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The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process,
is greatly influenced by the presence or absence of various pointlike defects such as precipitates or solute atoms.
These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material.
Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations
in order to model the interaction between different kinds of precipitates and a 1

2 〈111〉 {110} edge dislocation in
BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics
code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force
acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for
the precipitate potential, the dislocation mobility, shear modulus, and dislocation core energy are obtained from
molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the
precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods
together and discuss the variety of the relevant pinning and depinning mechanisms.
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I. INTRODUCTION

The crucial role of dislocations and their stress-driven
dynamics on the mechanical properties of metals is a well-
established fact. Nevertheless, the underlying mechanisms of
how dislocations interact with various obstacles such as pre-
cipitates, solute atoms, or grain boundaries have only recently
been considered in the context of numerical simulations [1,2].
Recent developments in computational physics have made it
possible to study these phenomena on a multiscale level [3–6].
Using some approximations, massively parallel computers
are now capable of performing molecular dynamics (MD)
simulations of multimillion atom systems for long enough
time scales such that integrating the MD results with various
higher-level, coarse-grained descriptions of the problem at
hand becomes meaningful. A relevant example of such a
coarse-grained description is given by discrete dislocation
dynamics (DDD) simulations, with flexible dislocation lines
interacting via long-range stress fields as the basic degrees of
freedom instead of explicit consideration of the atoms in the
crystal lattice [7]. Here the basic idea of multiscale modeling
is to obtain a set of key parameters from MD simulations, and
then use the obtained parameter values in DDD simulations,
to realistically model a large system with multiple dislocations
[8].

Steels are some of the most widely used structural materials
in various fields of engineering, due to their good properties
and versatility. They tend to have a very complex nanostruc-
ture, affecting the movement of dislocations, and therefore
the mechanical properties of the material. One key feature
of these nanostructures are precipitates of various kinds,
either naturally occurring solutes, for instance, carbides, or
manmade particles as in oxide dispersion-strengthened (ODS)
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alloys [9,10]. To predict the effects of these precipitates on the
mechanical properties of a steel sample, knowledge of both
the atomic scale properties of a single dislocation interacting
with different kinds of obstacles, as well as those due to
the synergetic effect of multiple dislocations interacting with
multiple obstacles of different kinds, is necessary. Thus, a
multiscale modeling framework integrating MD and DDD is
needed.

In this work we utilize MD to investigate the atomic scale
interaction of an edge dislocation with different kinds of
obstacles in BCC iron, thus obtaining the parameters necessary
to run accurate DDD simulations on a larger scale. In order to
specifically study precipitate hardening, we have implemented
a new obstacle data structure within the DDD code ParaDis
[11]. These obstacles are immobile and destructible, and they
interact with dislocations via a simple Gaussian potential. In
the literature the usual way to model precipitates is to make
them impenetrable obstacles or that they impose a constant
drag force on the dislocation segments in contact with them
[12,13]. The Gaussian potential makes it possible for the
dislocation to continuously penetrate into the obstacle, and
we can control the strength of this penetration by tuning the
precipitate strength parameter. This leads to a physically more
accurate description of the dislocation-precipitate interaction.

Parameters for the potential are obtained by comparing the
dislocation-precipitate unpinning stresses of the MD simula-
tions to those of the DDD. Also other relevant parameters such
as dislocation mobility, shear modulus, and dislocation core
energy are estimated from the MD simulations and used in the
coarse-grained DDD simulations. The obstacle data structure
is built in a general manner so that it is relatively simple to
study other dislocation-precipitate interaction potentials in the
future.

This paper is organized as follows. First in Secs. II A
and II B we describe in a general fashion both the MD and
the DDD simulation methods we have used. In Sec. II C
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the precipitate implementation for ParaDis is described in
detail, and in Sec. II D we introduce our multiscale framework
for precipitate pinning. Then we present the specific results
for the dislocation-precipitate interaction of both methods in
Secs. III A and III B, respectively. In Sec. III C we describe
how they are fitted together and compare the unpinning stress,
σc, obtained from our simulations to the analytic result of
Bacon et al. [14]. Finally in Sec. IV we discuss our results and
present our conclusions.

II. METHODS

In this study, two different computational techniques
are utilized, molecular dynamics and discrete dislocation
dynamics simulations, to be able to investigate dislocation
movement on a multiscale level. MD simulations are used to
extract various parameters (obstacle strength, shear modulus,
dislocation mobility, and core energy), which are then used in
the DDD simulations. The results of the two methods are first
compared using the same setup in both methods, to fine-tune
the DDD model. Then DDD simulations may be used to
perform realistic studies for much larger length and longer
time scales.

A. Molecular dynamics

A classical molecular dynamics code, PARCAS [15,16],
was used with a Tersoff-like bond order interatomic potential,
H13, by Henriksson et al. for describing FeCrC [17]. To
investigate the strength of different precipitates and to estimate
the dislocation mobility, a simulation technique by Osetsky
and Bacon was used [18].

The simulation setup according to Ref. [18] can be seen in
Fig. 1, where the x, y, and z axes are oriented along the [111],
[1̄1̄2], and [11̄0] directions, respectively. The uppermost and
lowermost layers of atoms in the z direction are fixed, and
the uppermost layers are displaced, relative to the lowermost
layers, with a constant strain rate to achieve a glide force acting
on the dislocation. The shear stress induced on the simulation
cell can be calculated from τ = Fx/Axy , where Fx is the total
force on the atoms in the fixed block in the x direction and
Axy the area in the x-y plane. The atoms between the two fixed
layers were able to move according to the Newtonian equations
of motion, and a few layers of atoms above the fixed atoms at

FIG. 1. Schematic diagram of the MD simulation box. The
dislocation is positioned on the left side and the precipitate to the
right. Shear is generated to the crystal by moving the upper layer of
atoms in the box. Under this shear the dislocation moves on its slip
plane towards the precipitate.

the bottom were also thermally controlled by a Berendsen-type
thermostat [19]. The same method and simulation cell have
been previously used in similar investigations in Refs. [20–22].
Some of the results are taken from these references and used
as parameters in the DDD simulations.

The simulation block for the obstacle simulations was
101×3, 30×6, and 30×2 atomic planes, resulting in a cell with
the volume 25×21×12 nm3. Periodic boundary conditions
(PBC) were used in both x and y directions, resulting in a
length of 21.2 nm − dp between the obstacles, with dp the
diameter of the obstacle. This procedure effectively results in
an infinite array of obstacles of the same size. The simulation
method and size were chosen to be comparable with previous
results, and the choice will only induce a maximum distortion
of 0.5% [18], which is negligible.

The constant strain rate γ was 5×107 1/s, resulting in a dis-
location velocity of 50 m/s, according to the Orowan relation
γ = bρv, with b the Burgers vector, ρ the dislocation density,
and v the dislocation velocity. To visualize the dislocation core,
in order, for instance, to estimate the dislocation mobility, we
used the program OVITO and the adaptive common neighbor
analysis implemented in the program [23].

To obtain the elastic parameters of iron to be used in the
DDD simulations, we used a smaller simulation cell of about
10 000 atoms. The parameters of interest were the Poisson
ratio and the shear modulus. To obtain the Poisson ratio we
elongated the box in one direction and calculated shrinkage
in the other directions, and from that calculated the ratio. To
obtain the shear modulus we fixed the bottom layer of atoms
and the uppermost layer of atoms and shifted the upper layers
inducing a shear on the box. The box was then relaxed at a
temperature T = 750 K, followed by the calculation of the
virial, and subsequently that of the shear modulus in the [111]
direction.

To investigate the effect of the distance between the
obstacles, we used the same simulation cell as described in the
previous paragraph, but varied the amount of atomic planes
in the y direction to obtain different lengths between the
obstacles in the infinite array over the periodic boundaries.
The length dependence is crucial to know to be able to get
the right unpinning stresses for obstacles that are separated
by another distances than the one(s) studied in MD, discussed
in more detail in Sec. III C. In the investigation of the length
dependence we used spherically fixed atoms, with the diameter
2 nm, as an obstacle. The obstacles we studied in MD to
get the qualitative results were spherical cementite (Fe3C)
precipitates, of sizes 1 nm, 2 nm, and 4 nm [21]. The cementite
precipitates had the orthorhombic lattice structure according
to the space group Pnma (no. 62). The precipitates contained
18, 116, and 940 carbon atoms for the sizes 1 nm, 2 nm,
and 4 nm, respectively. The precipitates were cut out from a
pristine block of cementite to the right size, compressed by 5%
and placed inside a void in the block with the dislocation. The
block with the precipitate was then relaxed before the straining
of the cell started. The potential showed a flow stress at the used
strain rate and temperature. The flow stress has been subtracted
from the obtained value for unpinning stress, to determine
the absolute strength of only the obstacle. To investigate the
velocity of the edge dislocation, a pristine block of BCC Fe
with an edge dislocation was used. The dimensions were the
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same in the y and z directions as in the previous paragraph,
but the x direction was only 60×3 atomic planes. We used
six different forces to shear the block, by fixing the atoms at
the bottom and applying the force to the few uppermost layers
of atoms, and thereby applying a constant glide force on the
dislocation.

B. Discrete dislocation dynamics

In DDD simulations, the relevant degrees of freedom are
flexible dislocation lines, consisting of discrete segments.
The dislocation lines move and change shape when subject
to stresses. The total stress acting on a dislocation segment
consists of the external part, resulting from the deformation of
the whole crystal, and of the internal, anisotropic stress fields
generated by the other dislocation segments within the crystal.
The latter stress fields are computed using the well-known
results of linear elasticity theory. Near the dislocation core,
local interactions, such as junction formation, annihilation,
etc., are introduced phenomenologically using smaller scale
simulation methods (e.g., MD) and experimental results as
guidelines. The strength of the long-range stress field of
dislocations decays as ∼ 1

r
with distance r , leading to O(N2)

computational cost, if calculated directly. This, together with
the fact that the topology of the dislocation lines changes in
time, makes parallel simulation algorithms a necessity.

There are many existing DDD codes. We have chosen
ParaDis [11] because of its good documentation, parallel scal-
ability, and clear modular structure. In ParaDis dislocations are
modeled using a nodal discretization scheme: dislocation lines
are represented by nodal points connected to their neighbors
by dislocation segments. Forces between segments of nearby
nodes and self-interaction of dislocations are calculated with
explicit line integrals. Far-field forces are calculated from
the coarse grained dislocation structure using a multipole
expansion. In real materials, the motion of dislocations are
subject to constraints which depend on the underlying crystal
structure and the nature of the dislocations (e.g., screw or
edge) in a complicated manner. These details are encoded in
the material-specific mobility function which relates the total
stresses experienced by dislocations to their velocities.

C. Implementation of precipitates in DDD

There are no pointlike arbitrarily strong pinning defects
implemented in the default version of ParaDis. Only objects
which have a dislocation nature, e.g., lines and loops, are
readily implemented. In order to remedy this, we have added
a new precipitate data structure into the ParaDis code. These
precipitates are spherical and immobile, and they generate

a Gaussian potential U (r) = Ae
− r2

R2 around them. Thus, the
interaction force between dislocation and precipitate is

F (r) = −∇U (r) = 2Are
− r2

R2

R2
, (1)

where r is the distance to the center of the precipitate, R is
the radius of the precipitate, and A is a parameter quantifying
the pinning strength of the precipitate. The Gaussian potential
was chosen for simplicity: it describes a short-range interaction
with a continuous force field.

FIG. 2. Schematic diagram of dislocation-precipitate interaction
implementation in ParaDis. A force generated by the precipitate is
applied to the discretization nodes which are inside the cutoff radius.

The force from the precipitate is applied to the dislocation
discretization nodes inside a cutoff radius Rcut-off; see Fig. 2.
In ParaDis, the discretization nodes can move along the
dislocation line, which introduces some numerical difficulties
as new nodes are constantly generated to keep the line
segments at certain length. This tangential node movement
has no physical meaning, so we use only the precipitate force
component, which is normal to the segment to which the nodes
are connected. This removes the unnecessary discretization
operations and still preserves the physics of dislocation-
precipitate interaction. When a dislocation segment is in the
neighborhood of a precipitate, we need to make sure that its
maximum length is of the same order or smaller than the size
of the precipitate, in order to reduce numerical inaccuracy.

A common way of modeling the precipitate-dislocation
interactions is to either assume that the dislocation movement
ceases within the volume of the precipitate (impenetrable
obstacle) or that the precipitate applies a constant drag force
on the dislocation [12,13]. In our model, the precipitates
generate a spatially continuous force acting on the dislocations,
improving the numerical stability of the problem, and also
taking in a crude fashion into account the distance dependence
of the elastic stress field of the point defect.

A full 3D system, where the dislocation can approach the
obstacle from any direction, would require a more realistic
model. In continuum elasticity the correct strain field for the
obstacles is obtained from the Eshelby solution for spherical
inclusions [24]. The force field of the obstacle would then have
an angular as well as a radial dependence and also include
both attractive and repulsive components. This leads to a more
complex interaction between the precipitate and the dislocation
as it would also depend on the orientation of the dislocation.
In our multiscale model system, we have a single dislocation
which is driven towards a precipitate situated at the glide plane
of the dislocation. In this case the simple r dependence of the
Gaussian potential is sufficient to capture the essential physics
of the dislocation pinning by the obstacle.

The obstacle strength is tunable [via A and R in Eq. (1)],
which enables us to study both strong and weak pinning.
Precipitates are treated similarly to the existing node data
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structure; for instance, precipitates can be removed or created
during the simulation. This also leads to the possibility of
destructible pinning centers, something that may be relevant
in general, e.g., for studies of plastic instabilities in irradiated
metals.

D. Multiscale framework

When a dislocation driven by an applied stress encounters
an immobile obstacle, it will become pinned. When the applied
stress is increased to a critical value σc, the dislocation unpins
(is able to move past the obstacle) and continues its movement.
The nature of the unpinning depends from the strength of the
obstacle. When the obstacle is strong, unpinning happens via
the Orowan-mechanism: with increasing stress, the dislocation
bows around the obstacle and leaves an Orowan loop around
it [25]. The loop left behind increases the effective size of
the obstacle. Thus, when multiple dislocations are driven
through the obstacle, the loop formation process leads to strain
hardening of the material: σc increases with each new loop. In
this paper, we classify the obstacle as weak if the dislocation
unpins without leaving a loop behind, and consider it to be
strong if an Orowan loop is formed around the precipitate.
Comparison of σc in MD and DDD, respectively, allows us
to fit the two methods together. In order to make a realistic
multiscale model, the input parameters for DDD were made as
similar as possible to those of the MD simulations. From MD
we can extract the shear modulus of the crystal, G, mobility
of the dislocations, Me (where the subscript denotes edge),
dislocation core energy, Ecore, and the critical stress, σc, needed
to overcome the precipitate.

III. RESULTS

In the following sections we will first present the results
from the MD simulations and then the general properties of the
DDD results. Finally we will compare MD and DDD results in
order to find suitable fitting parameters for the DDD precipitate
potential.

A. Results from MD simulations

The parameters obtained in this paper and previously [17]
for the H13 potential are listed in Table I. The results from
the six different stresses and the corresponding dislocation
velocities are shown in Fig. 3; a roughly linear velocity
response to applied stresses is observed. From the linear fit
to the data, we calculate the dislocation mobility needed in the
DDD simulations.

TABLE I. DDD simulation parameters obtained from MD
simulations.

Parameter Value

b 0.2502 nm
rcore 2.9 b

Ecore 1.84 eV
b

G 75 GPa
ν 0.379
Medge 6036.0 (Pa s)−1

0 20 40 60 80 100
σ [MPa]

0

50

100

150

v 
[m

/s
]

MD simulations T = 750 K
Linear fit v0  = -1.40, k = 1.51

FIG. 3. Stress-velocity data obtained from MD-simulations of
iron at the temperature T = 750 K.

The data for Burgers vector b, the core energy Ecore, and
the core radius rcore were obtained from Ref. [20]. The Burgers
vector is 0.2502 nm, the core energy is 1.84 eV/b, and the core
radius is 2.9 b. Elasticity theory predicts a logarithmic relation,
E ∝ ln r , for total strain energy as a function of the distance
from the dislocation core [25]. Using this fact, the core energy
can be obtained from the total strain energy curve at the point
where the strain energy starts to vary logarithmically (Fig. 4).

We calculated the shear modulus for the used potential at
750 K to be about 75 GPa (in the [111] direction) and the
Poisson ratio at the same temperature to be 0.379, by using the
procedures described in Sec. II.

To investigate how the unpinning stress depends on the
spacing between obstacles, we investigated seven different
lengths for the same 2 nm fixed obstacle. In the case of
the constant strain rate γ̇ = 5×107 s−1, we observed that
the system responded with an extra flow stress before the
dislocation started to move. To obtain the true strength of
the obstacles we need to subtract this extra stress, to get
only the contribution of the obstacle, not both the obstacle

1 10
r [b]

0

1

2

3

4

E 
[e

V
/b

]

Total strain energy from MD
Logarithmic fit

Ecore

rcore

FIG. 4. Total strain energy as function of the distance from
dislocation core for a edge dislocation. Data are obtained from the
MD-simulations. The dislocation core energy Ecore, is the value of
the total strain energy curve at the radius of the core. Outside of
the the core, the total strain energy follows a logarithmic relation
E ∝ ln r as predicted by elasticity theory.
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MD fixed D = 2 nm
MD cementite D = 1 nm
MD cementite D = 2 nm
MD cementite D = 4 nm

FIG. 5. Stress-strain curves obtained from MD simulations of
a dislocation interacting with a row of cementite precipitates of
different sizes. Each stress drop corresponds to an unpinning event.
The diameter of the precipitates are D = 1 nm, 2 nm, and 4 nm and
the distance between obstacles is L = 21 nm − D.

and the strain rate-induced stress. The flow stress at the
investigated temperature was observed to be 75 MPa, which
has been subtracted from the obtained unpinning stresses. The
unpinning stresses for the different lengths can be seen in
Figs. 13 and 14, where the results from MD are compared
with those of elasticity theory and the obtained results from
DDD. An increasing spacing between obstacles will decrease
the needed unpinning stress, which is consistent with elasticity
theory.

The results of one of the cementite obstacles can be seen
in Fig. 5, where the stress-strain curves for different obstacle
sizes is shown. The figure shows that a larger obstacle will
require a higher stress to unpin. In Fig. 6 the interaction of the
edge dislocation with the 1 nm cementite obstacle is shown.
From the figure we see that the dislocation is pinned, but
before the screw arms are created it unpins and can move past
the obstacle. In Fig. 7 we see the interaction of the dislocation
with a 4 nm obstacle. Here the screw arms are created and

FIG. 6. Dislocation interacting with a weak precipitate in the MD
simulation. After some initial curving, the dislocation overcomes
the precipitate potential and continues its movement. Simulation
parameters are L = 20.2 nm, γ̇ = 5×107 s−1, and D = 1.0 nm.

FIG. 7. Dislocation interacting with a strong precipitate in the
MD simulation. Dislocation bypasses the precipitate by forming an
Orowan loop around it. Simulation parameters are L = 17.2 nm,

γ̇ = 5×107 s−1, and D = 4.0 nm.

extended, until the screw arms are attracted to each other and
annihilate, letting the dislocation move past the obstacle.

B. Results from DDD simulations

In this work we use the default mobility BCC glide of
the ParaDis code, in which the dislocation velocity is linearly
proportional to the applied stress σ ,

v = Mebσ, (2)

where Me is the edge mobility constant, and b the Burgers
vector of the dislocation. The choice of a linear mobility
function is justified by the MD simulations at the temperature
T = 750 K; Fig. 3 shows that the velocity is linearly dependent
on the applied stress. This temperature was chosen because
it is typical for the operational conditions of steel structures
in nuclear reactors, and because the shear modulus from the
MD simulations for T = 750 K is close to the corresponding
experimental one [26]. The ParaDis code is built for elastically
isotropic materials such that, e.g., their G is the same in all
directions. We use G = 75 GPa which is measured in the [111]
direction, perpendicular to the movement of the dislocation.
The edge dislocation mobility Me can be obtained from MD
results via Eq. (2), by making a linear fit to the stress-velocity
data of Fig. 3. We have done MD simulations only for edge
dislocations; thus, the screw mobility remains a free parameter.
Previous investigations have shown that screw mobility is
about one third of the edge mobility at temperatures around
T = 750 K, which we consider here [27,28]. As a first order
approximation, we assume that screw mobility is the same
as the edge mobility, Ms = Me. Tests of other choices are
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FIG. 8. Dislocation interacting with a weak precipitate in the
DDD simulation. After some initial curving, the dislocation over-
comes the precipitate potential and continues its movement. Sim-
ulation parameters are L = 42.5 nm,R = 1.0 nm,γ̇ = 107 s−1, and
A = 7.8×10−20 Pa m3.

described below. The energy of the dislocation core, Ecore,
can be read from the total strain energy curve in Fig. 4. The
numerical values of all parameters are collected in Table I.
In the calculation of the elastic energy of the dislocations,
ParaDis uses a cutoff parameter rcore. This essentially tells the
radius at which the core interactions replace linear elasticity
theory. In MD simulations the core radius is rcore = 2.9 b.

In the case of small and strong pinning obstacles there
were numerical problems in DDD simulations when using
this value. These numerical problems arise when the distance
between dislocation segments of the same Burgers vector
equals or is smaller than the size of their core. For real
dislocations the linear elasticity is no longer valid in this
region, and this is modeled in ParaDis by introducing a cutoff
radius in the force calculation. This cutoff equals the size of
the core radius rc. Because of this cutoff, the force between
dislocation segments is not strong enough to generate a stable
configuration of layered Orowan loops. Dislocation segments
start to partially merge, discretization nodes move in a random
manner, and the time step shrinks orders of magnitude. We
have used a smaller value, rc = 0.5 b, in order to overcome
these numerical problems.

Here we do not take into account possible dislocation
climb or cross-slip; thus, we consider a dislocation which
is constrained into its original glide plane throughout the
simulation. In this way we can fit MD and DDD results
together in the simplest scenario possible. We also assume
that the precipitates are nonshearable and immobile. The
dislocation may penetrate the obstacle, but we do not remove
it from the simulation after this. The default strain rate used is
γ̇ = 107 s−1.

As stated previously, we categorize the precipitates as weak
if they unpin without loop formation and strong if they leave a
loop. A typical DDD simulation for weak pinning is presented
in Fig. 8. The edge dislocation is on the left side of the
simulation box in the beginning, with the precipitate in the
middle. Because of the periodic boundary conditions along

FIG. 9. Dislocation interacting with a strong precipitate in the
DDD simulation. Dislocation bypasses the precipitate by forming
an Orowan loop around it. Simulation parameters are L = 42.5 nm,

γ̇ = 107 s−1,R = 1.0 nm, and A = 1.56×10−18 Pa m3.

the dislocation line direction, the dislocation effectively sees
an infinite row of precipitates. The distance between them,
which is denoted by L, can be varied by changing the size of the
simulation box. During simulations, the stress is increased in
order to match the imposed strain rate, causing the dislocation
to move right towards the precipitate. The dislocation then pins
to the precipitate. When the applied stress reaches a critical
value σc, the dislocation is able to overcome the Gaussian
potential and unpins from the precipitate.

The case of strong pinning is presented in Fig. 9. The
edge dislocation is on the left side of the simulation box in
the beginning. The stress is increased in order to match the
imposed strain rate, which causes the dislocation to move
right towards the precipitate. The dislocation then pins to the
precipitate [Fig. 9(a)]. When stress reaches σc, the dislocation
bows around the precipitate, leaving behind an Orowan loop
[Figs. 9(b) and 9(c)]. After many dislocations have been
driven trough the simulation box, the precipitate has collected
multiple loops around it [Fig. 9(d)].

When the dislocation is pinned, the crystal strains es-
sentially elastically until the dislocation bows out between
the precipitates. This generates the distinctive serrated look
of the stress-strain curves of Fig. 10. Each stress drop is
related to an unpinning event in both cases. In the case of the
strong obstacle, the precipitate gathers loops around it until
the stress between loop segments is large enough to collapse
the inner loop. After this, the precipitate is surrounded by a
constant number of loops, and consequently σc also becomes
a constant. This can be seen in the stress-strain curve of the
strong precipitate in Fig. 10. The stress drops are increasing in
height until the third drop. This means that the precipitate has
a maximum of three loops around it.
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L = 42.5 nm

FIG. 10. Stress-strain curves of the dislocation-precipitate in-
teraction from DDD simulations. The continuous curve represents
the strong precipitates, and the dashed line represents the weak
ones. Simulation parameters are L = 42.5 nm, γ̇ = 107 s−1, and
R = 1.0 nm.

In DDD simulations we can use strain rates that are orders of
magnitude smaller than in MD. As Figs. 11 and 12 indicate, the
stress-strain curves look qualitatively similar with all imposed
strain rates, but the magnitude of σc gets smaller when the
strain rate is decreased. This dependence of σc on γ̇ is smaller
for lower strain rates, γ̇ = 106 s−1 and γ̇ = 105 s−1. This
behavior is possibly due to the low dislocation density, as
there is only a single dislocation in the simulation space.
When the dislocation density is low and the imposed strain rate
high, the crystal strains mostly elastically as the movement of
the dislocation does not produce plastic strain fast enough to
satisfy the high strain rate even when it is not pinned by a
precipitate. With lower strain rates, the dislocation has time to
react to the imposed stress, and to produce the imposed strain
rate plastically after it unpins from the precipitate.

As stated previously, we do not have MD results for the
mobility of screw dislocations. Thus, we have assumed that it
has the same value as the edge mobility. We check the validity
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γ
.
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FIG. 11. Stress-strain curves with different shear rates for
strong precipitates. The unpinning stress saturates when the
strain rate is decreased. Simulation parameters are L = 42.5 nm,

A = 1.56×10−18 Pa m3, and R = 1.0 nm.
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FIG. 12. Stress-strain curves with different shear rates for weak
precipitates. The unpinning stress saturates when the strain rates
is decreased. Distance between the precipitates is L = 42.5 nm.
Simulation parameters are A = 7.8×10−20 Pa m3, and R = 1.0 nm.

of this assumption by decreasing the magnitude of the screw
mobility, while keeping the edge mobility constant. When
the screw mobility is of the order Ms ≈ 0.01 · Me, there is
a qualitatively different bow-out during unpinning. The screw
segments form a long dipole after the precipitate before they
annihilate, and an Orowan loop is formed. This effect, however,
does not change σc significantly. This result is supported by
previous DDD studies by Monnet et al., whose simulations
show that the effect of the different mobilities on σc should be
small in the range of the D/L ratio studied here [13].

C. Comparison of MD and DDD

In order to find good fitting parameters for the Gaussian
potential, we compare the σc from MD simulations of fixed
obstacles to the ones obtained from DDD simulations when
using the same strain rate γ̇ = 5×107 s−1. In this comparison
the critical stress is defined as the first stress drop of the
respective stress-strain curves. Both MD and DDD are then
compared to the Bacon-Kocks-Scattergood (BKS) equation
[13,14]

σc = C
Gb

L − D

[
ln

(
D̄

b

)
+ 0.7

]
, (3)

where for edge dislocations C = 1
2π

,L is the distance between
obstacles, D is the diameter of the obstacles, and D̄ = DL

D+L
is

the harmonic average of L and D. This formula is obtained by
considering only the dislocation self-interaction in the case
where the dislocation is curved around an infinitely hard
exactly spherical obstacle. This approximation differs from
the MD and DDD simulations where there is a continuous
stress field around the obstacles. The BKS equation gives
larger values of σc than MD which can be explained by the
precipitates in MD being penetrable; i.e., the dislocations can
bypass them without leaving loops behind at the temperature
of 750 K. This penetration can be due to a climb or a cross-slip
process, not considered in the DDD simulations.

The critical stress as a function of the precipitate size is
presented in Fig. 13. The critical stress increases with the size
of the precipitates.
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FIG. 13. Critical stress σc as a function of the distance between
precipitates L for different precipitate sizes R. Continuous curve with
square symbols denotes results from MD simulations and the dashed
curve from the BKS equation. The rest are results from DDD simula-
tions. DDD Simulation parameters are A = 1.56×10−19 Pa m3, and
γ̇ = 5×107 s−1.

The critical stress as a function of the precipitate strength
is presented in Fig. 14. Strong precipitates are represented by
the dotted and dashed lines, and the weak precipitates by the
continuous line.

A good fit between MD and DDD results is obtained with
precipitate strength parameter value A = 8.7×10−20 Pa m3,
which corresponds to a weak precipitate. This means that there
is no Orowan-loop formation. The MD stress-strain curves in
Fig. 5 support this result as the height of the stress drops
is not increased significantly when multiple dislocations are
driven trough the system. We can also see from Figs. 13
and 14 that when the distance between the pinning points is
large compared to their diameter D/L � 1, the details of the
dislocation-precipitate interaction do not change the unpinning
stress.
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A = 7.80 × 10-19  Pa m3

A = 3.12 × 10-19  Pa m3
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A = 8.70 × 10-20  Pa m3

FIG. 14. Critical stress σc as a function of the distance between
precipitates L for different precipitate strengths A. Continuous curve
with square symbols denotes results from MD simulations and the
dashed curve from the BKS equation. The rest are results from
DDD simulations. DDD simulation parameters are R = 1.0 nm and
γ̇ = 5×107 s−1.

IV. DISCUSSION AND CONCLUSIONS

The critical stress obtained from MD simulations is smaller
than that predicted by the BKS equation. This may be due
to dislocation climb and/or cross-slip, as BKS does not take
these into account. BKS also assumes that the precipitates
are impenetrable and exactly spherical obstacles with clear
edges. Our Gaussian potential on the other hand generates
a continuous force field, and thus the edge of the obstacle
is not well defined. When a dislocation moves towards its
center, the effective radius of the obstacle becomes smaller,
and this decreases the critical stress. In MD simulations the
deformation of the precipitate can also be an important factor,
which is not addressed in the current DDD implementation.

The DDD model can be fitted to match both the MD and
BKS by varying the pinning strength parameter of the poten-
tial. With small A, the dislocation penetrates the precipitate,
and no Orowan loops are formed. With a large enough A, the
dislocation bypasses the precipitate by leaving Orowan loops
around the obstacle, leading to Orowan hardening after the
precipitate has gathered multiple loops around it. This kind of
behavior is not likely to be captured with models which use
impenetrable obstacles or ones with a constant drag force.

There are, however, some restrictions. In DDD simulations
one must use a cubic simulation box as the code uses spatial
symmetries in far field calculations by assuming a cubic
simulation space. Because of this restriction, the dislocation
densities are not the same in the two simulations, leading to
different accumulated strains. This difference does not affect
significantly the magnitude of σc at low strain rates. We were
able to obtain good fit between MD and DDD results. The
results indicate that the dislocation does not leave an Orowan
loop around the precipitate at the temperature of 750 K.

With our model it is easy to tune the strength of the
precipitates. This offers possibilities to investigate dislocation
systems with frozen disorder where the magnitude of the
disorder is a controllable parameter. For example, the effect
of pinning points to dislocation avalanches have been studied
in two dimensions [29], where it was found that the presence
of defects changed the statistics of avalanches compared to
those in a pure dislocation system. It would be interesting to
study if this would be the case also in a three-dimensional
dislocation system.

Another area of application would be the strain hardening
of irradiated metals. This could be studied in a system where
the size and strength of the precipitates would follow a realistic
distribution obtained from experimental material microstruc-
ture data. The effects of cross-slipping and dislocation climb
on σc are also a straightforward venue for future research. A
more realistic model for the stress field of the precipitate is
possible with the Eshelby solution for the spherical inclusion
[24]. This would lead to a physically more accurate model
for the precipitate-dislocation interaction, which could then be
compared to existing MD results [21,22].
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