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Abstract.

We studied the threshold displacement energy in germanium using density

functional theory molecular dynamics simulations. The average threshold energy over

all lattice directions for creating stable Frenkel pairs was found to be (23±2stat±3syst)

eV. In the lattice directions 〈111〉 and 〈100〉, the threshold energy was found to be

(11.5 ± 1.5syst) eV and (19.5 ± 1.5syst) eV, respectively. In a notable fraction of all

the studied directions, a bond defect was created with a lower threshold than a Frenkel

pair. The average threshold energy for creating either a bond defect or a Frenkel pair

was found to be (21 ± 1stat ± 3syst) eV.
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1. Introduction

The threshold displacement energy Ed is the minimum amount of kinetic energy that,

when released to a lattice atom in a solid, results in the formation of a stable vacancy-

interstitial defect pair called a Frenkel pair [1, 2, 3]. Ed is the single most important

quantity in determining primary radiation damage in any material. It can be directly

used to predict the number of defects created by electron irradiation incident on a

material, and in many models it is used to estimate the damage caused by high-energy

ion and neutron irradiation [4, 5].

Ed is of major importance in germanium because of the extensive use of the material

under irradiation. Germanium is widely used as a the bulk material of radiation

detectors [6]. Additionally, the material is used increasingly in applications of solar

cell technology, which often end up in space applications [7]. As a further example, the

alloy SiGe has in the recent years become an important material in the manufacturing

of semiconductor components [7], where ion implantation is a routinely applied method

[8, 9]. In spite of this great technological interest in the quantity and extensive study

on the subject, there is still considerable uncertainty in the value of Ed in germanium.

Experimental values for the minimum of the threshold energy over all lattice directions

range from about 15 to 30 eV [10, 11, 12, 13, 14, 15]. In particular, there is no established

value for the average threshold energy over all lattice directions, Eav
d,ave, with values of

30 eV [16] and 18 eV[12] reported for an effective threshold energy.

In this study, we use quantum-mechanical density functional theory (DFT) [17]

molecular dynamics (MD) simulations to investigate Ed in germanium. Using the DFT

code SIESTA [18], we determine Ed in the principal lattice directions as well as the

average threshold energy Eav
d,ave over all lattice directions. DFT methods are known

to generally predict irradiation-related quantities in good agreement with experiment

[19, 20]. Moreover, we found in a previous study [21] that the method employed here

predicted Ed in silicon in excellent agreement with experiment.

2. Method

The dynamical quantum-mechanical simulations used to determine Ed were performed

using the pseudopotential, linear combination of atomic orbitals (LCAO) DFT code

SIESTA as a force module to the classical MD code PARCAS [22]. However, before

the simulations aimed at determining Ed were started, a thorough optimisation of the

simulation parameters was performed. This was necessary for the following reason. The

process of determining Ed in a specific crystallographic direction with MD simulation

consists of simulating recoils of increasing energy in that direction until a permanent

defect is obtained [3]. In order to find Eav
d,ave within a reasonable margin of error, Ed in a

number of individual uniformly randomly chosen lattice directions must be determined.

Therefore, the total number of recoil simulations necessary for such a study is high. As

additionally the method of DFT is computationally very heavy, it is imperative that
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the simulation parameters be optimised to give as physically plausible a description of

the recoil process as possible with an as computationally efficient parametrisation as

possible.

2.1. Optimising the general simulation parameters

The first step in optimising the simulation parameters was to determine the smallest

size of the simulation cell that would still give a reliable value for Eav
d,ave. For this task, to

obtain an educated estimate, the well-established classical Stillinger-Weber potential [23]

was used to model the Si-Si interactions. Starting from a cubic cell of 4096 atoms and

ending at only 64 atoms, Eav
d,ave was determined at each cell size in order to find roughly

the minimum necessary size of the cell. The result was that a cell size of around 100 to

200 atoms should still give a reliable value for Eav
d,ave, and further experimentation with

cells of also non-cubic shape resulted in a cell of 144 atoms with the z-axis of the unit cell

oriented in the conventional 〈111〉 direction. The advantage of the geometry of the cell

was that the symmetry of the diamond lattice could be exploited to study recoils in only

the positive octant of the standard unit cell, which corresponded to firing recoils along

the largest dimension of the 144-atom cell. This served to lessen the unphysical effects of

the periodic boundaries of the cell, which were employed in all simulations throughout

the work. Additionally, it was found at this stage that Berendsen temperature scaling

[24] applied uniformly throughout the cell after 200 fs of the simulation had passed was

a method of cooling that did not significantly affect the value of Eav
d,ave as compared to

using a larger cell and the physically better motivated method of cooling the cell from

the borders.

Next, the simulation time was optimised in a similar fashion as the cell size. Using

the 144-atom cell, Eav
d,ave was determined as a function of decreasing simulation time

from 9.0 to 0.5 ps. It was found that a simulation time of 3 ps should be sufficiently

long for reliably labelling the formed defects stable. The results for the cell size and

simulation time scaling are presented in Fig. 1. The 3 eV difference between the values

of Eav
d,ave obtained in the size scaling with the largest cell of 4096 atoms and the final

cell of 144 atoms was used as a systematic error in all the latter results for Ed obtained

within this simulation scheme.

2.2. Optimising the DFT parameters

The DFT parameters were optimised under the requirement that they yield accurate

formation energies for the basic point defects while being efficient enough to enable

dynamic simulations later on. The aim was to determine Eav
d,ave both within the local-

density approximation (LDA) and the generalised gradient approximation (GGA) for

the quantum-mechanical exchange and correlation energy of DFT. The defect formation

energies were considered an obvious test for the simulation scheme, as the formation

energy is a fundamental and quite extensively studied quantity in describing the entities

which were the very object of the work. The DFT parameters were scanned by varying
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Figure 1. Scaling of the simulation cell size and simulation time with classical

simulations. It was found that a cell of 100 to 200 atoms should be sufficiently large for

a reliable determination of E
av
d,ave, and the settled size of the cell became 144 atoms.

Using this simulation cell, it was found that a duration of 3 ps for the simulation is

sufficiently long for reliably labelling the formed defects stable.

the LCAO basis set, the k-point sampling of the Brillouin zone, and the equivalent

plane-wave cutoff energy. The basis was varied between single-zeta and double-zeta and

each with polarisation orbitals included. The number of k-points was varied between

only the Γ point, 4, and 18 points for the LDA scheme, and for the GGA scheme the

variation was between the Γ point, 2, and 12 k-points. The equivalent plane wave cutoff

energy was varied between 100.0 and 300.0 Ry.

The defect formation energy is defined as [25]

Ef = (
Ed

Nd

−
Eu

Nu

)Nd, (1)

where Ed and Nd are the potential energy and number of atoms in the cell with the

defect, and Eu and Nu are the corresponding quantities in a defect-free cell. The studied

point defects were the 〈110〉 split or dumbbell interstitial, the hexagonal interstitial, the

tetrahedral interstitial, the monovacancy, the ground state Frenkel pair which was found

to have a tetrahedral interstitial, and the bond defect [26, 27, 28]. For each of these cases,

the structure of the defect was relaxed via full conjugate gradient optimisation. During

these static calculations it became clear, that in both the LDA and GGA schemes only

a single-zeta basis set would be computationally feasible in the upcoming dynamical

simulations. Finally, three such single-zeta sets, one within the LDA and two within

the GGA schemes, were settled upon. Four k-points in a Monkhorst-Pack grid [29],
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a cutoff energy of 100.0 Ry, and the Ceperley-Alder exchange-correlation funtional as

parametrised by Perdew and Zunger [30] were used for the LDA set. The first GGA

set in turn consisted of 2 k-points, a cutoff energy of 100.0 Ry, and the Perdew-Burke-

Ernzerhof exchange-correlation functional [31]. The second GGA set included 12 k-

points instead of two. The latter two parameter sets shall henceforth be denoted GGA

I and GGA II, respectively.

The formation energies of the interstitial and vacancy defects are shown in Tables 1

and 2 for both the LDA and GGA parameter sets as a function of the k-point sampling.

It can be seen from these results that the parameter sets chosen for the dynamical runs

are sufficiently converged with respect to the k-point sampling. The formation energies

were also found to be well converged in terms of the equivalent plane-wave cutoff energy.

However, the hexagonal interstitial was not stable with respect to conjugate gradient

relaxation within either the LDA or GGA parameter sets. This is most likely due to the

limitations of the single-zeta basis, but was not considered a fatal shortcoming provided

the other point defects could be described with satisfactory accuracy. The results for

all the studied defects within the chosen LDA and GGA schemes as well as results from

previous studies are shown in Table 3. It can be seen here that our results are quite well

in line with previous, albeit more precise LDA DFT calculations. As a final separate

test for the DFT scheme, the energy of the germanium dimer was calculated at distances

of r = 0.8 to 10Å and compared to an all-electron calculation [32]. It was found that

reliable calculations could be performed within our LDA and GGA schemes up to recoil

energies of at least 50 eV, which was estimated to be higher than Ed by a safe margin

in most lattice directions.

Table 1. Formation energies of the basic point defects in eV calculated within the

LDA scheme (see text) as a function of the number of k-points used in sampling the

BZ.
No. of k-points Split-〈110〉 Tetrahedral Vacancy

Γ 2.7 2.5 1.6

4 3.6 4.1 2.5

18 3.6 3.8 2.5

Table 2. Formation energies of the basic point defects in eV calculated within the

GGA scheme (see text) as a function of the number of k-points used in sampling the

BZ.
No. of k-points Split-〈110〉 Tetrahedral Vacancy

Γ 2.4 2.1 1.4

2 3.2 3.0 2.0

12 3.1 3.1 2.3
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Table 3. Formation energies of the basic point defects in eV calculated within the

LDA and GGA schemes, and results from other DFT studies. The Frenkel pair for our

calculations consists of a tetrahedral interstitial and a vacancy with a distance of 4.9

Å between them. No formation energy for a Frenkel pair was found in the literature.

Defect LDA GGA I GGA II Other studies

Split-〈110〉 3.6 3.2 3.1 2.3[33], 3.6[34]

Tetrahedral 4.1 3.0 3.1 3.2[33], 3.9[34]

Vacancy 2.5 2.0 2.3 2.0[35]

Frenkel pair 4.9 4.2 4.2 -

Bond defect 2.5 2.4 2.4 2.8[34]

2.3. Dynamical simulations

After the optimisation of the simulation scheme, the MD runs aimed at determining

Eav
d,ave were performed. Ed was determined in 80 random directions within the LDA and

GGA I schemes and in 20 random directions within the GGA II scheme. In addition,

Ed was determined for the low-index lattice directions 〈111〉 and 〈100〉.

3. Results

The results of the dynamical simulations for determining Ed are presented in Table 4. As

was the case in our previous study with silicon [21], a fourfold-coordinated bond defect

was observed in many of the end states of the recoil simulations. Hence, in addition to

the average threshold energy for producing a Frenkel pair E
av,FP
d,ave , we present the average

threshold energy for producing either a Frenkel pair or a bond defect, E
av,BD/FP
d,ave . The

results for the direction-specific thresholds are those for creating Frenkel pairs, which

turned out lower than the thresholds for creating bond defects in those directions. A

bond defect was created with a lower threshold energy than a Frenkel pair in some 40%

of the studied directions within the LDA scheme, some 20% of the directions within the

GGA I scheme, and 10% of the directions within GGA II. A vast majority of all Frenkel

pair end states, about 90% within LDA and GGA I and 95% within GGA II, consisted

of a tetrahedral interstitial and a monovacancy, with the dumbbell interstitial replacing

the tetrahedral one in the remaining cases.

4. Discussion

It can be seen from Table 4 that the results for E
av,FP
d,ave from the GGA I and GGA II

schemes are within error margins of each other, but that the LDA result is somewhat

higher. As the LDA and GGA I calculations for E
av,FP
d,ave were both performed with

80 random directions and the GGA II result with 20 directions, the GGA I result of

(23 ± 2stat ± 3syst) eV is to be considered the most reliable value for E
av,FP
d,ave of the

three, with GGA II serving as a confirmation for its reliability. The same reasoning
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Table 4. Threshold displacement energies in eV as determined within the LDA and

GGA schemes. The energy step size was 1 eV for the direction-specific thresholds,

implying an error of ±0.5 eV in addition to the systematic error of ±1.0 eV resulting

from the scaling of the cell size. For the averages, a systematic error of ±3 eV due to

the scaling of the cell size and the standard error of the mean are reported. A and B

denote the closed and open 〈111〉 directions, respectively.

LDA GGA I GGA II

〈111〉(A) 12.5 ± 1.5syst 12.5 ± 1.5syst 12.5 ± 1.5syst
〈111〉(B) 10.5 ± 1.5syst 11.5 ± 1.5syst 11.5 ± 1.5syst
〈100〉 18.5 ± 1.5syst 19.5 ± 1.5syst 19.5 ± 1.5syst
E

av,FP
d,ave 27 ± 1stat ± 3syst 23 ± 2stat ± 3syst 20 ± 2stat ± 3syst

E
av,BD/FP
d,ave 22 ± 1stat ± 3syst 21 ± 1stat ± 3syst 19 ± 2stat ± 3syst

applies to E
av,FP/BD
d,ave . The value of 23 eV for E

av,FP
d,ave is situated roughly halfway

between the existing experimental values for an average threshold displacement energy

in germanium. The two experimental values of 18[12] and 30 eV [16] are not, however,

direct determinations of the average threshold over all lattice directions and are hence

more suitably called effective thresholds.

As for the directional thresholds, no lower threshold was found in each simulation

scheme than the threshold energy in the direction 〈111〉(B), which is therefore the global

minimum of Ed within this study. A comparison to experiment for this threshold energy

is possible, as several determinations for the onset of radiation damage in germanium

have been performed [10, 11, 12, 13, 14, 15]. The experimental values are mostly around

15 eV, which is slightly higher than the values of (10.5±1.5syst) eV and (11.5±1.5syst)

eV in the LDA and GGA schemes, respectively. Here the GGA I and GGA II results in

particular are quite close to experiment, which lends reliability to the determined value

of 23 eV for E
av,FP
d,ave .

That the tetrahedral interstitial dominates in the end state Frenkel pairs over the

split interstitial is in agreement with our result that the ground state Frenkel pair

comprises a tetrahedral interstitial and a monovacancy. The notable amount of bond

defects observed throughout the simulations serves to indicate that this relatively new

form of point defect may play a significant role in the primary radiation damage of

germanium. The results are in this respect similar to those found in the case of silicon

[21].

5. Conclusions

The threshold displacement energy in germanium was studied using quantum-

mechanical density functional theory molecular dynamics simulations. A value of

(23 ± 2stat ± 3syst) eV was found for the average threshold energy for producing a

Frenkel pair over all lattice directions, and a global minimum of (11.5 ± 1.5syst) eV

was determined for the threshold, in fair agreement with experiment. A large amount
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of fourfold-coordinated bond defects were observed in the end states of the simulations,

and hence a threshold energy of (21±1stat±3syst) eV for producing either a Frenkel pair

or a bond defect was also calculated. The end state interstitial type was overwhelmingly

dominated by the tetrahedral interstitial, which constitutes the interstitial in the ground

state Frenkel pair.
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