentials. 
For calculation methodology, see [83-Nordlund06]. 

PKA direction A97a M03a A04a D05b M07 Experiment
100 17 15 17 33(17) 17 17
110 31 27 33 51(29) 33 >30
111 35 25 33 35(25) 31 20

Mean Median
value

44.80.4 41 36.90.1 35 39.00.3 35
66.50.5 
(35.00.4)

37.20.5
(40, advised 
value)d

aRef. [83-Nordlund06]
bRef. [10-Björkas07] (in parenthesis, value after re-stiffening by Björkas & Nordlund)
cRef. [84-Maury76]
dRefs. [85-Wallner88, 86-ASTM94, 87-Broeders04] 
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Table 10 – Parameters of the M07 potential. The notations are the same as in Ref. [1-
Mendelev03]. Distances are expressed in Ả and energies in eV.

1r 1.0
1a 

( 1r 
)

25.762119612643801 
(2.3)

1a 

( 1r 
)

7.015122199909290 
(2.1)

2r 1.95
2a 

( 2r 
)

3.842589725515660 
(2.4)

2a 

( 2r 
)

19.406057935968299
(2.4)

0B 13.0155822980227
3a 

( 3r 
)

2.065216917586350 
(2.5)

3a 

( 3r 
)

-0.213254828113481 
(3.2)

1B 14.6615468843637
4a 

( 4r 
)

-0.498932638479098 
(2.6)

4a 

( 4r 
)

0.256174912582562
(4.2)

2B 8.6253238748137
5a 

( 5r 
)

-0.312337027098863
(2.8)

5a 

( 5r 
)

0.001524830500638
(5.0)

3B -2.186942690599
6a 

( 6r 
)

0.505803414854402
(3.0) a  -0.000046410598650

7a 

( 7r 
)

2.594425601285000
(3.6)

8a 

( 8r 
)

-2.965136782893440
(3.8)

9a 

( 9r 
)

1.826825215082330
(4.2)

10a 

( 10r 
)

-1.465816770764790
(4.4)

11a 

( 11r 
)

1.069900083029370
(4.6)

12a 

( 12r 
)

-0.612976494212410
(4.8)

13a 

( 13r 
)

0.082454637432000 
(5.2)
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Figure captions

Fig. 1 – Thermal expansion according to the different potentials. The inset blows up the 
low temperature behaviour. Note the odd thermal “contraction” predicted by D05 at all 
temperatures. The zero point motion is not taken into account in the calculation.

Fig. 2 – Bulk phonon properties in iron. The experimental results at ambient pressure 
(diamond symbols, [44-Brockhouse67]) are compared with calculations performed 
using the different potentials at 0 pressure (full black line) and under pressure at 10 GPa 
(full color line). From (a) to (e) the presented results correspond to, respectively: A97, 
M03, A04, D05 and M07. The phonon dispersion curves are represented in the high 
symmetry directions. The phonon densities of states are calculated using 1623 special q
points (black solid line). For more details on the calculation, see [11-Marinica07].

Fig. 3 - Pictorial representation of the different possible di-vacancy configurations in a 
bcc structure and jumps of the second vacancy in the cluster (not all possible jumps are 
shown). 0 represents the position of the first vacancy; the other numbers correspond to 
the nearest neighbour shell at which the second vacancy is found with respect to the first 
one. In the case of Fe the ground state corresponds to two vacancies at 2nd nearest 
neighbour distance.

Fig. 4 – Summary of data on vacancy-type defect binding energies. Upper panel: di-
vacancy binding energy versus distance between the two vacancies (in terms of nearest 
neighbour shells, see Fig. 3); lower panel: binding energy of a vacancy to a cluster of 
specified size (most strongly bound cluster in all cases). For the differences between 
DFT methods, see section 3.1.

Fig. 5 – Single-vacancy migration profile with the different potentials. Some exhibit a 
double hump with a local minimum in the intermediate position that does not appear in 
DFT calculations (with SIESTA, see section 3.1). The depth of the saddle point well is 
provided in in each case in Table 3, first row.

Fig. 6 – Simplified energy landscape seen by the second vacancy of a di-vacancy (see 
Fig. 3) according to the different potentials and to DFT. (a) from 3rd nearest neighbour 
(left) to 4th nearest neighbour (right); (b) from 5th nearest neighbour (left) to 4th nearest 
neighbour (right). For the differences between DFT methods, see section 3.1.

Fig. 7 – Summary of statically calculated energy barriers corresponding to mechanisms 
(1) to (6) (see Table 5).

Fig. 8 – Formation energy difference (E) of (A) 111 configurations, (B) non-parallel 
configurations (NPC) and (C) 100 configurations, with respect to the reference 110
configurations. For the differences between DFT methods, see section 3.1.

Fig. 9 –Screw dislocation core according to four potentials and as calculated by DFT 
(VASP, PAW), in the Vitek representation [80-Vitek74]. Only Mendelev-type 
potentials predict a compact core consistent with DFT (VASP/PAW) indications (M03 
provides results coincident with A04 [5-Domain05prl]).

Fig. 10 – Gamma energy of (110) plane along the Burgers vector (b= ½[111]) according 
to four potentials and DFT (VASP/PAW). Significant differences exist.
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Fig. 11 – Strain energy for screw and edge dislocation as a function of the radial 
distance from the dislocation line according to four potentials.

Fig. 12 - Strain field of a ½111 loop (above) and a 100 loop (below) in terms of 
adimensional deviation from the equilibrium interatomic distance along the Burgers 
vector direction on the loop habit plane, in units of lattice parameters (a0 ~ 0.287 nm), 
calculated with different potentials.

Fig. 13 – Loop formation energy versus number of SIAs for different types of loop 
(Burgers vector and habit plane), with the different potentials, as specified on the 
graphs.

Fig. 14 – From top to bottom: number of Frenkel pairs; SIA clustered fraction and 
vacancy clustered fraction in displacement cascades of different energy simulated by 
molecular dynamics using some of the potentials here compared. aFrom [7-
Terentyev06cask]; bFrom [10-Björkas07] (same method used to obtain results with 
M07).
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Figure 1
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Figure 2
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Figure 3

0 2

1

53

4



34

Figure  4
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Figure 5
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Figure 6
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Figure 7
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Figure  8
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Figure  9
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Figure 10
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Figure  11
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Figure  12
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Figure  13
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Figure  14
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