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Swift heavy ion (SHI) irradiation of amorphous SiO2 that contains metal nanocrystals can be used to transform the shape of the
particles into peculiar asymmetric ones not easily achievable by other means. Using a molecular dynamics simulation framework
augmented to include the electronic excitations of the SHIs, we predict that the reshaping of spherical particles into nanorods occurs
continuously during consecutive ion impacts by a dynamic crystal–liquid–crystal phase transition of metal particle with the flow
of liquid phase into an underdense track core in silica. The simulated nanocrystals are shown to have a saturation width that agrees
with experiments.
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When silica composites that contain spherical metal
nanocrystals are subjected to swift (Ekin ≥ 1 MeV/amu)
heavy ion (SHI) irradiation, the particles undergo a shape
transformation to nanorods or prolate spheroids, so that
they elongate in the direction parallel to the ion beam.
[1–14] This effect is analogous to the well-established
possibility to use multi-wall carbon nanotubes inside an
electron microscope as pressure vessels to modify and
study the properties of metal nanocrystals.[15,16] The
swift ion processing has, however, the major advantage
that the end result is stable over macroscopic timescales
when taken out of the experimental processing cham-
ber. Therefore, in addition to being a directly observable
nanoscale test system for understanding the fundamentals
of ion–solid interactions, the phenomenon has application
potential. By controlling the dimensions of the crystal by
SHI irradiation, control over surface plasmon resonance
is gained,[17,18] which is desirable in the fabrication of
plasmonic devices.[19] The method has the advantage of
producing large arrays of equally aligned nanocrystals,
which is difficult to achieve otherwise.

In this letter, we examine the nanocluster shape
transformation mechanisms using classical molecular
dynamics (MD) simulations, extended with the inelas-
tic thermal spike model (i-TS),[20] and experiments.

∗Corresponding author. Email: aleksi.leino@helsinki.fi

The experiments show a major elongation effect similar to
that reported previously by other groups.[1–14] The MD
simulations with the i-TS energy deposition reproduce
the experimentally observed progressive elongation. The
minor axis of the elongated particle is shown to saturate
at a width correlated with the width of the ion track in
silica,[4] in excellent agreement with experiments. The
results show that the elongation is caused by the ther-
mal expansion associated with heating and melting of
crystalline metal, which causes it to flow within the track
core in silica.

Although technologically promising, the elongation
mechanism of nanocrystals by SHIs has not yet been
identified. In the energy range of SHI’s, the primary
interactions between the ion and the irradiated mate-
rial are dominated by collisions with electrons, and the
kinetic energy of the ion is first consumed in the exci-
tation of the electronic subsystem.[21] D’Orléans et al.
[1] calculated that there is a large overpressure in the
crystal after impact, which is released by the flow of
molten matter to the track in silica. However, it was
not clear why the nanocrystals resist deformation when
embedded in a crystalline matrix.[22] Another proposed
reason is the so called ‘ion-hammering’ effect,[23] which
is characteristic for an amorphous matrix and leads to

© 2013 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the
named author(s) have been asserted.
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Figure 1. Modification of the shapes of Au nanocrystals embedded in silica into strongly elongated non-equilibrium shapes. Left:
Cross-sectional transmission electron microscopy (XTEM) image of the initial shape of spherical nanocrystals. Right: XTEM image
of nanocrystals with the same initial radius after SHI irradiation (direction indicated by arrows) with 54 MeV Au ions with a fluence
of 2 × 1014 ions/cm2. Thanks to the surrounding inert silica matrix, the final shape is very stable at ambient conditions.

an in-plane stress, which might deform the metal par-
ticle once melted. Klaumünzer [2] considered both ion
hammering and melting, concluding that ion hammering
could not be the cause of deformation, whereas a rough
estimate showed that, at least within an order of magni-
tude, the high pressure in molten metal could explain the
elongation. Dawi et al. [8] found the effect to be sensi-
tive, under certain conditions, to the initial concentration
of the nanoparticles. However, such behaviour could be
associated with Ostwald ripening, which was avoided in
[7] by forcing a large distance between individual Au
nanoparticles. Results in this study confirmed that elonga-
tion can proceed through individual processes. Amekura
et al. also observed that a small change in the shape of
the nanocrystals was induced by single impacts.[12]

Au nanocrystals were formed in thermally grown
SiO2 by ion implantation and annealing. Samples were
then irradiated with 185 MeV Au+13 ions at normal
incidence and room temperature. Transmission electron
microscope in a cross-section geometry was utilized to
determine the dimensions of the elongated nanocrystals
(Figure 1), measuring 300 crystals for reasonable statis-
tics. Additional details on the experimental procedure is
given in [9,11].

The computer simulations were performed by using
a multiscale model implemented in the classical MD code
PARCAS [24] (The main principles of the MD algorithms
are presented in [25,26]. The adaptive time step is the
same as in [27]) to simulate the elongation. Classical MD
[28] can be used to study the transport of the atoms from
given initial conditions, but it does not explicitly describe
the electronic subsystem or its coupling to the atomic sub-
system (see Supplementary Material for the advantages
and limitations). The initial nanocrystal was generated
following a procedure described by Djurabekova,[29] i.e
cutting a sphere out of fcc Au, compressing it by 2%
to avoid unrealistically low interatomic separations in

the initial configuration, and inserting this sphere into
a bigger void than the uncompressed sphere in silica (see
Figure 2, case (0)). The resulting cell was then pressure
and temperature relaxed for 50 ps to cancel the compres-
sion of the cluster (see above) and to obtain a stable,
well-relaxed metal nanocrystal embedded in silica.

For silica interactions (Si-O, Si-Si, O-O), the
Watanabe-Samela interatomic potential was used,[30,31]
and for gold (Au-Au), the EAM potential.[32] The gold
potential reproduces the parameters relevant to thermal
expansion well (see Supplementary Material for details).
Gold–silica interactions were implemented using pair
potentials as explained in the Supplementary Material
and previous work.[33]

The effect of the SHI was implemented by assign-
ing randomly distributed velocities obtained from the
i-TS to the atoms at the beginning of the simulation.
The i-TS model is a phenomenological model which uti-
lizes heat equations to describe the temperatures of the
atomic and electronic subsystems as a function of time,
and has yielded a good agreement with experiments over
a wide range of irradiation conditions and materials.[20]
The same combined simulation approach was used to
study the fine structure of ion tracks in pure silica, reveal-
ing a low density core—high density shell structure in
agreement with experiments.[4]

For silica, the distribution of kinetic energy vs. radial
distance from the ion path was extracted from the i-TS
model for a 164 MeV Au ion at 100 fs from impact by
an equilibrium temperature to kinetic energy conversion
(some details of the i-TS calculation are given in the Sup-
plementary Material). Even though this approach does not
include further heat transfer between atomic and elec-
tronic subsystems, it is justified within the i-TS model
since most of the heat transfer from the electrons to the lat-
tice occurs within this time. Since the Watanabe–Samela
potential overestimated the glass transition temperature
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Figure 2. Elongation of Au nanocrystals in silica in MD simu-
lations (coloured images). Each image shows a cross section of
the simulation cell 50 ps after the ion impacts. The top row
shows the initial cluster (0) and the shape after the recrys-
tallization procedure (1b). Shown below each image is the
total number of impacts. The energy deposited to the cell
corresponds to an ion intersecting through the middle of the
crystal, as indicated by the black arrow. The lower left image
shows an experimental TEM image at an intermediate dose,
and the lower right image shows the simulated shape after three
non-overlapping impacts. The inset in the lower left image
shows a zoom of one of the crystals, showing the crystalline
lattice planes.

approximately a factor of 2 (we calculated 3500 ± 500 K,
whereas the experimental [34] is 1995 K), the energy
deposition from the i-TS model was scaled up by the

same factor to match the homologous temperatures. This
approach yielded track features in pure silica that matched
those of experimentally measured tracks.[4] Motivated
by the very rapid electronic heat conduction in Au, a
constant energy of 0.5 eV/atom was deposited to Au nan-
ocluster atoms at the same time as the deposition to silica
atoms. Tests of other energy deposition schemes showed
that the elongation mechanism is not sensitive to the exact
energy deposition to Au, as long as sufficient energy is
provided to melt the cluster (see Supplementary Material
for details).

To mimic heat conduction to the bulk and to dampen
pressure waves that travel through the periodic boundary,
the Berendsen thermostat [35] was applied at the borders
of the cubical simulation cell. The width of the boundary
cooling region is about 10% of the total cell width, which
was 23 nm. We extended the cell size to 33 nm in the
ion beam direction to accommodate nanocrystals whose
major axis had grown close to the original cell height.
After the SHI energy deposition was performed, the evo-
lution of the system was followed for 100 ps. During the
last 50 ps, no significant changes in the cluster shape were
found to occur.

In a single ion simulation, we observe that the gold
nanocrystal first melts by the SHI energy deposition dur-
ing the first few ps after the ion impact. During the
same time scale, an underdense silica track core forms
as described previously.[9] The crucial stage for elonga-
tion is about 5–20 ps after the impact when the molten,
pressurized nanocluster expands (see Figures 3 and 4 and
movie in the Supplementary Material) by a longitudi-
nal flow of Au atoms into the underdense core of the
silica track. After about 20 ps, silica cools down below
the glass transition temperature and the evolution of the
nanocluster shape stops.

The atomic structure in the cluster remained amor-
phous within the computed simulation time (100 ps).
Close inspection of the experimental images of elongated
clusters (see the experimental image inset in Figure 2)
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Figure 4. Evolution of the dimensions of r = 6 nm cluster as
a function of ion impacts. Shown also the shape of the cluster
before and after first impact. The overlap of these regions appear
dark. Note that contrary to our previous study, the current study
reproduces the loss of width of the cluster (see Figures 3 and 4 in
[33]). This demonstrates the importance of the recrystallization.

shows that they are crystalline or polycrystalline, in
agreement with previous work.[36] Test simulations on
longer (ns) timescales showed that the cluster evolved
towards a polycrystalline state, in agreement with the
experiments, but simulation of full recrystallization was
not practical due to the limited time scale of MD
simulations.[28] From the experimental ion fluxes and
known nanocrystal diameters [9,11], it is clear that the
typical time scale between ion impacts on an individ-
ual nanocrystal is of the order of seconds. Therefore,
it is straightforward to assume that the simulated nan-
oclusters would naturally crystallize before the next ion
impact. Hence, we introduce a simple recrystallization
scheme in which we construct a new simulation cell as
the initial cell, but instead of using a crystalline sphere as
the nanocrystal, the shape of the cluster 50 ps after every
impact is used (Figure 2). The atom count of the particle
is preserved within ±15 atoms.

On subsequent impacts, using the recrystallization
procedure, the elongation proceeds gradually from a
sphere to a rod-like shape (see Figures 2 and 4 and the
movie in the Supplementary Material.) Without the inclu-
sion of the recrystallization, the shape transformation
does not continue after the first impact.[33] MD calcula-
tions using the EAM potential showed that an amorphous
cluster has about 4% higher volume than a crystalline
cluster with equal atom count (30,000) at 300 K. The gain
in volume lowers the thermal expansion pressure of the
cluster as the crystal melts during the next ion impact.
We found this pressure to be essential for the shape trans-
formation. Therefore, if the cluster is left amorphous,
the elongation observed in the experiment can never be
achieved. On the contrary, with the recrystallization step
we obtain a continued elongation (Figure 4) which agrees
quantitatively with experiments (Figure 5).

The simulation cells are initially stress-free (except
for the transient thermal stresses introduced by the ion
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Figure 5. Plot of the dimensions of the nanocrystals before
and after irradiation. Blank diamonds and circles indicate the
dimensions of the initial experimental nanocrystal population
and after a fluence of 2 × 1014 ions per cm2, respectively.
Filled diamonds and circles show the evolution of the simu-
lated nanocrystals. Each arrow represents one impact. Dashed
line shows the approximate saturation width of the largest
nanocrystals in the experiments.

itself). Hence the current simulations show that the first
stages of the elongation can be explained by thermal
expansion and flow of matter from the nanocluster into the
track core, and is not a consequence of an ion-hammering
effect or any diffusion-like processes.

Some difference in the final elongated shapes
obtained experimentally and in the simulations is evi-
dent. In the current simulations, all the SHI impacts
were simulated through the centre of the nanocrystal to
keep the focus on the main underlying mechanism for its
elongation. At the same time, the experimental impacts
cannot be expected to act likewise. Analysis of the
experimental TEM image of the elongated nanocrystals
(see TEM image in Figure 2) reveals shape asymme-
try for some nanocrystals, which was also observed in
our earlier simulations of random-position SHI impacts
on Au nanoclusters.[33] Also, clusters in these simula-
tions appeared more round at the bottom and at the top,
as seen in the simulated image next to the TEM image
in Figure 2. In some experimental works, the shapes of
elongated nanocrystals similar to the currently simulated
‘lemon-like’ ones were also observed (e.g. in [14]).

We next turn to the question of why the elongation
experiments show a critical width of the particle, below
which no or little elongation occurs.[9,17] Plotting the
experimental nanocrystal population on a graph accord-
ing to their minor and major diameters (Dminor, Dmajor)
before and after irradiation shows that the largest crys-
tals have a width comparable to the track size in silica
and that the small nanocrystals are not elongated as effi-
ciently (Figure 5). After a dose of 2 × 1014 ions per cm2,
further irradiation induces no significant changes in the
curve. This enables a comparison between the simula-
tions and experiment. We prepared four simulation cells
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with spherical nanocrystals using different diameters and
performed ion impact simulations as described above
until no significant changes were observed in the dimen-
sions of the nanocrystals. We then placed the simulated
evolution of the maximal width and height of the crystals
on the (Dminor, Dmajor) graph. The simulated final distri-
bution is similar to the experimental one, as shown by the
circles in Figure 5.

Since the simulations of multiple impacts on the
same nanocrystal consume very large amounts of CPU
time, we also constructed a test system designed to
study specifically the saturation, i.e. a rod-like nanocrys-
tal with Dminor = 6 nm, Dmajor = 12 nm. Two different
energy deposition profiles were then used in an impact
simulation. The first produces a track where the under-
dense core is larger than the minor axis of the cluster, and
the second produces one which is equal to the minor axis.

These simulations enable us to identify the basic
reason behind saturation width dependence on the track
size in silica [10]: when the underdense track is larger
than the minor axis of the nanocluster, it expands in all
three directions. In the opposite case, the nanocluster is
unable to expand in the directions perpendicular to the
ion as efficiently as in the parallel direction. Therefore,
the cluster is growing in aspect ratio. Due to the high
temperatures in silica in the vicinity of the ion trail, the
pressure exerted from silica to the cluster prevents the
growth for a short time before the track core cools down,
as seen from the evolution of the aspect ratios in Figure 3.

The saturation width of the largest nanocrystals
matches quite well with the track radius, which includes
both the underdense core and the overdense shell of
the ion track (Figures 3 and 5), both in the simulations
and experiments. Similar behaviour was experimentally
observed by Ridgway et al. [11] for several other metal
species, but some materials appear to saturate at a lower
width (e.g. platinum).

In single impact simulations, the rod-like crystals
whose widths are smaller than the underdense track core
(Figure 3) are not growing in aspect ratio, whereas bigger
ones are. It might be, therefore, expected that the satura-
tion width is equal to the width of the underdense track.
We note that the increment in the major axis dimension
has to be sufficiently large for the nanocrystal to sub-
sequently elongate, since some of the increment is lost
during the recrystallization to minimize surface energy.
When the minor axis of the crystal is equal to the under-
dense core, growth in aspect ratio occurs initially, but
most of it is lost during the recrystallization. The major
axis growth is sufficient for elongation only when the
minor axis is clearly larger than underdense core. Hence
the saturation width that is obtained in Figure 5 is larger
than the diameter of the underdense core.

In conclusion, we have performed MD simulations
in conjunction with the i-TS model that reproduce the
experimentally observed elongation of Au nanocrystals

under SHI irradiation. In the simulations, the elonga-
tion is caused by an anisotropic thermal expansion of the
molten nanocluster within the underdense track core in
silica. Nanocrystals whose minor axis is smaller than the
diameter of the underdense track expand more isotropi-
cally and are not elongated, which leads to a saturation
of the width of the crystals. The saturation width was
also observed experimentally. The results imply that both
formation of an underdense track in silica and shape-
conserving crystallization of the molten cluster between
ion impacts are necessary prerequisites for elongation of
metallic nanocrystals by SHI impacts.
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