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Determination of strain fields and composition of self-organized quantum dots
using x-ray diffraction
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We give a detailed account of an x-ray diffraction technique which allows us to determine shape, strain
fields, and interdiffusion in semiconductor quantum dots grown in the Stranski—Krastanov mode. A scattering
theory for grazing incidence diffraction is derived for the case of highly strained, uncapped nanostructures. It
is shown that strain resolution can be achieved by “decomposing” the dots in their iso-strain areas. For a
selected iso-strain area, it is explained how lateral extent, height above the substrate and radius of curvature can
be determined from the intensity distribution around a surface Bragg reflection. The comparison of intensities
from strong and weak reflections reveals the mean material composition for each strain state. The combination
of all these strain resolved functional dependences yields tomographic images of the dots showing strain field
and material composition.
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[. INTRODUCTION dimensional object of a few hundred thousand atoms with
variable strain and material composition, these kinds of
A detailed understanding of the growth process of self-analyses are case studies, which are not highly generalizable.
assembled semiconductor quantum ddtsequires substan- The kaleidoscopic wealth of different manifestations of self-
tial knowledge about their internal structure. So far, externafssembled quantum dots calls for a more extensible and di-
shape and lateral arrangement have been accessible by sc&ft method for data evaluation.
ning microscopie$.Structural investigations with techniques  In this paper, we present a detailed account of an analyti-
like photoluminescence and Raman scattering are restricte&fl approach for the analysis of grazing incidence diffraction
to estimates of scalar physical quantities such as maxima o¥hich allows us to extract tomographic images of strain
averages of strain or material composition. For a measurdields and material composition in the dots. A different ap-
ment of these quantitiesy which delivers spatia| informa’[ionproaCh, which makes use of finite element calculations of the
some kind of resolution is needed. The resolution can eithegntire dot in order to simulate the scattering interiSity less
be in real space, using a direct imaging approach as in trangnalytic but more synthetic. This method has the advantage
mission electron microscop@'EM) orin reciproca| space as of being applicable tany vertical and lateral concentration
in an x-ray diffraction experimefiwvhere spatial frequencies Pprofile, but gives relatively little insight into the interdepen-
rather than spatial positions are probed. dence between real space structure and scattered intensity
The strengths of real space techniques lie in their broadlistribution. The approach presented here, on the other hand,
applicability and the direct nature of their results. RelativeProvides aphysical understandingf the relationship of
drawbacks are the technologically demanding sample prep&train-related phenomena in real and reciprocal space.
ration and the limited statistics. In an x-ray diffraction ex- The paper is organized as follows: In Sec. Il we discuss
periment, the signa| of a macroscopic portion of the Samp|e’§he concept of iso-strain scattering, in Sec. Il the analytical
surface is integrated in the detector. A serious difficulty isformalism for the data evaluation is presented. After experi-
the inaccessibility of the relative phase of the scattering promental considerations in Sec. IV we show results of a series
cess. Diffraction experiments thus usually require structuraPf INAs/GaAs dots grown at different temperatures in Sec. V.
models with only a few variable parameters which are opti-The lateral composition profile and atomistic calculations of
mized to fit the measured dat®?! For example, the deter- Strain relaxation are discussed in Sec. VI.
mination of the strain distribution within etched nanostruc-
tures using high resolution x-ray diffraction and grazing Il. DETERMINATION OF STRAIN AND SHAPE
incidence diffraction is discussed in Refs. 9-17. Similarly,
the lattice distortions in self-organized nanostructures have
been determined in Refs. 18—-22. In reciprocal space, the distance between two crystals is
Apart from being a demanding task for a three-equivalent to the reciprocal difference of their lattice param-

A. Spatial distinction
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ai particular Bragg reflectio®, we define the iso-strain areas
—>| as the iso-surfaces of the appropriate scalar companent
the strain fielde which is determined as
e=Q'eQ, 2)
< > A . : -
R where the hat orQ denotes a unit vector. This definition
compresses the full tensorial strain status of the nanocrystal
—»| | into a scalar field by neglecting shear strains. The cumulative
az effect of these shear strains on the scattering process can be
A \./ analyzedafter the definition of the iso-strain area by calcu-
= lating rotation matriceR(e) whose rotation angleg(e) and
g \ / rotation axes(e) are defined by
= \ 4
\( ~R o[ c6da
ISA™ €
i oSt (Ol
S da €X)IsA
\ U.SAEQ
ey
2ra; 27ca;”" momentum A A
transfer Q ()= w. 3)
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FIG. 1. lllustration of spatial distinction in hetero-epitaxial sys-
tems. Two regions may be distinguished if their difference in latticeThe average Bragg conditio@sa(e) are then located at
parameteil,—a; and sizeR are l:;ig enough 50 allow the resulting 1
Eﬁgﬁ;?(irf:procal space atrd; - and 2ra, - to be separated as Qusal €)= EB(E)Q%(:L_ IR(€)Q for e<1. (4)
eters. Therefore, two crystallites may be far apart in recipro- Considering only scattering vectors in the plaRewith
cal space, even though they are spatially adjacent. For a latormalp spanned by the incoming beaknandQ, the pro-
tice parameter difference of a few percent, the crystallitegection of each iso-strain area onfdo may be viewed as a
will yield two distinct peaks, whose half-widths can be usedtwo-dimensional crystal. From this point of view, each iso-
to analyze the size of each crystéig. 1). strain area has a homogeneous, nondistorted lattice which

In this simple example there is an unspecific spatiat  scatters around the projected Bragg point.

tinction: two parts of a larger sample can be studied indepen- For distortions which are anisotropic with respectQo
dently by tuning the scattering vector to the appropriate lat-

A i tiorProl i
tice parameters. As the lattice parameter difference betwe andQxp, the projected Bragg positior@is(e) are given
the two crystallites is reduced, the peaks merge until finally
no distinction is possible anymore. This corresponds to the QFé"Aj(e)~(1—e)[B( €)Q-p(R(€)Q-p)], (5)
optical analogue of distinguishing two stars with a telescope. )

In this picture, the relative lattice parameter differeda@a  defining a new matrbR"(€) such that

is equivalent to the smallest resolvable angletakes the oroj oroj

place of the wavelength of light and the common def Qisal€)=(1—€e)R"™(€)Q for e<1. (6)
the crystallites corresponds to the telescope’s aperture. For
mean lattice parameter the minimum percentual difference

in lattice parameter is given by

Igor isotropic distortions with respect @ and Qxp, the
shear components in the plafe will average out giving

n(e)=0xp. In this case,RP(e)=1 in Eq. (6) and the

Aa a projected Bragg points of the iso-strain areas are associated
al =C§, D with momentum transfers which are scalar multipleQof
min
whereC is a constant of the order of 1 which depends on the C. Spatial resolution

particular shape of the crystallites. Equatidn clarifies the Spatial lutionimolies the d S f the relati
reciprocal relationship between spatial distinction and spatial _F’a“a resolutionimplies t. € etermmaﬂon 0 the re a“‘"?
extent of the regions of equal lattice parameter position of the two crystallites. While there is no generic

' procedure to determine relative arrangements for the general

case, self-assembled quantum dots grown in the Stranski—
Krastanov (SK) mode are subject to boundary conditions
If a nanocrystal has a lattice parameter which varies conwhich reduce the three-dimensional positional difference to a
tinuously from one end to the other, it may be thought of asone-dimensional scalar value. In SK systems, the stress en-
being composed of a distribution of iso-strain arésBor a  ergy that builds up during the growth of mismatched hetero-

B. Iso-strain areas
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] X X direction perpendicular to it. The resulting third axis parallel
radius strainto | resolution to p is written asx,. Without restricting the general validity,
substrate we assume these projections to be rectangular meshes with
I Ag AR+ the primitive lattice vectors along, andx, . In this section,
m 7 7 / we only consider momentum transfers with zero components
h, AR IAh normal_ toP (q_z= 0) for_which the three-dimensi_onal shape
hy of the iso-strain areas is irrelevant. For the reciprocal coor-
/& & - . - dinatesq, and g, relative to the Bragg-poin® of the sub-
R(k) e(h) AR™(€) strate, the phase sum of all lattice points integrated over all

_ . _ . iso-strain areas stacked alopgs
FIG. 2. Schematic functional dependence of strain, height, and

resolution in islands grown in the SK mode. RadRiand strain to

substratee are required to calculate the local minimum height dif- F(d,,00) = f dx, 2 el (Q+ar)xn (X2 gitaXn, (X7)
ferenceAh™" to resolve two parts of the nanostructure. In the par- (ny ny)

ticular case shown in the figure, the heigh{sandh, are resolvable € Q(xy)

since their height differencAh exceeds the mean local minimum

value of AhT™", with

epitaxial layers is lowered through the formation of three- Xn (X)) =N, 2+ & a(X))a; a(Xy),

r,a

dimensional nanometer-sized islands, whose crystalline
structure remains coherent to the underlying substrate. This
coherency demands that the lattice parameter parallel to the (X)) ={(n;,na) e N?|f, (X, (X,),Xn (X,))>0}, (10
surface normal is relaxed from bottom to top, leading to the
decomposition into iso-strain areas as explained in Sec. Il Bvherea, 4(x,) is the real space lattice parameter parallel to
Changing the selected strain state by adjusting the total, , and &, ,(x,) designates the required shift to adjust the
momentum transfe@Q to a different QfsA(e) thus corre-  origin of the lattice at a specifiex, (see Fig. 3. Since only
sponds to a change hreightabove the sample’s surfadeig.  the values ofk, are relevant for the following argument, this
2). Assuming the height above the surfabée) to be a  simple model even holds for the case of varying anisotropies.
monotonic function of the strain staéeand rewriting Eq(1) For calculations in reciprocal space, an effective reciprocal

in reciprocal space coordinates as lattice parametegQ=27-rar’l\/h2+ k?+12 is used, wherd,
k, andl are the indices pertaining to the reflecti@n
Ae~C for e<1 7 Here, a subtle problem arises when trying to rewrite this
R(e)Q phase sum in continuous coordinates: the origin of the coor-

ives an expression for the minimum resolvable height dif_dinate system in real space must be chosen and fixed for the
?erence in tr?e crystallite: 9 whole calculation while discrete lattice points are still used.

The reason for this stems from the fact that the value, af

_ 20 Eg. (10) not only influences the position of the Bragg condi-
Ah”“”(e)wh’(e)AezCh’(e)R—. (8) tion alongq, for the corresponding iso-strain area, but also
(6)Q introduces a phase shift which depends on the alignment of

The above resolution element has two important featured@tticé points in subsequent lattice planes. This information
first, the proportionality tdh’ (€) is equivalent to an inverse Will b€ lost when neglecting the quantization of the lattice
proportionality to the strain gradieat(h), i.e., the faster the and has 'to pe added to the mtegre}ls as a phase function
lattice parameter changes with height, the better is the resdl-’_(xz) which is depende_nt on the_ongm of the discrete coor-
lution. Regarding the material properties of hetero-epitaxiaPinates: Althoughp(x;) is determined by,(x,) alone, the
systems, this corresponds to better resolutions for higher lafi€termination of botd; (x;) andda(x,) allows us to extend
tice mismatches. Second, the resolution element is inversefUr result to all reflections parallel 18 without going back
proportional to the lateral size of the iso-strain areas. In sum© Eq. (10). i i
mary, spatial resolution can be achieved for large enough 'f there exists a line of coherence parallel poalong
nanocrystals with high enough lattice mismatch with respecivhich the lattice points of different, are stacked with zero

to the substrate such that shifts, the origin forx, andx, is most conveniently chosen
on this line, ass, 5(x,) will then vanish for all values ok,
Ah(e)<H, (9 and ¢(x,) will be unity throughout the whole crystal. For the

case of nanostructures which are axially symmetric with re-
spect top, a symmetry argument shows that the line of co-
_ _ herence must coincide with the line of symmetry.

D. Iso-strain scattering The sum in Eq(10) may thus be approximated by a con-
Let us suppose the projections of the iso-strain areg® on volution of the form factorT:XZ(q, ,ga) Of the iso-strain area

have shape functiorfs (X ,xa) wherex; is the coordinate of  atx, with a delta function around the appropriate Bragg peak
the radial axis alon@ andx, is measured along the angular atgq(x,) —Q alongqg, multiplied by the phase facta(x,):

whereH is the total height of the nanocrystal.
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AX,~

2 (de)_l 13

C
R(x?) \ dx,

XZ=X(Z)
If spatial resolution can be achieved as explained in Sec.
Il C, the range given byAx, will be a subset of the entire
range of the integration given by the size of the nano-
structure.

Two approximations can now be made with respect to the
relevant range of integration:

First, the shape function of the projected iso-strain area
can be considered constantArx, which is strictly valid for

1 dR

X ———
ZR(X(Z)) dx, x,=x0

z

<1. (14)

In that case, the index, onF in Eq. (11) should be renamed
to x.

Second, the reciprocal lattice parameter can be approxi-
mated as a linear function throughahik, :

Jo(X,) =go(X2) +go(x) (X, — X2). (15

In addition, we can further simplify the expression by re-
stricting the analysis to structures which have a line of ver-

FIG. 3. Determination of offsets in lattice origins for the discrete t_iCEl| coherence by Ch00§ing the origin for and x, at the
phase sum of two different iso-strain areas. For two subsequedtne of symmetry. As discussed above, we can then set
layersn andn+1 with different lattice parameters, the origins of ¢(x,)=1. The scattering amplitude for these approximations

the latticesD andO’ are subject to positional shif, and§, in the
angular and radial directions, andx, . The functional dependence
of the radial shifts, strongly influences the intensity distribution in
reciprocal space.

F(qr,qa)=f dxzf F\,(U,0a) B(x,)

X 8(u—q,+(go(x,) —Q))du
with

Fo@a= | [ fx xaet o ax,. a1

In order to simplify Eq.(11), it has to be noted that for a
selected reciprocal coordinatg the integral overx, will
have relevant contributions only in a certain ranye,
around the positiong where the Bragg condition is fulfilled.
Taking Eq.(7) into account and assuming,(x,) to be a
monotonic function, the upper and lower limits fax, are
given by

X; =05 go(x¥)=C 2m
R D 0
27 dggt
%Xg 72—(;‘:](? (12)
R(xz) 9% 4, =9o0)

which gives an estimate fakx,:

is obtained as

F(a°,ga) = f F0(0r— 9o(X3) + Q+9g(X2) Xz, da)dX;
(16)
If the relevant range of integratiakix, lies wholly within
the nanostructure, the bounds of thantegration in Eq(16)
may be extended to infinity whereby the constant offset in

the first argument becomes arbitrary and can be omitted. The
resulting simplified expression is written as

F(q?,qa)=(g<’g(xg))’lf Fio(u,gdu.  (17)

Rewriting the integral in Eq(17) in terms of the real-
space shape functioi;g leads to

F(Q?,Qa)Z(%(Xg))flf f0(0x,) % adx,. (18)

In summary, the angular scattering amplitude is given by the
one-dimensionalFourier transform of the linear section
through the shape function perpendiculaiQandp. If the
sections are single contiguous intervals of Ienma(xg),

the remaining integral can be calculated as

sinqg.Do(x%)
F(q?,qa)=(g£g(><2))‘1mf—Q(z. (19
30a
The scattering intensity is thus proportional to the inverse
square of the reciprocal lattice parameter gradient and falls
off asq~2 alongq,. In summary, the lateral form factor of
iso-strain scattering along, is determined exclusively by
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the section length of the two-dimensionaiojection of the
iso-strain area along, and is independent of the actual
shape of the projection.

IIl. HEIGHT RESOLUTION FOR NANOCRYSTALS
ABOVE A SURFACE

A. Four-process scattering

In scattering geometries of grazing incidence or exit
where the angles of incidence;) and exit (@) are compa-
rable to the critical angle of total external reflectian.), the
Born approximation is no longer accurate and refraction ef-
fects have to be taken into accodf€or a plain surface, the
structure factor of the sample is modulated by the product of
the transmission functions

2 Sinai‘f

tirlai,) sine; ¢+ Vsin’ a; ;—Sirf a,
describing the changes in field strength as the beam enters
and exits the sample through the surface. For strained nano-
structures on top of the surface, the optical part of the scat-
tering process additionally includes multiple scattering be- FIG. 4. Four scattering processes from first order perturbation
tween the surface and the nanostructures above it. theory. Part(a) shows a side view of the four processes which

Since strain-driven island formation in the Stranski—interfere coherently and give rise to a generalized optical function
Krastanov growth mode leads to nanostructures which aror grazing incidence diffraction. The process labelediss the
coherent at the substrate interface but with continuously redirect Bragg reflection at the iso-strain area selected by the total
laxing lattice parameter towards the top, the lattice parametépomentum transfeQ. Process(2) employs two ordinary reflec-
values in the island are nowhere present in the substratéons from the surface before and after Bragg reflections at grazing

apart from very small distortions. By selecting a total mo-2ngles ofa; and ay, respectively. The actual Bragg scattering is

mentum transfer which corresponds to a certain lattice pad€noted by a circle. Proce¢3) and (4) each involve one of those

rameter in the island, one excludes Bragg scattering contrﬁUbStrate reflections. The three—dlmensmngl bgam paths are shown

butions from the substrate. In first order perturbation theory'" Pt (). The total momentum transf@ which is parallel to the

the surface acts like a mirror, doubling the incoming and thesurface requires the diffracted beams to be deflected out of the

diffracted beam as shown in Fig. 4. blane of incidence.
In the following calculations involving surface reflections

we fix the reciprocal coordinateg at an arbitrar)q? andq,

at 0 and consider the dependence of the structure factor on Equation(21) is valid for arbitrary nanostructures above a

the angles of incidenceaf) and exit ;) which was set Pplain surface. Including the phase face=- for a finite g,

aside in Sec. II. Each scattering process has a different vetd Ed. (16) leads to an expression which is more general than

tical momentum transfey, dependent on the angles of inci- EQ. 17

dence and exit for the Bragg scattering process. Furthermore,

each resulting structure factf(q,) has a different relative F(q%,0,4.9,) = (gég(XS))fleiqzxg

amplitude which is given by the product of all reflectivities

involved in the particular scattering sequence. The total scat-

tering amplituder o @ , @) then results as

(20

B. Vertical structure factor in iso-strain scattering

X f E 0(U,q,) €900 gy, (22)

z —
Flowl @i ar)=F4(0,1) +1(a)r(a)F(a,,) Now, the curvature of the iso-strain areas is neglected. This
+1( o) F(Q0) + 1 () FA(Gy0) is a.vahd approximation |f. the mean height is Iarger than the
. vertical extension of the iso-strain area. By writing out the
with Fourier transforms Eq22) becomes

0z1=k(aj+ay),

= O, , — rXO —1eiqz><(zJ
Upo=k(— a—ay), (dr ,9a,d2) = (9g(X3))

21 .
0,3=K(—aj+ay), @) Xj fxo(,q—zo,xa) g'%9%%adx,. (23
z gQ(Xz)
0z4=K(aj—ay),
wherek is the length of the wave vector of the incoming  Generalizing the notion of sections as in E49) to
beam. DQ(xg,xa) so as to include an arbitrary angular distance
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from the line of vertical coherence, gives an expression foBy factorizing the parentheses in E§9) one can now sepa-
the structure factor for nonzeny, : rate the dependencies an and «; which are found to be
. identical. This relationship can thus be expressed as

F(07,0a,0,) = (96(X3)) ~te'i%

' a z Q%2 thota|(afi ,af)=FZ(k(ai+0zf))tfp5(ai ,X(Z))tfps(af 'X(Z))
sin30aD (X7 ,d.(go(X) 1) i
y zanlez (24 with
20a

tP(a,z)=1+r(a)e 2k, (30)
The q, dependence of the structure factorggt=0 is thus
determined by the weighted projection of the shape functio
onto X, :

The functional form of the total amplitud€f,, is now
'?:malogous to the case of a flat surface VAftderived in Sec.

Il B assuming the role of the structure factor arléf as a
generalized optical function in place of the transmission
o U function, with t™s including the effects of the four-process
Z'gé(xg) ' scattering(fps). Indeed, forz=0 one finds that

(29)

X

.0
F4(0,)=F(a7,00,) = (96(x9))*e'92D

P @,0)=1+r(a)=t(a) (3D
Equation(25) shows thaf?%(q,) will be zero above a maxi-

mum valueq?™ which is given by the maximum lateral Is the same function as in ER0).
u %ﬁfﬁz ch 1S given by the maximum fatera For a discussion of the scattered intensity we analyze the

e(>)<tentxa and the reciprocal lattice parameter gradient alypsolute square af°s
X5

. . . 1P, 2) = [tPY(@,2)|*= L+ (a)e” 2 *9)(L+1* (a)e? )
A= X2 " o(X). (26)

=1+|r(a)|?>+2%R(r (a))cos Xaz
Close to the lower and upper limit i, of the nanostructure - .
where the iso-strain approximations fai(q,) will be +23(r(a))sin kaz. (32
smoothed out, especially neqag'maxabove which it will still At this point it is convenient to continue with the reduced
give nonzero values. coordinates

C. Generalized optical functions o= —. 7= Kaz. (33

Now we restrict the calculation to cases where the iso- e
strain areas are sufficiently large and the weighted projectio®ince« is of the order ofe., which is typically a few mrad,
of the shape function alongy, is varying slowly enough at the reflectivity and the transmittivity are usually written as

small g, to neglect the shape dependencd-0f,) at angles

of incidence and exit which are comparablentg. For cross . a—Va*-1
sections with smooth outlines negr=_0 this leads to Na)= ———,
at+Va?—1

F(q,)~e"% for q,=Kac (27) - (34

. [e%
and is strictly correct when t(a)= —F——,
a+Va’—1
0
1 dF%(q,) Ko — 1 dDq(x *qZ)’ ka not taking roughness effects into account. Due to the square
F70) da; |, * Do(x20 dg ’qzzo ¢ root in Eq.(34) there are two regimes fox<1 anda>1
which have to be dealt with separately.
<1 (28) For a<1 in Eq.(34), it is convenient to separate real and

is fulfiled. If either the angle of incidencex() or the angle Madinary parts by taking-¢i) out of the square roots in

of exit («f) is larger thana,, the term withqg becomes A oma N

dominant as the other three terms scale with the reflectivity M@)=(2a"=1)+i(2avl=a®. (35

of the substrate. Evidently, |r Q)
Inserting this approximation into E¢21) and factorizing ’

. 0 n A~ ~ ~~ o~ ~ = o~
out e'k(@iTe)X; the total amplitude is obtained as 1PS( &, 2) = 2+ 2(2a%— 1)cos 2az+ 4a\1— a? sin 2a2.
(36)

|2=1 and therefore

FZ ol @i aq)=F4Kk(a;+ ay))ek@tan) A
el o . The angle of maximum intensity™*1in Eq. (36) is implic-
X (1+r(a;)r(as)e 2k@tanx, itly given by
+r (e 2Ke 1 (ap)e?kerd). (29) M= cogqM g, (37)
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For the case of an iso-strain area where the Bragg scattering 0 1 2 3 4
only occurs at a certain height above the sample’s surface,
one can measure the maximum and determine the height
from §
3 "
1 amax.l E /Z\_ 0.0
z= arccos . (39 = z2=0.2
kamaxt ac 3 2=04
& L =06
Beyond the critical angled>1), the generalized optical 9 r.
. . . L .= . N \ z=0.8
function is a harmonic oscillation of periodz2vhose ampli- = 5-1.0
-~ 3 = :
tude decays ag ! on top of a background which asymp- g " 512
totically decays towards unity as™%: O 1 5=14
A
. . [ ] 5=16
o~ 20°—1-2aVa?—1 ]
I™(a,z)=1+
20°—1+2aVa?-1 0 1 2 3 4
a =a,/a,
- "2
a—Va —1 o
+2——————=co0s Za. (39 FIG. 5. Generalized optical functions for various reduced
a—Va?—1 heightsz. The sharp maximum a&=0 is seen to move to smaller

anglesa for increasingg, at the same time assuming a broader and
symmetric shape. Near= /2 the intensity is modulated to zero.
The oscillatory behavior in the range>1 which becomes apparent

T for z>1 is due to the intuitive mirror effect of an iso-strain area

z= kTaxZ (40) above a reflecting surface.
amax,

The position of the first maximum of the oscillatory part
a™>2thus also gives the heiglatof the iso-strain area,

) ) _ . The applicability of the presented analytical methods is
Figure 5 shows how the maximum of the classic transmisimjted by the size and strain gradient of the islands and their
sion function(z=0) at =1 shifts to lowera for largerz.  functional dependencies on the height above the surface. If
As the sharp transmission peak is smoothed and broadeneditge lateral sizeR becomes too small, the fundamental re-
minimum starts to form atx>1 moving towards lower quirement of spatial distinction described in Sec. Il A breaks
angles together with the first pronounced maximum. In factdown. Likewise, if the strain gradierg’ is too small, the

at a=1, where a strong maximum is expected for traditiona/insufficient spreading in reciprocal space will prohibit the

grazing incidence diffraction, the absolute square of the gerdifferentiation of spatial regions. For a given heighof the
eralized optical function island, these prerequisites can be commonly expressed as a

rule of thumb:
17°5(1,2) = 2(1+ cos ) (41) 7=Rg'H>1. (42)

falls to zero forz= /2.

IV. EXPERIMENTAL CONSIDERATIONS

In order to combine the analytical techniques described in
Secs. Il and Ill, a grazing incidence and exit geontétiy
most appropriatéFig. 6). In this case, the total momentum
transfer lies predominantly in the plane of the sample’s sur-
face. The directiop which can be thought of as the stacking
direction for the projected iso-strain areas is then parallel to
the surface normal, i.e., the direction in which stress in het-
eroepitaxial systems can be relieved by means of strain. For
centro-symmetrical islands, this configuration has the added
advantage that the line of symmetry is also parallgb tand

can be taken as the origin for the lateral coordinateand FIG. 6. Scattering geometry for grazing incidence and exit. Both
Xa . Furthermore, for angles of incidence and exit below thene angle of incidence; and the angle of exit; are close to the
critical angle of total external reflection, the penetrationcritical angle of total external reflectiom, . Diffraction takes place
depth of the evanescent x-ray beam below the surface is @ lattice planes which are perpendicular to the sample’s surface.
the order of 5—-10 nriS maximizing the relative scattering The intensity is measured by a position sensitive detector which
power of the dots with respect to the substrate. recordsa; spectra.
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goodness of the iso-strain approximation. For a typical sys- ===
tem of lateral size 50 nm, exhibiting a lattice parameter dif-
ference of 5% along a height of 10 nm and a measurement &
a total momentum transfer of 4 &, # has a numerical
value of 100.

For too smallR, the system enters the size regime of
atomic defects which has its own methods for the analytical
treatment of the scattering intensftyFor too smallg’ at

The dimensionless system constaptthus quantifies the a) | ¢, =—2.1nm"(6.6%) b) | g.=-17 nm’ (5.4%)

The determination of heights with E€38) has different

accuracies for small and large valueszofWhile the devia-
tion of the first pronounced maximum is substantial for val-

ues ofz>0.2, for values smaller than that, a highly accurate
knowledge of the critical angle, and a good resolution in
as is required. Equatiori40) on the other hand, shows a
reciprocal behavior to Eq.38) where the accuracy is high

for smallz and low for largez. However, the rapidly decay- - J == i
ing amplitude of the oscillatory part in E¢B9) and the de- -0 05 00 I -l0 -05 00 05 10
caying structure factor derived in Sec. Ill B are unfavorable q,1n nm q,1mnm

for the experimental determination of this maximum.

Realistic iso-strain areas will not be flat but curved. Al-  FIG. 7. Four exemplary two-dimensional reciprocal space maps
though this fact does not constitute a problem for the isoin the (qa,af).plane. The coIIeption of 16 such maps constitute the
strain scattering formalism presented in Sec. Il D, the deterthree-dimensional map of reciprocal space between the two reflec-
mination of height in Sec. Il C is based on a single heght tions c_)f GaAs and InAs. The four maps dlsplay increasing vglues of
above the surface. If the vertical extent introduced by thelr which corresponds _to a de_creasmg lattice parameter dlffere_nce
curvature is small compared to the heighaf the iso-strain betwgen the se!ectgd iso-strain area and the substrate. The differ-
area under consideration, it can be neglected. However, al§hice In percentis given in parer?theses after the valqe.qtlearly
for substantial curvatures, the shift of the first pronouncedﬂSlble features are the narrowing of the central maximunaat

. . . S a. with decreasing lattice parameter difference corresponding to
ma?(lmum of the ge_nerallzed.optlcal funptlon |n.E£32) de- an increase in the lateral size of the dot towards the substrate and
Scn,::lega?cmsggnvsv?r;ggteeci hﬁ'gr:‘(tj (I)Ifl tﬁ:gzz?:;igzl?/aa:ir:t?(.)n of the increase of the; position of the global maximum which indi-
lateral sizeR and strain gradierg’ within the relevant range cates lower heights for decreasing strain.
of integrationAx, as defined in Eq(13). In general, these
assumptions may not be very well fulfilled, with values #pr
up to 0.5 still describing realistic situations. These deviation
from the idealizations leading to Eq4.9) and(38) result in

largeR, the strain effects are best treated as corrections to the ¢ : J . 0 ? :
strainless case. While the valuesRfandH are fixed for a -0 -05 00 05 10 -1.0 05 00 05 10
particular system, the numerical valuegsfcan be increased 4, ILnm 4 100

by choosing a higher order reflection. ¢) |4.=-13mm"(4.1%) | q) | ¢.=-0.9 nm™ (2.9%)

10°

4

o,/a,

mation of the InAs islands the substrate temperature was
geduced. As shown by atomic force microscopy, the chosen
growth conditions lead to rotationally symmetric quantum

dots, with a random lateral arrangement of dot positions.

an averaging over the paramet&randg’. Thus, even while islocations are not expected for this range of growth pa-
the scatterered intensity may not be closely traced by th% meters P 9 9 P

theoretical curves, the main features will stand out and mean All measurements have been performed at the Al

values ofR, g', andz can be obtained. beamline at the European Synchrotron Radiation Facility
(ESRP in Grenoble at a wavelength of 1.5 A. Here, we
show results measured between the (220) reflections of
GaAs and InAs, where three-dimensional mappings of recip-
Samples were grown by molecular beam epit@BE) rocal space are performed. To this end, a position sensitive
on semi-insulating GaA$001) substrates. First a 200 nm detector(see Fig. 7 records a; spectra in angular scans
GaAs buffer layer and AlAs/GaA& nm/10 nm short pe- along g, which are repeated at successive radial positions
riod superlattice were grown to obtain a smooth growth surq,. Each value ofy, corresponds to a different strain state.
face. This was followed by a 150 nm GaAs layer grown atGiven that the iso-strain approximations presented in Sec. Il
600°C. The sample temperature was then reduced to there valid(see Sec. IV, only the close vicinity of the selected
InAs island growth temperature (450 °C to 530 °C) as deteriso-strain area contributes to the scattering intensity at this
mined using a pyrometer. Once at growth temperature, thpoint. The scattering from this tiny portion of the near-
InAs islands were formed using alternating beam epitaxysurface parts of the sample is detectable due to the diffraction
(ABE). Island formation was monitored by reflection high condition which effectively blinds out all other strain states.
energy electron diffractioRHEED). Immediately after for- The electromagnetic field was additionally constrained to the

V. RESULTS AND DISCUSSION
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a 5
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2 -1.87 v
g 200
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226/ \Pemd | W\
05 P 5 239/
) /o, 0 1 0 1 2
8 o experimental observations af /(Xc af /(Xc
'E 0141 —fit . . .
E FIG. 9. Comparison of experimental; spectra with corre-
E sponding calculations of the generalized optical functions. The
e - height determined from the experimental spectrdainis used as
z 0131 ° the single parameter for the calculation of the theoretical optical
= T functions in(b) which are drawn with the same vertical offsets as in
0 1 2 3 (a). The qualitative features are well reproduced, a detailed func-
af/o'c tional conformity, however, cannot be expected due to the nonpla-

nar nature of the iso-strain areas, especially for smaller values of
FIG. 8. Three-step analysis of the reciprocal space map showg . The thick lines connect the positions of the first pronounced

in Fig. 7(d). Part(a) shows the determination of lateral size Using maxima which are the basis of the height calculation as shown in
the sin/x law of Eq.(19). Allowing for a size distribution of a few  Fig. gb). Further noticeable matching features are the dip in inten-
percent, the functional dependence is well followed. The height Ofsity which develops at larger heights around the critical angle and
the iso-strain area is determined (in). The position of the optical  the occurrence of a broad second maximum which moves towards
maximum ata™2 differs from 1 as would be expected for grazing lower angles for larger heights.
incidence diffraction on planar surfaces. The actual height is then
calculated from Eq(38). The curvature fit is displayed ifc). Here,
the half-widths of the central maximum for different valuesagf
are fitted with a hollow sphere of variable radius of curvature.

near-surface region by choosing an incident angle of 0.2°,
well below the critical angle of total external reflection at

0.28°. 10.00
Each angular scan of a three-dimensional mapping results =
in a two-dimensional reciprocal space m@RSM). The § 1.00
analysis of the scattering intensity proceeds by evaluating 8 (400)
three different aspects of the RSMs for each radial position = /
g,. First, the angular variation of the scattering intensity = 0.10 /
integrated fora; up to a. [Fig. 8@)] is fitted using Eq(19) 8
ialdi i i i = (200
yielding the lateral size of the iso-strain area. In the present nAs
case of axially symmetric islands, this corresponds to the 0.01
radius of the circular projection of the iso-strain area. Sec- % 6 4 2 0
ond, the mean height of the iso-strain area above the surface strain with respect to GaAs in %

is determined from the position of the first pronounced maxi-

mum of th_e _scattenng intensity alorg [Fig. 8(.b)]' Toim- (400) and a weak (200) reflection. Insteadjpf the corresponding
prove statistics, for each value of the RSMis integrated  gyain with respect to GaAs is chosen as the axis to make both
alongd, in the range of the central maximum. The numerical gfiections comparable. The material composition of each iso-strain
value of the height is calculated using Eq38). In order to  4req is determined by the intensity ratio of both curves. The fact
obtain an estimate for the curvature of the iso-strain areaspat the (200) intensity is getting weaker with respect to the (400)
the half-width of the central maximum alomng is plotted as  curve for smaller lattice parameter differences to the substrate
a function ofay [Fig. 8(c)]. The variation in curvature due to shows immediately that the Ga content is larger at the bottom of the
the lateral shape as given by E@4) typically accounts to islands.

FIG. 10. Radial intensity distributions along, for a strong
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Q from Eq. (24) together with corrections for size distribution
and curvature. However, the essential information—the
height of the iso-strain area—is extracted from the first maxi-
mum alone, eliminating the need for complex fitting proce-
dures.

Until recently, the picture of island formation in Stranski—
Krastanov growth was restricted to the epitaxially deposited
phase forming islands without interdiffusion taking place.
Recent experiment§; 3! however, suggest that this picture
may be too simple and growth parameters such as tempera-
ture, flux rates, and flux ratids>*are of crucial importance.
Information on the chemical composition within the islands
can be obtained by comparing the intensities from radial
scans alongy, for a pair of strong and weak reflectiofrs,
such as (400) and (200) in the zinc-blende structure of InAs
and GaAs. The difference of the atomic numbers of Ga and
As is 2 while In has 16 more electrons than As. Since the

q,in nm’ scattering intensity for the (200) reflection in the zinc-blende
structure scales as the difference of the atomic form factors,

FIG. 11. Measured radial scans alaggfor various values o&  hich in turn are roughly proportional to the number of elec-
showing an indirect influence of the generalized optical functiontrons, the InAS200) reflection will be about 64 times stron-
defined in Eq(32). Both «; and «; are constant for each scan. As ger than the GaA&00) reflection. This contrast can be used
the angle of incidence; is decreased, the local maxima connectedt0 determine the concentrations of Ga and In in alloys. The

by the thick line shift to smaller values of . This behavior canbe o 4q\rad quantity is the intensity ratio from the (400) and
explained as an interaction of the optical functionsxpfand as . (200) reflections

107

108

10°

104

Intensity [arb. units]

103

102

less than 20% of the total change in half-width and has to be

substracted. The remaining variation in half-width is com- Cin(Qr) Fios+ CGa(Qr)F?;%MZ
pared to that of a hollow spherical segment with the base p(gy) = oG P22 oy g FE0 (43
radius taken from the first step. The radius of curvature is i dr)Finas ™ Cea Or)F Gaa

then varied to achieve an optimum correspondence with the

experimental data. This last step is not generalizable for awherec,(q,) andcg,(q,) are the average concentrations of

bitrary shapes but depends on the actual shape model.  In and Ga for the particular iso-strain area selectedbgnd
Figure 9 shows the experimentaj dependencies and the F&uz200,  are the structure factors of InAs an GaAs at the

calculated generalized optical functions using B8§). The  (400) and (200) reflections. Together with the constraint

optical functions are seen to dominate the low part ofdhe c¢,,(q,) +cg«a;) =1, Eq. (43) can be resolved foc,(q,).

spectrum while the intensities for larger values @f can  The calculation is straightforward but due to the complex

only be explained by including the vertical structure factornature of the structure factors the final result is a long ex-

a) 15 b) 10
= 530°C
; 500°C g 8
= 10 a1°cl 8§ 6
’-é %v//“o ¢ %‘b 4 FIG. 12. Results for lateral size, height, cur-
‘_; 5 3 vature, and composition as functions of strain
g 2 relative to the GaAs substrate for all four samples
~ 0 0 of the series discussed in the text. The curves for
7 6 5 4 3 -2 -1 0 7 6 -5 4 3 -2 -1 0 475°C and 450°C are incomplete due to large
strain with respect to GaAs in % strain with respect to GaAs in % relaxed clusters which prohibit any evaluation for
c) d) larger strain states. Lateral size (@ and height
. 30 s530°C] e 100 in (b) are seen to decrease with temperature while
2 4 T 80 retaining similar functional dependencies on
g g 30 S00°C g 60 strain. Also, radius of curvature ifc) and Ga
o g g concentration in(d) show a monotonic decrease
; w20 g 40 £ 475 C with decreasing temperature.
%10 g 20 +450°C
<
0 © o
7 6 -5 4 3 2 -1 0 7 6 -5 -4 3 2 -1 0
strain with respect to GaAs in % strain with respect to GaAs in %

035318-10



DETERMINATION OF STRAIN FIELDS AND . .. PHYSICAL REVIEW B63 035318

a)14 m— = ma 3 B - 0 o-o ;
3 F 0, 0, 0, 1
] | ————————— 120 0% 1% 2% 3% 4% 5% 6% 7% -
10F i 3 g 10+ E
g F E 5 F ]
5 6F E £ 6F ' E
5 L E ; A . 1
= 4 ] _g F
2 E P — _ 2 ,
0 06
-15 -10 -5 0 5 10 0% 50%  100% -
b) nm Ga concentration
O — ™ ] o . ,
g 8P 0% 1% 2% 4% % 6% T% FIG. 14. Atomistic strain calculation for the sample grown at
8 6 2 ;(')'OQC 3 530 °C with “inverted cone”—In profile as suggested by recent
.'% ki E experimentgRef. 38. The color scale shows the strain in {i.0]
= (2)._‘ E direction with respect to the GaAs substrate. The apparent “resolu-
-5 410 -5 0 5 10 0%  50% 100% tion element” comprises several atoms to achieve a smooth transi-
am Gi CoficeTitration tion of colors. The laterally averaged vertical Ga concentration is

. the same as that of the sample grown at 530 °C. These results are in
FIG. 13. Tomographic images for the samples grown at 530 °C

tontradiction to Fig. 13.
(a) and 500 °Qb). The color coding ranges from 0% lattice param- 9

fteéggferir;ﬁe ?t theTEOtg)m of the LSli.ndS.to d7.%|3tra:jn with erSpt‘_eclIhe contribution of the coherent islands is no longer resolv-
0 »ans athe fop. 1ne La concentration 1s dispiayed as a WnClioRy o " the maximum strains reported in Fig. 12 were chosen
of height on the right-hand side of each image. The dots grown af, . A ; . o
. o at discontinuities of the height functions which in both cases
500 °C are markedly smaller than those grown at 530 °C and show hibit Il int | of fi | b d th |
a reduced Ga concentration. exhibit a small interval of negative slope beyond those val-
ues ofq;, .
The fact that the heights for the samples grown at 530°C
d 500 °C saturate at a strain which corresponds to the lat-
tice parameter of InAs, shows that the tops of these islands
are covered with pure InAs. The lateral sizes decrease with
decreasing temperature and are compatible with AFM pic-
ftures. As the most important result, the Ga concentration in
the dots is increasing markedly with increasing growth tem-
1perature. These findings confirm and add a spatially resolved
S

train mapping to previous results on interdiffusion where

pression and will not be reproduced here. The experimenta‘,:{n
curves are displayed in Fig. 10.

The generalized optical function derived in E§2) not
only influences the intensity distribution along; but
through an indirect mechanism also that alapg For one
fixed q, , i.e., one particular iso-strain area, the influence o
a; and oy factorize. The analysis of the; spectra as shown
in Fig. 9 is therefore independent of the particular value o
a; . However, different values af, correspond to different the In content is enrich&823%7or reduced®3#*°depending

E.E'Igh.tSZ. Il-;eﬂce, tlhe OF;'C.&I tf)uTCt'o':] varies elmlonglthefr?]dlalon the composition of the epitaxially deposited material. Al-
irection. If the value ot is below the critical angle of the 41 the mechanism of Ga incorporation into the islands is

S“bs“?‘te“c' 'there may be a certain h.eightand.a COMe- il unclear, these measurements shed light on temperature
sponding radial positioq, where the optical function has its dependence and diffusion profiles.

maximum exactly ak; . Around thatg, , the intensity will Finally, the information contained in the four graphs of
be e_nhanced and may even lead to a local maX|mum.'Such|1a}g_ 12 can be used to draw real space tomographic images
maximum can be easily mistaken as a prevalent strain Sta§ ihe islands. Figure 13 show the strain and Ga distributions
in the strain distribution, hence care has to be taken to singlg); ihe samples grown at 530 °C and 500 °C where complete
out the optical effects. The maxima in Fig. 10 thus carry little y5:5 sets are available. It has to be noted that the images do
useful information and a successful measurement requirggyt show iso-concentration areas but iso-strain areas with

extreme accuracy in the adjustment of the angles of inCitheir mean Ga concentration displayed on their right-hand
dence for both reflections. Figure 11 shows the dependencgye.

of the functional form of the radial scan on the valueagf
As «; approachesy., the maximum induced by the optical
function of ; vanishes entirely.

The final result of the analysis is displayed in Fig. 12
where lateral sizeR, heightz, radius of curvaturdri, and The results presented in Sec. V quantify the strong inter-
the concentration of Geg, are plotted as functions of lattice diffusion of GaAs and InAs during island formation. Our
parameter difference with respect to the GaAs substratenethod is, however, nafirectly sensitive tolateral varia-
Since all of these functions are monotonic, a unique relationtions of the In content of the dots, rather giving a laterally
ship can be established between any of theses quantities. Aseraged composition. To resolve this missing link in the
seen in atomic force microscopy measureméAtsM), the  experimental method, we modelled strain distributions with
samples grown at 475°C and 450°C exhibit large relaxedtomistic simulations employing classical many-body inter-
clumps in addition to the small coherent islands which areatomic potential4® These potentials have been constructed
the principal objects of interest. Beyond a certain strain, theéo reproduce well the first-order elastic constants in GaAs
scattering intensity is dominated by the relaxed chunks andnd InAs** Using a conjugate gradient mettédo find the

VI. ATOMISTIC CALCULATIONS OF STRAIN
RELAXATION
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FIG. 15. Atomistic calculations of strain fields compared to experimental images. Samples grown at(&3arfdC500 °Qb) have been
simulated starting from an atomistic reconstruction of the islands with a lattice parameter of GaAs throughout the dot and shape and vertical
Ga profile taken from Fig. 13. The lateral distribution of Ga has been assumed to be constant. Reasonable agreement is achieved for the
quantitative range of strain with respect to the GaAs substrate and the curvature of the iso-strain areas which is not present in the iso-surfaces
of the material composition of the atomic model. The left-hand side of both pairs of images is the experimental result, while the right-hand
side shows the corresponding atomistic calculation.

closest local potential energy minimum for a set of atomsyect depth dependence in the concentrations. In the x-ray
the relaxed spatial configuration can be determined for modexperiments, at least 10such islands—all with different
elled nanostructures which are initially out of equilibrium. configurations—contribute to the detected intensity. How-
Usually, calculations of strain fields are compared to experiever, the quantitative range of strain with respect to the GaAs
mental results of diffuse scattering. Since the results presubstrate as well as the curvature of the iso-strain areas are
sented in Sec. V lead to real-space structural models, a mudioth reproduced in the theoretical simulation. It has to be
more direct self-consistency check between theory and exioted that the introduction of curvature is not an artifact of
periment can be made: The experimentally determined outehe initial assumptions, since the composition in the atomis-
shape together with the associated Ga concentration profiléi model has planar iso-surfaces. For practical purposes, the
for the samples grown at 500°C and 530°C are taken asow available information on strain and composition can
input data for a rotationally symmetric atomistic constructionthus be regarded as complete.

of the island with all unit cells chosen to be of the size of

GaAs. To be self-consistent, the strain field in the relaxed

island must then match the tomographic images of the ex- VIl. CONCLUSION

perimental evaluation.

Recent findings of Liuetal® show that for buried In summary, we have established a new experimental and

analytical approach for the structural analysis of semicon-

Lnr%fcé ?mﬁis?t?:r?;?mhiﬁso gé(:]‘gi? %{cgc)i(r)s S&hselrgemrg((:)irt]tolfitr; ductor quantum dots. The scattering formalism developed in
P 9 y ' Secs. Il and 111 allows us to gualitatively understand the in-

In is concentrated in an inverted cone with the tip at the_ " " .~ . .~ °. . .
bottom of the dot. If such an In distribution can be general-tenSIty distribution in reciprocal space, as well as quantita

: ) tively extract geometrical information together with strain
ized to include other 4Ga,_,As quantum dot systems and and composition profiles from the experimental data. In Sec.

even _be exp'?"”ed as a property of free—§tand|ng islands, ﬂW/ we have presented experimental concerns with respect to
resulting strain states should be compatible with the result e appropriate scattering geometry as well as the limits of

of Sec. V. However, in our case of pure InAs deposition, theour approximations. Section V showed that experimental

corresponding atomistic calculation which is shown in Fig'technique and analytical formalism can be successfully ap-

B e e eads o 1120 1 @ Dpicl NAS/GaAS i dot system. The ex
strain distributions shown in the right-hand side of Fig. 15 _erlmental composition profiles indicate that Ga incorpora-

where the experimentally found strain fields ar moaredon into the islands is a heavily temperature dependent
nere the experimentally found stra €lds are compared ,-oss which results in In concentrations as low as 50% for
with the outcome of the atomistic calculations for the

samples grown at 530 °C and 500°C. The good qualitativé’j1 temperature of 530°C.

agreement between each corresponding pair of images shows
that the assumption of a Igterally constant composition is in ACKNOWLEDGMENTS
accordance with the experiment.
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