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Determination of strain fields and composition of self-organized quantum dots
using x-ray diffraction
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We give a detailed account of an x-ray diffraction technique which allows us to determine shape, strain
fields, and interdiffusion in semiconductor quantum dots grown in the Stranski–Krastanov mode. A scattering
theory for grazing incidence diffraction is derived for the case of highly strained, uncapped nanostructures. It
is shown that strain resolution can be achieved by ‘‘decomposing’’ the dots in their iso-strain areas. For a
selected iso-strain area, it is explained how lateral extent, height above the substrate and radius of curvature can
be determined from the intensity distribution around a surface Bragg reflection. The comparison of intensities
from strong and weak reflections reveals the mean material composition for each strain state. The combination
of all these strain resolved functional dependences yields tomographic images of the dots showing strain field
and material composition.
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I. INTRODUCTION

A detailed understanding of the growth process of s
assembled semiconductor quantum dots1–6 requires substan
tial knowledge about their internal structure. So far, exter
shape and lateral arrangement have been accessible by
ning microscopies.7 Structural investigations with technique
like photoluminescence and Raman scattering are restri
to estimates of scalar physical quantities such as maxim
averages of strain or material composition. For a meas
ment of these quantities, which delivers spatial informati
some kind of resolution is needed. The resolution can ei
be in real space, using a direct imaging approach as in tr
mission electron microscopy~TEM! or in reciprocal space a
in an x-ray diffraction experiment8 where spatial frequencie
rather than spatial positions are probed.

The strengths of real space techniques lie in their br
applicability and the direct nature of their results. Relat
drawbacks are the technologically demanding sample pr
ration and the limited statistics. In an x-ray diffraction e
periment, the signal of a macroscopic portion of the samp
surface is integrated in the detector. A serious difficulty
the inaccessibility of the relative phase of the scattering p
cess. Diffraction experiments thus usually require structu
models with only a few variable parameters which are o
mized to fit the measured data.18,21 For example, the deter
mination of the strain distribution within etched nanostru
tures using high resolution x-ray diffraction and grazi
incidence diffraction is discussed in Refs. 9–17. Similar
the lattice distortions in self-organized nanostructures h
been determined in Refs. 18–22.

Apart from being a demanding task for a thre
0163-1829/2001/63~3!/035318~13!/$15.00 63 0353
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dimensional object of a few hundred thousand atoms w
variable strain and material composition, these kinds
analyses are case studies, which are not highly generaliz
The kaleidoscopic wealth of different manifestations of se
assembled quantum dots calls for a more extensible and
rect method for data evaluation.

In this paper, we present a detailed account of an ana
cal approach for the analysis of grazing incidence diffract
which allows us to extract tomographic images of stra
fields and material composition in the dots. A different a
proach, which makes use of finite element calculations of
entire dot in order to simulate the scattering intensity23 is less
analytic but more synthetic. This method has the advant
of being applicable toany vertical and lateral concentratio
profile, but gives relatively little insight into the interdepe
dence between real space structure and scattered inte
distribution. The approach presented here, on the other h
provides aphysical understandingof the relationship of
strain-related phenomena in real and reciprocal space.

The paper is organized as follows: In Sec. II we discu
the concept of iso-strain scattering, in Sec. III the analyti
formalism for the data evaluation is presented. After expe
mental considerations in Sec. IV we show results of a se
of InAs/GaAs dots grown at different temperatures in Sec.
The lateral composition profile and atomistic calculations
strain relaxation are discussed in Sec. VI.

II. DETERMINATION OF STRAIN AND SHAPE

A. Spatial distinction

In reciprocal space, the distance between two crystal
equivalent to the reciprocal difference of their lattice para
©2001 The American Physical Society18-1
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I. KEGEL et al. PHYSICAL REVIEW B 63 035318
eters. Therefore, two crystallites may be far apart in recip
cal space, even though they are spatially adjacent. For a
tice parameter difference of a few percent, the crystall
will yield two distinct peaks, whose half-widths can be us
to analyze the size of each crystal~Fig. 1!.

In this simple example there is an unspecific spatialdis-
tinction: two parts of a larger sample can be studied indep
dently by tuning the scattering vector to the appropriate
tice parameters. As the lattice parameter difference betw
the two crystallites is reduced, the peaks merge until fina
no distinction is possible anymore. This corresponds to
optical analogue of distinguishing two stars with a telesco
In this picture, the relative lattice parameter differenceDa/a
is equivalent to the smallest resolvable angle,a takes the
place of the wavelength of light and the common sizeR of
the crystallites corresponds to the telescope’s aperture. F
mean lattice parametera, the minimum percentual differenc
in lattice parameter is given by

S Da

a D
min

5C
a

R
, ~1!

whereC is a constant of the order of 1 which depends on
particular shape of the crystallites. Equation~1! clarifies the
reciprocal relationship between spatial distinction and spa
extent of the regions of equal lattice parameter.

B. Iso-strain areas

If a nanocrystal has a lattice parameter which varies c
tinuously from one end to the other, it may be thought of
being composed of a distribution of iso-strain areas.20 For a

FIG. 1. Illustration of spatial distinction in hetero-epitaxial sy
tems. Two regions may be distinguished if their difference in latt
parametera22a1 and sizeR are big enough to allow the resultin
peaks in reciprocal space at 2pa1

21 and 2pa2
21 to be separated a

two maxima.
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particular Bragg reflectionQ, we define the iso-strain area
as the iso-surfaces of the appropriate scalar componente of
the strain fielde which is determined as

e5Q̂TeQ̂, ~2!

where the hat onQ̂ denotes a unit vector. This definitio
compresses the full tensorial strain status of the nanocry
into a scalar field by neglecting shear strains. The cumula
effect of these shear strains on the scattering process ca
analyzedafter the definition of the iso-strain area by calc
lating rotation matricesR(e) whose rotation anglesu(e) and
rotation axesn(e) are defined by

cosu~e!5

Q̂T
•E

ISA
eQ̂ da

U E
ISA

eQ̂ daU 5
e

u^eQ̂& ISAu
,

n~e!5
Q̂3^eQ̂& ISA

u^eQ̂& ISAu
. ~3!

The average Bragg conditionsQISA(e) are then located at

QISA~e!5
1

11e
R~e!Q'~12e!R~e!Q for e!1. ~4!

Considering only scattering vectors in the planeP with
normalp spanned by the incoming beamk i andQ, the pro-
jection of each iso-strain area ontoP may be viewed as a
two-dimensional crystal. From this point of view, each is
strain area has a homogeneous, nondistorted lattice w
scatters around the projected Bragg point.

For distortions which are anisotropic with respect toQ̂
and Q̂3p, the projected Bragg positionsQISA

proj(e) are given
by

QISA
proj~e!'~12e!@R~e!Q2p„R~e!Q•p…#, ~5!

defining a new matrixRproj(e) such that

QISA
proj~e!'~12e!Rproj~e!Q for e!1. ~6!

For isotropic distortions with respect toQ̂ and Q̂3p, the
shear components in the planeP will average out giving
n(e)5Q̂3p. In this case,Rproj(e)51 in Eq. ~6! and the
projected Bragg points of the iso-strain areas are associ
with momentum transfers which are scalar multiples ofQ.

C. Spatial resolution

Spatialresolutionimplies the determination of the relativ
position of the two crystallites. While there is no gene
procedure to determine relative arrangements for the gen
case, self-assembled quantum dots grown in the Stran
Krastanov ~SK! mode are subject to boundary conditio
which reduce the three-dimensional positional difference t
one-dimensional scalar value. In SK systems, the stress
ergy that builds up during the growth of mismatched hete

e

8-2
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DETERMINATION OF STRAIN FIELDS AND . . . PHYSICAL REVIEW B63 035318
epitaxial layers is lowered through the formation of thre
dimensional nanometer-sized islands, whose crystal
structure remains coherent to the underlying substrate.
coherency demands that the lattice parameter parallel to
surface normal is relaxed from bottom to top, leading to
decomposition into iso-strain areas as explained in Sec.

Changing the selected strain state by adjusting the t
momentum transferQ to a different Q ISA

proj (e) thus corre-
sponds to a change inheightabove the sample’s surface~Fig.
2!. Assuming the height above the surfaceh(e) to be a
monotonic function of the strain statee and rewriting Eq.~1!
in reciprocal space coordinates as

De'C
2p

R~e!Q
for e!1 ~7!

gives an expression for the minimum resolvable height
ference in the crystallite:

Dhmin~e!'h8~e!De5Ch8~e!
2p

R~e!Q
. ~8!

The above resolution element has two important featu
first, the proportionality toh8(e) is equivalent to an inverse
proportionality to the strain gradiente8(h), i.e., the faster the
lattice parameter changes with height, the better is the r
lution. Regarding the material properties of hetero-epitax
systems, this corresponds to better resolutions for higher
tice mismatches. Second, the resolution element is inver
proportional to the lateral size of the iso-strain areas. In su
mary, spatial resolution can be achieved for large eno
nanocrystals with high enough lattice mismatch with resp
to the substrate such that

Dh~e!,H, ~9!

whereH is the total height of the nanocrystal.

D. Iso-strain scattering

Let us suppose the projections of the iso-strain areas oP
have shape functionsf xz

(xr ,xa) wherexr is the coordinate of

the radial axis alongQ andxa is measured along the angul

FIG. 2. Schematic functional dependence of strain, height,
resolution in islands grown in the SK mode. RadiusR and strain to
substratee are required to calculate the local minimum height d
ferenceDhmin to resolve two parts of the nanostructure. In the p
ticular case shown in the figure, the heightsh1 andh2 are resolvable
since their height differenceDh exceeds the mean local minimum
value ofDh0

min .
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direction perpendicular to it. The resulting third axis paral
to p is written asxz . Without restricting the general validity
we assume these projections to be rectangular meshes
the primitive lattice vectors alongxr andxa . In this section,
we only consider momentum transfers with zero compone
normal toP (qz50) for which the three-dimensional shap
of the iso-strain areas is irrelevant. For the reciprocal co
dinatesqr and qa relative to the Bragg-pointQ of the sub-
strate, the phase sum of all lattice points integrated over
iso-strain areas stacked alongp is

F~qr ,qa!5E dxz (
(nr ,na)
PV(xz)

ei (Q1qr )xnr
(xz)eiqaxna

(xz)

with

xnr ,a
~xz!5„nr ,a1d r ,a~xz!…ar ,a~xz!,

V~xz!5$~nr ,na!PN2u f xz
„xnr

~xz!,xna
~xz!….0%, ~10!

wherear ,a(xz) is the real space lattice parameter parallel
xr ,a and d r ,a(xz) designates the required shift to adjust t
origin of the lattice at a specifiedxz ~see Fig. 3!. Since only
the values ofxr are relevant for the following argument, th
simple model even holds for the case of varying anisotrop
For calculations in reciprocal space, an effective recipro
lattice parametergQ52par

21Ah21k21 l 2 is used, whereh,
k, and l are the indices pertaining to the reflectionQ.

Here, a subtle problem arises when trying to rewrite t
phase sum in continuous coordinates: the origin of the co
dinate system in real space must be chosen and fixed fo
whole calculation while discrete lattice points are still use
The reason for this stems from the fact that the value ofxz in
Eq. ~10! not only influences the position of the Bragg cond
tion alongqr for the corresponding iso-strain area, but al
introduces a phase shift which depends on the alignmen
lattice points in subsequent lattice planes. This informat
will be lost when neglecting the quantization of the latti
and has to be added to the integrals as a phase func
f(xz) which is dependent on the origin of the discrete co
dinates. Althoughf(xz) is determined byd r(xz) alone, the
determination of bothd r(xz) andda(xz) allows us to extend
our result to all reflections parallel toP without going back
to Eq. ~10!.

If there exists a line of coherence parallel top along
which the lattice points of differentxz are stacked with zero
shifts, the origin forxr andxa is most conveniently chose
on this line, asd r ,a(xz) will then vanish for all values ofxz
andf(xz) will be unity throughout the whole crystal. For th
case of nanostructures which are axially symmetric with
spect top, a symmetry argument shows that the line of c
herence must coincide with the line of symmetry.

The sum in Eq.~10! may thus be approximated by a co
volution of the form factorF̃xz

(qr ,qa) of the iso-strain area

at xz with a delta function around the appropriate Bragg pe
at gQ(xz)2Q alongqr multiplied by the phase factorf(xz):

d

-

8-3
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I. KEGEL et al. PHYSICAL REVIEW B 63 035318
F~qr ,qa!5E dxzE F̃xz
~u,qa!f~xz!

3d~u2qr1„gQ~xz!2Q!…du

with

F̃xz
~qr ,qa!5E E f xz

~xr ,xa!eiqrxr1 iqaxa dxr dxa . ~11!

In order to simplify Eq.~11!, it has to be noted that for a
selected reciprocal coordinateqr

0 the integral overxz will
have relevant contributions only in a certain rangeDxz

around the positionxz
0 where the Bragg condition is fulfilled

Taking Eq. ~7! into account and assuminggQ(xz) to be a
monotonic function, the upper and lower limits forDxz are
given by

xz
65gQ

21S gQ~xz
0!6C

2p

R~xz
0!
D

'xz
06C

2p

R~xz
0!

dgQ
21

dqr
U

qr5gQ(x
z
0)

~12!

which gives an estimate forDxz :

FIG. 3. Determination of offsets in lattice origins for the discre
phase sum of two different iso-strain areas. For two subseq
layersn and n11 with different lattice parameters, the origins
the latticesO andO8 are subject to positional shiftsda andd r in the
angular and radial directionsxa andxr . The functional dependenc
of the radial shiftd r strongly influences the intensity distribution i
reciprocal space.
03531
Dxz'C
2p

R~xz
0!

S dgQ

dxz
D 21U

xz5x
z
0
. ~13!

If spatial resolution can be achieved as explained in S
II C, the range given byDxz will be a subset of the entire
range of the integration given by the size of the nan
structure.

Two approximations can now be made with respect to
relevant range of integration:

First, the shape function of the projected iso-strain a
can be considered constant inDxz which is strictly valid for

Dxz

1

R~xz
0!

dR

dxz
U

xz5x
z
0
!1. ~14!

In that case, the indexxz on F̃ in Eq. ~11! should be renamed
to xz

0 .
Second, the reciprocal lattice parameter can be appr

mated as a linear function throughoutDxz :

gQ~xz!5gQ~xz
0!1gQ8 ~xz

0!~xz2xz
0!. ~15!

In addition, we can further simplify the expression by r
stricting the analysis to structures which have a line of v
tical coherence by choosing the origin forxr and xa at the
line of symmetry. As discussed above, we can then
f(xz)51. The scattering amplitude for these approximatio
is obtained as

F~qr
0 ,qa!5E F̃x

z
0„qr2gQ~xz

0!1Q1gQ8 ~xz
0!xz ,qa…dxz .

~16!

If the relevant range of integrationDxz lies wholly within
the nanostructure, the bounds of thexz integration in Eq.~16!
may be extended to infinity whereby the constant offset
the first argument becomes arbitrary and can be omitted.
resulting simplified expression is written as

F~qr
0 ,qa!5„gQ8 ~xz

0!…21E F̃x
z
0~u,qa!du. ~17!

Rewriting the integral in Eq.~17! in terms of the real-
space shape functionf x

z
0 leads to

F~qr
0 ,qa!5„gQ8 ~xz

0!…21E f x
z
0~0,xa!eiqaxa dxa . ~18!

In summary, the angular scattering amplitude is given by
one-dimensionalFourier transform of the linear sectio
through the shape function perpendicular toQ andp. If the
sections are single contiguous intervals of lengthDQ(xz

0),
the remaining integral can be calculated as

F~qr
0 ,qa!5„gQ8 ~xz

0!…21
sin 1

2 qaDQ~xz
0!

1
2 qa

. ~19!

The scattering intensity is thus proportional to the inve
square of the reciprocal lattice parameter gradient and f
off as q22 alongqa . In summary, the lateral form factor o
iso-strain scattering alongqa is determined exclusively by

nt
8-4
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DETERMINATION OF STRAIN FIELDS AND . . . PHYSICAL REVIEW B63 035318
the section length of the two-dimensionalprojection of the
iso-strain area alongxa and is independent of the actu
shape of the projection.

III. HEIGHT RESOLUTION FOR NANOCRYSTALS
ABOVE A SURFACE

A. Four-process scattering

In scattering geometries of grazing incidence or e
where the angles of incidence (a i) and exit (a f) are compa-
rable to the critical angle of total external reflection (ac), the
Born approximation is no longer accurate and refraction
fects have to be taken into account.24 For a plain surface, the
structure factor of the sample is modulated by the produc
the transmission functions

t i , f~a i , f !5
2 sina i , f

sina i , f1Asin2 a i , f2sin2 ac

~20!

describing the changes in field strength as the beam en
and exits the sample through the surface. For strained n
structures on top of the surface, the optical part of the s
tering process additionally includes multiple scattering
tween the surface and the nanostructures above it.

Since strain-driven island formation in the Stransk
Krastanov growth mode leads to nanostructures which
coherent at the substrate interface but with continuously
laxing lattice parameter towards the top, the lattice param
values in the island are nowhere present in the subst
apart from very small distortions. By selecting a total m
mentum transfer which corresponds to a certain lattice
rameter in the island, one excludes Bragg scattering co
butions from the substrate. In first order perturbation theo
the surface acts like a mirror, doubling the incoming and
diffracted beam as shown in Fig. 4.

In the following calculations involving surface reflection
we fix the reciprocal coordinatesqr at an arbitraryqr

0 andqa

at 0 and consider the dependence of the structure facto
the angles of incidence (a i) and exit (a f) which was set
aside in Sec. II. Each scattering process has a different
tical momentum transferqz dependent on the angles of inc
dence and exit for the Bragg scattering process. Furtherm
each resulting structure factorFz(qz) has a different relative
amplitude which is given by the product of all reflectivitiesr
involved in the particular scattering sequence. The total s
tering amplitudeF total(a i ,a f) then results as

F total
z ~a i ,a f !5Fz~qz,1!1r ~a i !r ~a f !F

z~qz,2!

1r ~a i !F
z~qz,3!1r ~a f !F

z~qz,4!

with

qz,15k~a i1a f !,

qz,25k~2a i2a f !,
~21!

qz,35k~2a i1a f !,

qz,45k~a i2a f !,

where k is the length of the wave vector of the incomin
beam.
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B. Vertical structure factor in iso-strain scattering

Equation~21! is valid for arbitrary nanostructures above
plain surface. Including the phase factoreiqzxz for a finite qz
in Eq. ~16! leads to an expression which is more general th
Eq. ~17!:

F~qr
0 ,qa ,qz!5„gQ8 ~xz

0!…21eiqzxz
0

3E F̃x
z
0~u,qa!eiqz„gQ8 (xz

0)…21u du. ~22!

Now, the curvature of the iso-strain areas is neglected. T
is a valid approximation if the mean height is larger than
vertical extension of the iso-strain area. By writing out t
Fourier transforms Eq.~22! becomes

F~qr
0 ,qa ,qz!5„gQ8 ~xz

0!…21eiqzxz
0

3E f x
z
0S qz

gQ8 ~xz
0!

,xaD eiqaxa dxa . ~23!

Generalizing the notion of sections as in Eq.~19! to
DQ(xz

0 ,xa) so as to include an arbitrary angular distan

FIG. 4. Four scattering processes from first order perturba
theory. Part~a! shows a side view of the four processes whi
interfere coherently and give rise to a generalized optical func
for grazing incidence diffraction. The process labeled as~1! is the
direct Bragg reflection at the iso-strain area selected by the t
momentum transferQ. Process~2! employs two ordinary reflec-
tions from the surface before and after Bragg reflections at gra
angles ofa i and a f , respectively. The actual Bragg scattering
denoted by a circle. Process~3! and ~4! each involve one of those
substrate reflections. The three-dimensional beam paths are s
in part ~b!. The total momentum transferQ which is parallel to the
surface requires the diffracted beams to be deflected out of
plane of incidence.
8-5
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I. KEGEL et al. PHYSICAL REVIEW B 63 035318
from the line of vertical coherence, gives an expression
the structure factor for nonzeroqz :

F~qr
0 ,qa ,qz!5„gQ8 ~xz

0!…21eiqzxz
0

3
sin 1

2 qaDQ„xz
0 ,qz„gQ8 ~xz

0!…21)
1
2 qa

. ~24!

The qz dependence of the structure factor atqa50 is thus
determined by the weighted projection of the shape func
onto xa :

Fz~qz!5F~qr
0,0,qz!5„gQ8 ~xz

0!…21eiqzxz
0
DQS xz

0 ,
qz

gQ8 ~xz
0!
D .

~25!

Equation~25! shows thatFz(qz) will be zero above a maxi-
mum valueqz

0,max which is given by the maximum latera
extentxa

0,max and the reciprocal lattice parameter gradient
xz

0 :

qz
0,max5xa

0,maxgQ8 ~xz
0!. ~26!

Close to the lower and upper limit inxz of the nanostructure
where the iso-strain approximations fail,F(qz) will be
smoothed out, especially nearqz

0,max above which it will still
give nonzero values.

C. Generalized optical functions

Now we restrict the calculation to cases where the i
strain areas are sufficiently large and the weighted projec
of the shape function alongxa is varying slowly enough a
small qz to neglect the shape dependence ofF(qz) at angles
of incidence and exit which are comparable toac . For cross
sections with smooth outlines nearxr50 this leads to

Fz~qz!'eiqzxz
0

for qz.kac ~27!

and is strictly correct when

1

Fz~0!

dFz~qz!

dqz
U

qz50

kac5
1

DQ~xz
0,0!

dDQ~xz
0 ,qz!

dqz
U

qz50

kac

!1 ~28!

is fulfilled. If either the angle of incidence (a i) or the angle
of exit (a f) is larger thanac , the term withqz

0 becomes
dominant as the other three terms scale with the reflecti
of the substrate.

Inserting this approximation into Eq.~21! and factorizing

out eik(a i1a f )xz
0

the total amplitude is obtained as

F total
z ~a i ,a f !5Fz

„k~a i1a f !…e
ik(a i1a f )

3„11r ~a i !r ~a f !e
22ik(a i1a f )xz

0

1r ~a i !e
22ika i xz

0
1r ~a f !e

2ika f xz
0
…. ~29!
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By factorizing the parentheses in Eq.~29! one can now sepa
rate the dependencies ona i and a f which are found to be
identical. This relationship can thus be expressed as

F total
z ~a i ,a f !5Fz

„k~a i1a f !…t
fps~a i ,xz

0!t fps~a f ,xz
0!

with

t fps~a,z!511r ~a!e22ikaz. ~30!

The functional form of the total amplitudeF total
z is now

analogous to the case of a flat surface withFz derived in Sec.
III B assuming the role of the structure factor andt fps as a
generalized optical function in place of the transmiss
function, with t fps including the effects of the four-proces
scattering~fps!. Indeed, forz50 one finds that

t fps~a,0!511r ~a!5t~a! ~31!

is the same function as in Eq.~20!.
For a discussion of the scattered intensity we analyze

absolute square oft fps,

I fps~a,z!5ut fps~a,z!u25„11r ~a!e22iaz
…„11r * ~a!e2ikaz

…

511ur ~a!u212R„r ~a!…cos 2kaz

12I„r ~a!…sin 2kaz. ~32!

At this point it is convenient to continue with the reduce
coordinates

â5
a

ac
, ẑ5kacz. ~33!

Sincea is of the order ofac , which is typically a few mrad,
the reflectivity and the transmittivity are usually written a

r ~ â !5
â2Aâ221

â1Aâ221
,

~34!

t~ â !5
2â

â1Aâ221
,

not taking roughness effects into account. Due to the squ
root in Eq. ~34! there are two regimes forâ,1 and â.1
which have to be dealt with separately.

For â,1 in Eq.~34!, it is convenient to separate real an
imaginary parts by taking (2 i ) out of the square roots inr:

r ~ â !5~2â221!1 i ~2âA12â2!. ~35!

Evidently, ur (â)u251 and therefore

I fps~ â,ẑ!5212~2â221!cos 2â ẑ14âA12â2 sin 2â ẑ.
~36!

The angle of maximum intensityâmax,1 in Eq. ~36! is implic-
itly given by

âmax,15cosâmax,1ẑ. ~37!
8-6



ri
ac
h

l

-

rt

is

ed

c
a
e

d

u
g
l t
e
F
de

th
on
s
g

is
eir

e. If
e-
ks

e

as a

ed

r

nd

.

t

a

oth

ace.
ich

DETERMINATION OF STRAIN FIELDS AND . . . PHYSICAL REVIEW B63 035318
For the case of an iso-strain area where the Bragg scatte
only occurs at a certain height above the sample’s surf
one can measure the maximum and determine the heigz
from

z5
1

kamax,1
arccos

amax,1

ac
. ~38!

Beyond the critical angle (â.1), the generalized optica
function is a harmonic oscillation of period 2ẑ whose ampli-
tude decays asâ21 on top of a background which asymp
totically decays towards unity asâ22:

I fps~ â,ẑ!511
2â22122âAâ221

2â22112âAâ221

12
â2Aâ221

â2Aâ221
cos 2ẑâ. ~39!

The position of the first maximum of the oscillatory pa
amax,2 thus also gives the heightz of the iso-strain area,

z5
p

kamax,2
. ~40!

Figure 5 shows how the maximum of the classic transm
sion function~ẑ50! at â51 shifts to lowerâ for larger ẑ.
As the sharp transmission peak is smoothed and broaden
minimum starts to form atâ.1 moving towards lower
angles together with the first pronounced maximum. In fa
at â51, where a strong maximum is expected for tradition
grazing incidence diffraction, the absolute square of the g
eralized optical function

I fps~1,ẑ!52~11cos 2ẑ! ~41!

falls to zero forẑ5p/2.

IV. EXPERIMENTAL CONSIDERATIONS

In order to combine the analytical techniques describe
Secs. II and III, a grazing incidence and exit geometry25 is
most appropriate~Fig. 6!. In this case, the total momentum
transfer lies predominantly in the plane of the sample’s s
face. The directionp which can be thought of as the stackin
direction for the projected iso-strain areas is then paralle
the surface normal, i.e., the direction in which stress in h
eroepitaxial systems can be relieved by means of strain.
centro-symmetrical islands, this configuration has the ad
advantage that the line of symmetry is also parallel top and
can be taken as the origin for the lateral coordinatesxr and
xa . Furthermore, for angles of incidence and exit below
critical angle of total external reflection, the penetrati
depth of the evanescent x-ray beam below the surface i
the order of 5–10 nm,26 maximizing the relative scatterin
power of the dots with respect to the substrate.
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The applicability of the presented analytical methods
limited by the size and strain gradient of the islands and th
functional dependencies on the height above the surfac
the lateral sizeR becomes too small, the fundamental r
quirement of spatial distinction described in Sec. II A brea
down. Likewise, if the strain gradientg8 is too small, the
insufficient spreading in reciprocal space will prohibit th
differentiation of spatial regions. For a given heightH of the
island, these prerequisites can be commonly expressed
rule of thumb:

h5Rg8H@1. ~42!

FIG. 5. Generalized optical functions for various reduc

heightsẑ. The sharp maximum atẑ50 is seen to move to smalle

anglesâ for increasingẑ, at the same time assuming a broader a

symmetric shape. Nearẑ5p/2 the intensity is modulated to zero

The oscillatory behavior in the rangeâ.1 which becomes apparen

for ẑ.1 is due to the intuitive mirror effect of an iso-strain are
above a reflecting surface.

FIG. 6. Scattering geometry for grazing incidence and exit. B
the angle of incidencea i and the angle of exita f are close to the
critical angle of total external reflectionac . Diffraction takes place
on lattice planes which are perpendicular to the sample’s surf
The intensity is measured by a position sensitive detector wh
recordsa f spectra.
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The dimensionless system constanth thus quantifies the
goodness of the iso-strain approximation. For a typical s
tem of lateral size 50 nm, exhibiting a lattice parameter d
ference of 5% along a height of 10 nm and a measureme
a total momentum transfer of 4 Å21, h has a numerica
value of 100.

For too smallR, the system enters the size regime
atomic defects which has its own methods for the analyt
treatment of the scattering intensity.27 For too smallg8 at
largeR, the strain effects are best treated as corrections to
strainless case. While the values ofR andH are fixed for a
particular system, the numerical value ofg8 can be increased
by choosing a higher order reflection.

The determination of heights with Eq.~38! has different
accuracies for small and large values ofẑ. While the devia-
tion of the first pronounced maximum is substantial for v
ues ofẑ.0.2, for values smaller than that, a highly accura
knowledge of the critical angleac and a good resolution in
a f is required. Equation~40! on the other hand, shows
reciprocal behavior to Eq.~38! where the accuracy is hig
for small ẑ and low for largeẑ. However, the rapidly decay
ing amplitude of the oscillatory part in Eq.~39! and the de-
caying structure factor derived in Sec. III B are unfavora
for the experimental determination of this maximum.

Realistic iso-strain areas will not be flat but curved. A
though this fact does not constitute a problem for the i
strain scattering formalism presented in Sec. II D, the de
mination of height in Sec. III C is based on a single heighz
above the surface. If the vertical extent introduced by
curvature is small compared to the heightz of the iso-strain
area under consideration, it can be neglected. However,
for substantial curvatures, the shift of the first pronounc
maximum of the generalized optical function in Eq.~32! de-
scribes a mean weighted height of the iso-strain area.

All calculations in Secs. II and III neglect the variation
lateral sizeR and strain gradientg8 within the relevant range
of integrationDxz as defined in Eq.~13!. In general, these
assumptions may not be very well fulfilled, with values forh
up to 0.5 still describing realistic situations. These deviatio
from the idealizations leading to Eqs.~19! and~38! result in
an averaging over the parametersR andg8. Thus, even while
the scatterered intensity may not be closely traced by
theoretical curves, the main features will stand out and m
values ofR, g8, andz can be obtained.

V. RESULTS AND DISCUSSION

Samples were grown by molecular beam epitaxy~MBE!
on semi-insulating GaAs~001! substrates. First a 200 nm
GaAs buffer layer and AlAs/GaAs~2 nm/10 nm! short pe-
riod superlattice were grown to obtain a smooth growth s
face. This was followed by a 150 nm GaAs layer grown
600 °C. The sample temperature was then reduced to
InAs island growth temperature (450 °C to 530 °C) as de
mined using a pyrometer. Once at growth temperature,
InAs islands were formed using alternating beam epita
~ABE!. Island formation was monitored by reflection hig
energy electron diffraction~RHEED!. Immediately after for-
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mation of the InAs islands the substrate temperature
reduced. As shown by atomic force microscopy, the cho
growth conditions lead to rotationally symmetric quantu
dots, with a random lateral arrangement of dot positio
Dislocations are not expected for this range of growth
rameters.

All measurements have been performed at the TROI¨KA II
beamline at the European Synchrotron Radiation Fac
~ESRF! in Grenoble at a wavelength of 1.5 Å. Here, w
show results measured between the (220) reflections
GaAs and InAs, where three-dimensional mappings of rec
rocal space are performed. To this end, a position sens
detector ~see Fig. 7! recordsa f spectra in angular scan
along qa which are repeated at successive radial positi
qr . Each value ofqr corresponds to a different strain stat
Given that the iso-strain approximations presented in Se
are valid~see Sec. IV!, only the close vicinity of the selecte
iso-strain area contributes to the scattering intensity at
point. The scattering from this tiny portion of the nea
surface parts of the sample is detectable due to the diffrac
condition which effectively blinds out all other strain state
The electromagnetic field was additionally constrained to

FIG. 7. Four exemplary two-dimensional reciprocal space m
in the (qa ,a f) plane. The collection of 16 such maps constitute t
three-dimensional map of reciprocal space between the two re
tions of GaAs and InAs. The four maps display increasing value
qr which corresponds to a decreasing lattice parameter differe
between the selected iso-strain area and the substrate. The d
ence in percent is given in parentheses after the value ofqr . Clearly
visible features are the narrowing of the central maximum ata f

,ac with decreasing lattice parameter difference correspondin
an increase in the lateral size of the dot towards the substrate
the increase of thea f position of the global maximum which indi
cates lower heights for decreasing strain.
8-8
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near-surface region by choosing an incident angle of 0
well below the critical angle of total external reflection
0.28°.

Each angular scan of a three-dimensional mapping res
in a two-dimensional reciprocal space map~RSM!. The
analysis of the scattering intensity proceeds by evalua
three different aspects of the RSMs for each radial posi
qr . First, the angular variation of the scattering intens
integrated fora f up to ac @Fig. 8~a!# is fitted using Eq.~19!
yielding the lateral size of the iso-strain area. In the pres
case of axially symmetric islands, this corresponds to
radius of the circular projection of the iso-strain area. S
ond, the mean height of the iso-strain area above the sur
is determined from the position of the first pronounced ma
mum of the scattering intensity alonga f @Fig. 8~b!#. To im-
prove statistics, for each value ofa f the RSM is integrated
alongqa in the range of the central maximum. The numeric
value of the heightz is calculated using Eq.~38!. In order to
obtain an estimate for the curvature of the iso-strain are
the half-width of the central maximum alongqa is plotted as
a function ofa f @Fig. 8~c!#. The variation in curvature due t
the lateral shape as given by Eq.~24! typically accounts to

FIG. 8. Three-step analysis of the reciprocal space map sh
in Fig. 7~d!. Part ~a! shows the determination of lateral size usi
the sinx/x law of Eq.~19!. Allowing for a size distribution of a few
percent, the functional dependence is well followed. The heigh
the iso-strain area is determined in~b!. The position of the optical

maximum atâmax differs from 1 as would be expected for grazin
incidence diffraction on planar surfaces. The actual height is t
calculated from Eq.~38!. The curvature fit is displayed in~c!. Here,
the half-widths of the central maximum for different values ofa f

are fitted with a hollow sphere of variable radius of curvature.
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FIG. 9. Comparison of experimentala f spectra with corre-
sponding calculations of the generalized optical functions. T
height determined from the experimental spectra in~a! is used as
the single parameter for the calculation of the theoretical opt
functions in~b! which are drawn with the same vertical offsets as
~a!. The qualitative features are well reproduced, a detailed fu
tional conformity, however, cannot be expected due to the non
nar nature of the iso-strain areas, especially for smaller value
qr . The thick lines connect the positions of the first pronounc
maxima which are the basis of the height calculation as show
Fig. 8~b!. Further noticeable matching features are the dip in int
sity which develops at larger heights around the critical angle
the occurrence of a broad second maximum which moves tow
lower angles for larger heights.

FIG. 10. Radial intensity distributions alongqr for a strong
(400) and a weak (200) reflection. Instead ofqr , the corresponding
strain with respect to GaAs is chosen as the axis to make b
reflections comparable. The material composition of each iso-st
area is determined by the intensity ratio of both curves. The
that the (200) intensity is getting weaker with respect to the (4
curve for smaller lattice parameter differences to the subst
shows immediately that the Ga content is larger at the bottom of
islands.
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I. KEGEL et al. PHYSICAL REVIEW B 63 035318
less than 20% of the total change in half-width and has to
substracted. The remaining variation in half-width is co
pared to that of a hollow spherical segment with the b
radius taken from the first step. The radius of curvature
then varied to achieve an optimum correspondence with
experimental data. This last step is not generalizable for
bitrary shapes but depends on the actual shape model.

Figure 9 shows the experimentala f dependencies and th
calculated generalized optical functions using Eq.~32!. The
optical functions are seen to dominate the low part of thea f
spectrum while the intensities for larger values ofa f can
only be explained by including the vertical structure fac

FIG. 11. Measured radial scans alongqr for various values ofa i

showing an indirect influence of the generalized optical funct
defined in Eq.~32!. Both a i anda f are constant for each scan. A
the angle of incidencea i is decreased, the local maxima connect
by the thick line shift to smaller values ofqr . This behavior can be
explained as an interaction of the optical functions ofa i anda f .
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from Eq. ~24! together with corrections for size distributio
and curvature. However, the essential information—
height of the iso-strain area—is extracted from the first ma
mum alone, eliminating the need for complex fitting proc
dures.

Until recently, the picture of island formation in Stransk
Krastanov growth was restricted to the epitaxially deposi
phase forming islands without interdiffusion taking plac
Recent experiments,28–31 however, suggest that this pictur
may be too simple and growth parameters such as temp
ture, flux rates, and flux ratios32–34are of crucial importance
Information on the chemical composition within the islan
can be obtained by comparing the intensities from rad
scans alongqr for a pair of strong and weak reflections,35

such as (400) and (200) in the zinc-blende structure of In
and GaAs. The difference of the atomic numbers of Ga a
As is 2 while In has 16 more electrons than As. Since
scattering intensity for the (200) reflection in the zinc-blen
structure scales as the difference of the atomic form fact
which in turn are roughly proportional to the number of ele
trons, the InAs~200! reflection will be about 64 times stron
ger than the GaAs~200! reflection. This contrast can be use
to determine the concentrations of Ga and In in alloys. T
measured quantity is the intensity ratio from the (400) a
(200) reflections

p~qr !5UcIn~qr !F InAs
400 1cGa~qr !FGaAs

400

cIn~qr !F InAs
200 1cGa~qr !FGaAs

200 U2

, ~43!

wherecIn(qr) andcGa(qr) are the average concentrations
In and Ga for the particular iso-strain area selected byqr and
FGaAs/InAs

400/200 are the structure factors of InAs an GaAs at t
(400) and (200) reflections. Together with the constra
cIn(qr)1cGa(qr)51, Eq. ~43! can be resolved forcIn(qr).
The calculation is straightforward but due to the comp
nature of the structure factors the final result is a long

n

r-
in
es
for
ge
or

ile
n

e

FIG. 12. Results for lateral size, height, cu
vature, and composition as functions of stra
relative to the GaAs substrate for all four sampl
of the series discussed in the text. The curves
475 °C and 450 °C are incomplete due to lar
relaxed clusters which prohibit any evaluation f
larger strain states. Lateral size in~a! and height
in ~b! are seen to decrease with temperature wh
retaining similar functional dependencies o
strain. Also, radius of curvature in~c! and Ga
concentration in~d! show a monotonic decreas
with decreasing temperature.
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pression and will not be reproduced here. The experime
curves are displayed in Fig. 10.

The generalized optical function derived in Eq.~32! not
only influences the intensity distribution alonga f but
through an indirect mechanism also that alongqr . For one
fixed qr , i.e., one particular iso-strain area, the influence
a i anda f factorize. The analysis of thea f spectra as shown
in Fig. 9 is therefore independent of the particular value
a i . However, different values ofqr correspond to differen
heightsz. Hence, the optical function varies along the rad
direction. If the value ofa i is below the critical angle of the
substrateac , there may be a certain heightz and a corre-
sponding radial positionqr where the optical function has it
maximum exactly ata i . Around thatqr , the intensity will
be enhanced and may even lead to a local maximum. Su
maximum can be easily mistaken as a prevalent strain s
in the strain distribution, hence care has to be taken to sin
out the optical effects. The maxima in Fig. 10 thus carry lit
useful information and a successful measurement requ
extreme accuracy in the adjustment of the angles of in
dence for both reflections. Figure 11 shows the depende
of the functional form of the radial scan on the value ofa i .
As a i approachesac , the maximum induced by the optica
function of a i vanishes entirely.

The final result of the analysis is displayed in Fig.
where lateral sizeR, heightz, radius of curvatureRK , and
the concentration of GacGa are plotted as functions of lattic
parameter difference with respect to the GaAs substr
Since all of these functions are monotonic, a unique relati
ship can be established between any of theses quantitie
seen in atomic force microscopy measurements~AFM!, the
samples grown at 475 °C and 450 °C exhibit large rela
clumps in addition to the small coherent islands which
the principal objects of interest. Beyond a certain strain,
scattering intensity is dominated by the relaxed chunks

FIG. 13. Tomographic images for the samples grown at 530
~a! and 500 °C~b!. The color coding ranges from 0% lattice param
eter difference at the bottom of the islands to 7% strain with resp
to GaAs at the top. The Ga concentration is displayed as a func
of height on the right-hand side of each image. The dots grow
500 °C are markedly smaller than those grown at 530 °C and s
a reduced Ga concentration.
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the contribution of the coherent islands is no longer reso
able. The maximum strains reported in Fig. 12 were cho
at discontinuities of the height functions which in both cas
exhibit a small interval of negative slope beyond those v
ues ofqr .

The fact that the heights for the samples grown at 530
and 500 °C saturate at a strain which corresponds to the
tice parameter of InAs, shows that the tops of these isla
are covered with pure InAs. The lateral sizes decrease w
decreasing temperature and are compatible with AFM p
tures. As the most important result, the Ga concentration
the dots is increasing markedly with increasing growth te
perature. These findings confirm and add a spatially reso
strain mapping to previous results on interdiffusion whe
the In content is enriched36,28,37or reduced,29,38,39depending
on the composition of the epitaxially deposited material. A
though the mechanism of Ga incorporation into the island
still unclear, these measurements shed light on tempera
dependence and diffusion profiles.

Finally, the information contained in the four graphs
Fig. 12 can be used to draw real space tomographic ima
of the islands. Figure 13 show the strain and Ga distributi
for the samples grown at 530 °C and 500 °C where comp
data sets are available. It has to be noted that the image
not show iso-concentration areas but iso-strain areas
their mean Ga concentration displayed on their right-ha
side.

VI. ATOMISTIC CALCULATIONS OF STRAIN
RELAXATION

The results presented in Sec. V quantify the strong in
diffusion of GaAs and InAs during island formation. Ou
method is, however, notdirectly sensitive tolateral varia-
tions of the In content of the dots, rather giving a latera
averaged composition. To resolve this missing link in t
experimental method, we modelled strain distributions w
atomistic simulations employing classical many-body int
atomic potentials.40 These potentials have been construc
to reproduce well the first-order elastic constants in Ga
and InAs.41 Using a conjugate gradient method42 to find the

C

ct
n

at
w

FIG. 14. Atomistic strain calculation for the sample grown
530 °C with ‘‘inverted cone’’–In profile as suggested by rece
experiments~Ref. 38!. The color scale shows the strain in the@110#
direction with respect to the GaAs substrate. The apparent ‘‘res
tion element’’ comprises several atoms to achieve a smooth tra
tion of colors. The laterally averaged vertical Ga concentration
the same as that of the sample grown at 530 °C. These results a
contradiction to Fig. 13.
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FIG. 15. Atomistic calculations of strain fields compared to experimental images. Samples grown at 530 °C~a! and 500 °C~b! have been
simulated starting from an atomistic reconstruction of the islands with a lattice parameter of GaAs throughout the dot and shape an
Ga profile taken from Fig. 13. The lateral distribution of Ga has been assumed to be constant. Reasonable agreement is achie
quantitative range of strain with respect to the GaAs substrate and the curvature of the iso-strain areas which is not present in the is
of the material composition of the atomic model. The left-hand side of both pairs of images is the experimental result, while the rig
side shows the corresponding atomistic calculation.
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closest local potential energy minimum for a set of atom
the relaxed spatial configuration can be determined for m
elled nanostructures which are initially out of equilibrium
Usually, calculations of strain fields are compared to exp
mental results of diffuse scattering. Since the results p
sented in Sec. V lead to real-space structural models, a m
more direct self-consistency check between theory and
periment can be made: The experimentally determined o
shape together with the associated Ga concentration pro
for the samples grown at 500 °C and 530 °C are taken
input data for a rotationally symmetric atomistic constructi
of the island with all unit cells chosen to be of the size
GaAs. To be self-consistent, the strain field in the relax
island must then match the tomographic images of the
perimental evaluation.

Recent findings of Liuet al.38 show that for buried
In0.5Ga0.5As quantum dots grown at 510 °C, significant la
eral compositional inhomogeneity occurs, where most of
In is concentrated in an inverted cone with the tip at
bottom of the dot. If such an In distribution can be gener
ized to include other InxGa12xAs quantum dot systems an
even be explained as a property of free-standing islands
resulting strain states should be compatible with the res
of Sec. V. However, in our case of pure InAs deposition,
corresponding atomistic calculation which is shown in F
14 contradicts the experimental results in Fig. 13.

Assuming a laterally homogeneous Ga profile leads to
strain distributions shown in the right-hand side of Fig.
where the experimentally found strain fields are compa
with the outcome of the atomistic calculations for t
samples grown at 530 °C and 500 °C. The good qualita
agreement between each corresponding pair of images s
that the assumption of a laterally constant composition is
accordance with the experiment.

The jagged nature of the iso-strain areas together with
appearance of surface effects in the simulated strain fi
are due to the statistical nature of the dot composition. T
strain relaxation simulations are carried out with one parti
lar random configuration of In and Ga atoms having the c
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rect depth dependence in the concentrations. In the x
experiments, at least 105 such islands—all with different
configurations—contribute to the detected intensity. Ho
ever, the quantitative range of strain with respect to the Ga
substrate as well as the curvature of the iso-strain areas
both reproduced in the theoretical simulation. It has to
noted that the introduction of curvature is not an artifact
the initial assumptions, since the composition in the atom
tic model has planar iso-surfaces. For practical purposes
now available information on strain and composition c
thus be regarded as complete.

VII. CONCLUSION

In summary, we have established a new experimental
analytical approach for the structural analysis of semic
ductor quantum dots. The scattering formalism develope
Secs. II and III allows us to qualitatively understand the
tensity distribution in reciprocal space, as well as quant
tively extract geometrical information together with stra
and composition profiles from the experimental data. In S
IV we have presented experimental concerns with respec
the appropriate scattering geometry as well as the limits
our approximations. Section V showed that experimen
technique and analytical formalism can be successfully
plied to a typical InAs/GaAs quantum dot system. The e
perimental composition profiles indicate that Ga incorpo
tion into the islands is a heavily temperature depend
process which results in In concentrations as low as 50%
a temperature of 530 °C.
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