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Characterization of the primary damage is the starting point in describing and predicting the
irradiation-induced damage in materials. So far, primary damage has been described by traditional
interatomic potentials in molecular dynamics simulations. Here, we employ a Gaussian approxi-
mation machine-learning potential (GAP) to study the primary damage in silicon with close to ab
initio precision level. We report detailed analysis of cascade simulations derived from our modified
Si GAP, which has already shown its reliability for simulating radiation damage in silicon. Major
differences in the picture of primary damage predicted by machine-learning potential compared to
classical potentials are atomic mixing, defect state at the heat spike phase, defect clustering, and
re-crystallization rate. Atomic mixing is higher in the GAP description by a factor of two. GAP
shows considerably higher number of coordination defects at the heat spike phase and the number of
displaced atoms is noticeably greater in GAP. Surviving defects are dominantly isolated defects and
small clusters, rather than large clusters, in GAP’s prediction. The pattern by which the cascades
are evolving is also different in GAP, having more expanded form compared to the locally compact
form with classical potentials. Moreover, recovery of the generated defects at the heat spike phase
take places with higher efficiency in GAP. We also provide the attributes of the new defect cluster
that we had introduced in our previous study. A cluster of four defects, in which a central vacancy
is surrounded by three split interstitials, where the surrounding atoms are all 4-folded bonded. The
cluster shows higher occurrence in simulations with the GAP potential. The formation energy of
the defect is 5.57 eV and it remains stable up to 700 K, at least for 30 ps. The Arrhenius equation
predicts the lifetime of the cluster to be 0.0725 µs at room temperature.

I. Introduction

From the very early efforts to characterize the inter-
action of energetic particles with matter [1–4] until now
when purposeful irradiation of materials has become vital
in several applications [5, 6], the study and identification
of the modification induced in the structure of irradiated
materials has been an ongoing endeavor. The ability of
describing or predicting the macro-scale effects of the ir-
radiation on the material, to a great extent, hinges on
understanding the early-stage damage caused by collision
cascades, known as ”primary damage” [7, 8]. The fact
that our understanding of the effects of particle irradia-
tion on materials has taken its shape progressively over
the years is partially due to the inherent nature of the
atomic collision cascades; that this process is extremely
fast and far from equilibrium [9, 10]. This feature makes
the observational examination of primary damage at the
time scale it forms nearly impossible and leaves the bur-
den of its description on the other methods, computer
simulations being the most promising method during the
past decades [11].

In an ideal world, among the simulation methods, den-
sity functional theory (DFT) calculations could provide a

∗ Corresponding Author; a hamedani@sbu.ac.ir
; ali.hamedani.fme@gmail.com
† Corresponding Author; g alahyarizadeh@sbu.ac.ir

realistic picture of the primary damage and evolution of
collision cascades. However, the current computational
framework of the DFT approach makes this method in-
applicable to the large scale problems, from which a near-
to-reality, explanatory, extendable, or predictive mod-
els of defect generation can be extracted. As a result,
molecular dynamics (MD) simulations based on analyt-
ical potentials, through which significantly larger time-
and length-scales (compared to the DFT) is reachable,
have become the main line to follow in the simulation of
primary damage in materials [11–14]. The reliability of
the description that the MD method provides depends
almost completely on the quality of the interatomic po-
tential. Traditional potentials are fast and scale linearly
with the number of atoms in the system. Their speed
comes from the relatively simple mathematical function
that is based on a physical understanding of interatomic
bonding in the material [15–19]. The function has a
handful of global fitting parameters. Once optimized,
these parameters are fixed and used for predicting the
energy and forces of the new configurations in the simu-
lation. Considering that the true interactions in metallic
and covalent systems are determined by complex mechan-
ical many body electronic interactions, it is clear that a
unique, mathematically simple function with a number
of fixed parameters cannot represent all of the under-
lying physical and chemical aspects of the system, de-
scribes why the accuracy that is reachable by classical
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interatomic potentials is inherently limited.
In the newer class of interatomic potentials, machine

learning (ML) potentials, the generality or higher flexi-
bility lies in the scheme that they are generated. Instead
of targeting a particular set of properties to be repro-
duced, the configurational space of the system (which for
a system of N atoms is 3N -dimensional) is sampled in
order to reproduce or ”learn” the potential energy sur-
face (PES) of the system [20, 21]. Sampling points are
DFT-generated energies and forces of a range of config-
urations, collected in the data set. Learning is achieved
via numerical algorithms, in which a large number of tun-
able parameters are involved. These parameters are op-
timized in the training process, so that a smooth PES is
mapped. The energies of the newly encountered config-
urations in the simulation is then calculated by interpo-
lating between the reference energies on the constructed
PES.

Gaussian approximation potential (GAP) [20] is a class
of ML potentials that uses Gaussian process regression in
the learning (regression) stage. The idea behind repro-
ducing the PES by ML potentials can be introduced by
starting from the following representation [22]:

E =
∑
i

Ei (1)

in which the total energy of the system, E, is defined
as a summation over contributions of individual atoms
in the system, Ei. Ei is acquired in a two-step process.
First, the local environment of the atom i is encoded
into a set of structural parameters, ĥi. The encoding of
the atomic environments is done by a structural descrip-
tor [23–26] that should be rotationally, translationally,
and permutationally invariant. The description provided
by the descriptor is based on the positional vectors of
the neighbor atoms within the cutoff sphere. Moreover,
in multielemental systems, the chemical diversity of the
atoms is also considered by the descriptor [27, 28]. In the
second step, the implemented regression model maps the
local atomic environment around atom i on the Ei. The
outcome of the summing Ei over all atoms in the system
would be the total energy, which is a representative point
on the PES of the system. For the first step, GAP uses
the SOAP [23] structural descriptor, and takes advantage
of Gaussian process regression in the second step. The
Eq. 1 can then be rewritten in the form of

EGAP =

N∑
i

ε(ĥi) (2)

Although EGAP has a many-body character, it is also
possible to append an external potential to it. This
could be used with the purpose of either handling a spe-
cific range of configurations with the desired part of the
potential (e.g. with the external potential), or just to
strengthen the overall energy calculation by the addition
of an external and fixed n-body potential. In our case,
the GAP has been equipped with a pair potential, Vpair,

that is meant to deal with the extreme repulsion of atoms
in the collision cascades. The energy of the system is then
represented by

Etot =

N∑
i<j

Vpair(rij) + EGAP. (3)

A succesfully trained machine-learning potential inher-
its the same DFT level-of-accuracy of the data set upon
which has been built. On the other hand, the fact
that the ML potentials calculate the energies and forces
by interpolating the training data makes the them sig-
nificantly faster than DFT calculations (yet noticeably
slower that classical potentials) [29]. Hence, the simu-
lation capability that has been made available by ML
potentials makes larger scale molecular dynamics simu-
lations with DFT accuracy reachable [30–39]. That is
why they have received a great amount of interest in the
community and their implementation in different fields
matures rapidly [40–44].

As an element that has been extensively studied due to
its key role in the semiconductor industry, there are many
classical interatomic potentials for silicon [18, 45–48]. So
far, radiation damage and defect generation in silicon
has been explored using these potentials, with Stillinger-
Weber (SW) [18] and Tersoff (T3) [48] potentials being
the dominant ones. Recently, a ML potential has been
developed for silicon [49]. This potential has the DFT
quality of its associated data set, and hence the level of
accuracy that is far beyond the reach of any classical
interatomic potential. This potential and modifications
of it have helped to elucidate some of the key questions
about the physical aspects of silicon [34, 35, 50]. We have
recently taken advantage of this GAP potential to carry
out large-scale simulations of primary damage in silicon
with quantum mechanics precision level. In Ref. [51], we
presented our modification of the Si GAP; the modifica-
tion that aims at the enhancement of GAP’s performance
in the simulation of collision cascades. In Ref. [51], we
showed the reliability of the modified GAP compared to
experiments by validating the GAP-predicted threshold
displacement energies (TDE) in principal directions, the
sputtering yields in Ar implantation simulations, and the
size of the experimentally detectable irradiation-induced
defect clusters. We then simulated cascades initiated by
0.1, 0.2, 0.4, 1.0 and 2.0 keV primary knock-on atom
(PKA) energies, and performed similar simulations with
the SW and T3 classical potentials. Simulations were
performed at 300 K. The size of the simulation box de-
pends on the recoil energy, such that it contains 40-46
atoms for every electron volt of the PKA energy (e.g.
8000 atoms for 0.2 keV PKA simulations). Periodic
boundary conditions were applied in all directions. Af-
ter minimization of the box using the conjugate gradient
(CG) algorithm, initial random velocities were assigned
to the atoms to simulate a temperature of 300 K. The en-
tire cell was then equilibrated at 300 K with the canonical
NV T ensemble for 30 ps. After that, the box was fur-
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ther relaxed with the isothermal-isobaric NPT ensemble
at 300 K and zero pressure for another 30 ps. Finally,
with an increased damping parameter, the lattice was re-
laxed for another 30 ps at 300 K and zero pressure. At all
stages, the time step was 1 fs. The cascades were initiated
by giving a kinetic energy to a PKA atom at the center
of the box along a randomly-selected direction. For each
energy, 20 simulations were performed. The temperature
along the borders of the simulation cell was controlled by
applying a Langevin thermostat [86]. This enables dissi-
pation of excess heat introduced by PKA to the bulk of
material and dampens pressure waves created at the core
of the cascades. Electronic stopping [87] was applied as
a non-local friction force to the atoms with kinetic en-
ergies above 10 eV. The adaptive time step algorithm
[88] was used to integrate the equations of motion. The
simulation time was 6 ps, after which the entire cell had
cooled down to 300 K. All simulations were carried out
with lammps [89, 90] compiled with quip [91] to sup-
port the GAP. In this work, we present the results of
a detailed analysis of the features of the cascade evolu-
tion and defect generation in the simulations with GAP.
We highlight the differences and similarities between the
picture of primary damage that is drawn by the machine-
learning and traditional potentials. For that, we explore
different aspects of the defect generation at the heat spike
phase, and the final state of the resultant damage. We
also investigate the structure and the energetics of the
defect cluster that we observed in Ref. [51]. The paper
is organized as follows. In section II we present the de-
tails of our modification of the original GAP. In section
III we discuss the performance of the modified GAP. The
analysis of the cascade simulations are outlined in section
IV, and conclusions are presented in section V.

II. Repulsive potential

When irradiated by energetic particles, cascades of col-
lisions are initiated by the recoiling PKA in the material.
Atoms that are involved in the cascades come close to-
gether, interacting at distances much shorter than those
in the equilibrium state. Hence, depending on the en-
ergy, the colliding dimer can reach potential energies well
above the energy corresponding to the ground state of
the crystal. Since the original GAP has been trained to
the equilibrium properties, the high potential energy of
colliding atoms will be underestimated. To capture the
repulsion of the colliding atoms in cascade simulations,
we carried out a modification of the original GAP [51].
In Ref. [51], we demonstrated the results obtained by
implementing the modified GAP and the modification
itself was just briefly introduced. In this section we pro-
vide the details of this modification; that is a smooth
joining of the all-electron DFT repulsive potential, DMol
[52], to the original potential. The original and modified
GAP potential have been referred to as org-GAP and
mod-GAP in the subsequent sections, respectively.

The DMol-DFT data [52] is obtained from exclusively
optimised calculations for the high-energy repulsive inter-

actions and its excellent agreement with the experiments
has been verified [53]. The Vpair potential represents the
DMol-DFT repulsive potential in the mod-GAP, that is
responsible to take care of the configurations in which
the atomic distances are much shorter than the equilib-
rium distances (collisions). Since the org-GAP has been
trained over equilibrium and near-equilibrium states, the
short-distance configurations are not present in its train-
ing data set. Hence, there is no overlap between the
configurations that are covered by the Vpair and the org-
GAP. Thus, the augmentation of the Vpair can be done
without re-training the org-GAP, and Vpair was appended
to the org-GAP. Since any interference with the original
reference structures in the data set will affect the equi-
librium behavior of the potential, we first found the min-
imum interatomic distance present in the training data
set, dsmin = 1.6 Å, that becomes the joining point of
the Vpair and the org-GAP. The Vpair is a cubic spline
fit to the DMol Si-Si data, through which we could con-
trol the smoothness at the joining point (quality of the
joining). The smoothness of the joining at dsmin was
rigorously checked during the augmentation. This was
done by monitoring the potential energy and forces on
the atoms in a Si-Si dimer that are obtained by the re-
sultant mod-GAP, to make sure that the potential energy
and its derivative are continuous at the joining. Any non-
smooth turn or variation in the potential energy will be
appeared as a kink in the force plot. Joining the DMol
data, as it is, to the org-GAP led to a relatively non-
smooth transition between the org-GAP and the Vpair
(top and middle panels in Fig. 1), which was resolved by
an average shift of about 2 eV in the Vpair over the range

of [1.1 − dsmin]Å (the smooth Vpair in bottom panel in

Fig. 1). The Vpair then mathes the DMol at 1.0 Å. The
fit was then updated and Vpairwas added to the org-GAP
in a tabular format. Fig. 2 compares the repulsive inter-
action of a Si-Si dimer calculated by mod-GAP and DFT
with the DMol-DFT data.

DFT calculations were performed with VASP [54–
57] package, using the PBE GGA [58, 59] exchange-
correlation functional, and projector-augmented-wave
(PAW) method [60, 61] for the description of the electron-
ion interaction. We employed two PAW potentials in this
analysis; the hard potential with 12 2s22p63s23p2 valence
electrons and the softer one that treats 4 3s23p2 electrons
in the valence shell. the default cutoff energies of 547 and
245 eV were used, and a single Γ-point sampling of the
Brillouin was carried out. For each PAW potential, re-
ducing the dimer distance continued until the calculation
crashed. While the soft potential follows DMol up to 1Å,
the hard potential starts diverging from the soft and from
DMol at 1.2 Å. For distances in the range of d < 0.74 Å,
with an abnormal behavior, the hard PAW potential be-
comes attractive, showing a jump in the exerted force.
Figure 3 compares the repulsive part of the SW, T3, org-
GAP, and the mod-GAP potentials along with the DMol
data. As seen, the org-GAP potential does not capture
the atomic repulsion. The T3 potential has a very simi-
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FIG. 1. Distance-wise difference in the potential energy (top)
and forces (middle) of a Si-Si dimer with respect to the equi-
librium. The top and middle plots are derived form the MD
simulations using ”Smooth” and ”Non-smooth” mod-GAP
potentials. The ”non-smooth mod-GAP” represents joining
the DMol repulsive data, as it is, in the form of the Vpair cu-
bic spline fit to the org-GAP potential. The joining point is
dsmin = 1.6 Å. The non-smooth mod-GAP yields a relatively
sharp transition to the Vpair. This problem was resolved by
re-fitting the Vpair to the DMol data in which the potential
energies in the distance range starting from dsmin to the 1.1 Å
have an average downward shift of approximately 2 eV (the
smooth Vpair, bottom). The Vpair then mathes the DMol at
1.0 Å. The resultant smooth mod-GAP potential was used to
carry out the simulations in the paper.
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FIG. 2. Total energy (top) and exerted force (bottom) of a
repulsing Si-Si dimer, as a function of distance. Simulation
setup is made up of two silicon atoms within a (3× 3× 3)a0
cell, a0 = 5.461 being the lattice constant with , that one
moves toward the other one with the step size of 0.2 Å . GAP
represents our modified GAP potential which is the original
GAP joined to the DMol repulsive potential at dsmin = 1.6 Å.
Comparison is made with the results from GGA DFT simu-
lations with two PAW potentials; the soft one has 4 valence
electrons and the harder one has 12 valence electrons. Sudden
jump (drop) in the force (energy) plot is an indication of the
attraction between Si atoms. Both the hard and soft pseu-
dopotentials predict an attractive interaction in the distance
range of d > 1.6 Å. The hard potential shows an abnormal,
attractive response in the distance ranges of d < 0.74 Å.

lar profile to the DMol potential and the mod-GAP. The
SW potential shows higher energies and a steeper gradi-
ent than the mod-GAP and T3 potentials in the range of
d < 1.25 Å. The higher repulsive energy of the SW po-
tential can justify its higher prediction of the threshold
displacement energies in principal directions with respect
to the mod-GAP and T3 potentials [49].
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FIG. 3. The repulsive part of the SW, T3, org-GAP, and
mod-GAP potentials.

III. Performance of the modified potential

A. Equilibrium state

The equilibrium part of the potential is responsible
for the post-heat-spike phase in the cascades where the
hot liquid-like region generated in the heat-spike cools
down and the defect structures are formed. In order to
make sure that our augmentation has not affected the
primary training data set of the potential (that represent
the equilibrium/near-equilibrium states), in Ref. [51] we
calculated thermal and mechanical properties using the
mod-GAP and made a comparison between the predic-
tion of the org-GAP and mod-GAP. Calculated proper-
ties include elastic constants, bulk modulus, melting tem-
perature and radial distribution function of liquid and
amorphous phases. The results that are reported in [51]
show that the predictions of the two potentials are equal
within the error bars, confirming that the equilibrium
part of the potential has remained intact.

B. Quasi-static simulations

To further asses the performance of the mod-GAP in
cascade simulations, we here conducted three tests, first
one being quasi-static drag calculations [62–64]. In these
calculations, an atom is moved in a certain direction,
along which it encounters short-range interactions as a
result of passing through very close neighborhood of some
of the other atoms in the system. The short-range inter-
action is seen as a peak in the step-wise energy-difference
monitoring of the moving atom. The simulation setup in-
cludes a 64-atom box (2×2×2) in which the moving atom
travels along a given direction with the step size of 0.3 Å.
DFT calculations were performed with the same settings
that were introduced in II.

Fig. 4 provides the results of the simulations in three
representative directions, where the predictions of mod-
GAP, org-GAP, and DFT calculations have been com-
pared. As seen, the org-GAP does not capture the higher

energy in short-range interactions of the moving atom,
whereas the mod-GAP reflects the energy difference as
the interatomic distance gets smaller. The repulsive re-
sponse of the mod-GAP is closer to the DFT results ob-
tained by the soft PAW potential than to that estimated
by the hard potential. However, since the all-electron
DMol repulsive potential, that mod-GAP takes the ad-
vantage of, has been exclusively developed for extremely
short-range (down to 0.001 Å) interactions, we believe
that the mod-GAP’s profile is more reliable in portray-
ing repulsive energy landscape. Regarding the behavior
of the PAW potentials in the interactions in the range of
d < 1.0 Å, we believe that the soft potential is more reli-
able. This is due to the unphysical behavior of the hard
potential in the range of d < 0.74 Å observed in section
II.

C. TDE calculations

The threshold displacement energy is one of the funda-
mental parameters in characterizing the early-stage de-
fect generation and radiation resistance of the materials
[7]. In Ref. [51] we calculated the TDE values in prin-
cipal directions with mod-GAP where we found excel-
lent agreement between the prediction of GAP and DFT
and experimental values. Here, we simulate the com-
plete symmetry-reduced directional TDE surface at 30
K by mod-GAP.

The simulations were performed based on the method
outlined in [65]. A simulation box containing 4096 atoms
(8 × 8 × 8 unit-cells) was used. To check the box size,
a few simulations in some random directions with PKA
energies up to 62 eV were initially carried out and in
none of the cases the PKA atom reached to the bor-
der of the box. This assured us of the box size being
large enough. Around 140 directions were considered in
the calculations, among which nearly 50 directions rep-
resent uniform-sampling and 90 directions correspond to
the sampling by a constant 5° interval. The method in-
troduced in [66] was implemented for uniform sampling
of the directions. Moreover, to enrich the sampling, addi-
tional simulations were also carried out where needed. A
4 eV kinetic-energy increment was used in the search for
the defect generation by the PKA atom. The global av-
erage TDE, integrated over all directions was calculated
by [65]

Tave =

∫∫
T (θ, ϕ) sin θdθdϕ∫∫

sin θdθdϕ
(4)

where T (θ, ϕ) is the TDE value for the given (θ, ϕ) di-
rection. The Tave values by mod-GAP, SW, and T3 po-
tentials are 22±0.82, 32.87±0.90, and 20.45±0.42 eV, re-
spectively. The global minimum by GAP, SW, and T3 is
10±0.5, 18±0.5, and 10±0.5 eV, respectively. For the T3
potential the global minimum is found in the [1 0 0] direc-
tion. For the SW potential the global minimum is seen
in (θ = 45°, ϕ = 15°) direction, and the second small-
est TDE value (20±0.5 eV) is found in [1 1 1] direction.
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FIG. 4. Quasi-static drag in three representative directions in silicon.

However, with the GAP potential the global minimum
does not occur in any of the low-index directions. Fig 5
presents the TDE surfaces obtained by three potentials.
The difference between the predictions of the potentials
and the higher minimum value by SW is visible. Since
mod-GAP has already shown [51] a perfect agreement
with the DFT values in low-index directions, a realistic
estimation in the other directions can also be expected.
Though, reporting the directional TDE values from sim-
ulations must be done carefully. This is due the fact that
the anisotropic nature of the TDE surface and thermal
vibrations of the atoms could cause a considerable differ-
ence between the TDE values in exactly [h k l] direction
and a direction that locates just a few degrees away form
it (a smeared-out threshold for the given direction ver-
sus a sharp one). Further discussion on this topic can be
found in [63–65, 67].

The output of the TDE simulations in cases that the
stable defect has been generated is a Frenkel pair. Among
all tested energies in our trial in low-index directions, we
selected those simulations with mod-GAP which led to
the defect generation, and analyzed the type of the in-
terstitials that were created. We observed 〈1 1 0〉-split,
tetrahedral, and hexagonal interstitials with the occur-
rence of 46%, 29%, and 25%, respectively. Regarding the
formation energy of these defects, GAP shows excellent

agreement with the DFT [49], hence a realistic, DFT-
accurate prediction can be expected. We confirm that
there is no dependence between the type of the intersti-
tial and the energy or the direction of the PKA in GAP’s
prediction, as we found all types of interstitials in each of
the crystal directions with different PKA energies. The
performance of the GAP becomes more interesting when
the same analysis is performed for the SW and T3 po-
tentials as well. In the SW and T3 simulations, we found
no hexagonal interstitials, only 〈1 1 0〉-split and tetrahe-
dral interstitials. 〈1 1 0〉-split was the dominant type in
SW simulations and tetrahedral in T3 simulations. The
summary of the analysis for potentials along with the rel-
ative error of their predicted formation energy (FE) with
respect to the DFT is presented in Table I. The ratio of
the occurrence of each interstitial type in the simulations
with classical potentials can be linked to the relative for-
mation energies of the different interstitial configurations.
For example, with the T3 potential, the tetrahedral inter-
stitial is the stable one and its occurrence is higher than
〈1 1 0〉-split. However, GAP predicts the 〈1 1 0〉-split to
be the stable interstitial, as has already been confirmed
by ab-initio calculations [68], and provides a balanced
distribution between the interstitial types.



7

FIG. 5. Threshold displacement energies calculated by mod-
GAP, SW, and T3 potentials at 30 K. The global averages are
19.63, 30.63, and 20.17 eV for mod-GAP, SW, and T3, respec-
tively. The global minimum by GAP, SW, and T3 is 10±0.5,
20±0.5, and 10±0.5 eV, respectively.The [1 1 1] direction in
the maps corresponds to the nearest-neighbour collision path
of the atoms in 〈1 1 1〉 directions.

IV. Cascade Simulations

The cascade simulations on which we carry out our
analysis are the same simulations that we conducted in
Ref. [51]. Here, we carry out further and more detailed
analysis to cover different aspects of the defect generation
in collision cascades, and compare the results produced
by mod-GAP, SW, and T3 potentials, indicating the dif-

TABLE I. Occurrence (%) of the 〈1 1 0〉-split, tetrahedral, and
hexagonal interstitials in our TDE simulations with GAP, T3,
and SW potentials. Relative error (%) of the formation energy
(FE) of each interstitial type, compared to the DFT, has been
taken from [49].

〈1 1 0〉-split tetrahedral hexagonal

Pot. Occ. FE err. Occ. FE err. Occ. FE err.

GAP 46 -2 29 -7 25 -3
SW 67 22 33 28 0 77
T3 27 32 73 -7 0 27

ferences between their predictions.

A. Defect generation

Table II summarizes the results associated with the
defect generation and cascade dynamics for the three po-
tentials. This includes the PKA energy, E; the dam-
age energy, Edam, defined as the portion of the PKA
energy that is deposited to the lattice atoms in collision
cascades; the final number of interstitial defects, N surv

int ,
that have survived at t = 6 ps where the system has
reached equilibrium at 300 K and the number of defects
has been saturated; the number of coordination defects

(dangling + floating bonds) at the heat spike, N spike
coord,

and at the equilibrium, N surv
coord; the mixing parameter,

Q; the number of atoms displaced by more than half the
nearest-neighbor distance, Ndisp; the number of atoms
whose average kinetic energy is above the energy corre-
sponding to the melting point of the material (3

2kTmelt),
Nhot, and the duration of the heat spike phase, tspike.
Edam was calculated by subtracting the total energy lost
to the electronic stopping, Eels, from the PKA energy.
Eels was calculated using the SRIM [69] package. Inter-
stitials and vacancies were identified using Wigner-Seitz
cell analysis as implemented in the OVITO package [70].
The coordination defects were obtained with the cut-off
radius of r = 2.75 Å. The mixing parameter was calcu-
lated using the formula [71]

Q =

∑
i|ri(t)− ri(0)|2

6n0Edam
(5)

where n0 is the atomic density, and with ri(t) being the
position vector of the atom i at time t,

∑
i|ri(t)− ri(0)|2

represents the square of atomic displacements magni-
tudes at time t, summed over all atoms in the simula-
tion box. The Q and Ndisp values are reported at t ≈ 2
ps which was chosen visually from their time-dependent
profiles; the time at which saturation of Q in three po-
tentials and almost in all PKA energies is visible.

The heat spike, the repulsive part, and the melting
point of the potential affect the number of displaced
atoms and the mixing parameter[71, 72]. The higher
number of displaced atoms in mod-GAP seen in Tab.
II can be related to its melting point, as it has the low-
est melting point among three potentials. Lower melting
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TABLE II. Number of defects at the heat spike and the final equilibrium state, as well as mixing, number of displaced atoms,
number of energetic atoms, and the duration of heat spike. Detailed information about the quantities is provided in the text.
N surv

int was calculated at t = 6 ps. Q and Ndisp were obtained at t ≈ 2 ps. Nhot is reported at the specified time of the heat
spike. The results of each case represent the average over 20 simulations. Uncertainties are standard errors.

Potential E Edam N surv
int N spike

coord N surv
coord Q Ndisp Nhot tspike

(keV) (keV) (Å
5
/eV) (ps)

mod-GAP 0.1 0.08 1 ± 0.1 48 ± 1 10 ± 1 18 ± 1 13 ± 1 57 ± 1 0.39 ± 0.026

0.2 0.16 2 ± 0.2 83 ± 2 17 ± 2 21 ± 1 29 ± 2 111 ± 2 0.41 ± 0.023

0.4 0.31 4 ± 0.4 161 ± 3 24 ± 2 24 ± 1 67 ± 3 224 ± 3 0.48 ± 0.023

1.0 0.75 13 ± 1 343 ± 21 54 ± 3 32 ± 1 187 ± 11 541 ± 11 0.52 ± 0.024

2.0 1.45 27 ± 4 543 ± 34 102 ± 3 36 ± 1 370 ± 28 980 ± 28 0.57 ± 0.020

SW 0.1 0.08 1 ± 0.1 24 ± 1 6 ± 1 9 ± 0.2 7 ± 0.4 49 ± 1 0.18 ± 0.025

0.2 0.16 2 ± 0.2 48 ± 1 9 ± 1 11 ± 0.2 17 ± 1 97 ± 2 0.21 ± 0.018

0.4 0.31 4 ± 0.4 87 ± 2 20 ± 2 14 ± 0.2 41 ± 2 191 ± 2 0.17 ± 0.019

1.0 0.75 11 ± 1 185 ± 10 47 ± 3 19 ± 1 117 ± 6 477 ± 7 0.22 ± 0.021

2.0 1.45 27 ± 2 326 ± 12 103 ± 6 20 ± 1 235 ± 14 923 ± 19 0.20 ± 0.010

T3 0.1 0.08 2 ± 0.2 30 ± 1 14 ± 1 10 ± 0.2 7 ± 0.3 27 ± 0.5 0.13 ± 0.017

0.2 0.16 5 ± 0.3 60 ± 2 29 ± 2 12 ± 0.3 15 ± 1 50 ± 1 0.19 ± 0.017

0.4 0.31 9 ± 0.4 106 ± 4 52 ± 3 16 ± 1 31 ± 1 100 ± 2 0.21 ± 0.014

1.0 0.75 22 ± 1 235 ± 11 110 ± 3 19 ± 1 80 ± 4 248 ± 4 0.25 ± 0.026

2.0 1.45 40 ± 1 363 ± 22 205 ± 5 20 ± 1 154± 7 470 ± 14 0.24 ± 0.018

point leads to a greater number of atoms in the molten
zones, or higher Nhot. During the cooling-down of the
cascades, these hot atoms can recrystallize in new lattice
sites, thus being labeled ”displaced”. Mixing in mod-
GAP is greater than SW and T3 potentials by a factor of
two, which is in line with the higher number of displaced
atoms with GAP. This difference can also be justified
from the heat-spike point of view that is entangled with
the melting point predicted by the potentials. Beside the
fact that there are fewer number of hot atoms in the po-
tential with the higher melting point (hence the overall
atomic displacement magnitude is lower), the heat spike
in the potential that has higher melting point is shorter
(Table II) that reduces the distances which the hot atoms
travel within molten zones.

The repulsive part of the potentials are not fully consis-
tent with the Q values or number of displaced atoms. T3
has very similar repulsive potential to that of mod-GAP
(Fig. 2) and hence the number of displaced atoms are
expected to be close. However, mod-GAP shows around
1.5 times more displaced atoms. On the contrary, the
greater number of displaced atoms in SW with respect to
the T3 is consistent with the higher repulsion by SW in
d ≤ 1.2 Å. Regarding the interstitials, the SW and mod-
GAP potentials show very similar number of surviving
defects, whereas T3 potential produces almost two times
more defects at all energies. The number of interstitials
at the heat spike is also different in potentials [51]; for
instance, for the PKA energy of 2 keV, mod-GAP shows
higher value (110± 9) than SW (78± 7) and T3 (66± 5)
potentials. Recovery of the crystalline phase from the

molten region that is generated in the heat spike is also
different in the three potentials. Although mod-GAP and
SW yield almost identical final number of coordination
defects, recovery in mod-GAP takes place from notice-
ably higher number of defects, but within the same in-
terval as in SW. In other words, recrystallization in GAP
has higher rate or efficiency.

B. Cluster analysis

Cluster analysis was carried out by defining a cluster
as a set of neighboring Wigner-Seitz defects, neighbors
being defects located within a range up to the cutoff value
of rcl = 2a0 ≈ 10.8Å [73]. The size of the cluster is
specified by the number of defects that are contained
within the cluster. We considered the single (isolated)
defects and the groups of clusters with the sizes of 2-10,
10-30, and > 30 defects in our analysis. The results are
compiled in Table III.

In clustering of the final defects, there are two major
differences between the mod-GAP and classical poten-
tials. The first difference is that in GAP, defects are more
likely to be clustered in smaller packs than in bulky pock-
ets. This feature is visible in the occurrence-frequency
and the fraction of defects in the clusters. Averaging over
all energies, mod-GAP shows 3 and 4 times more isolated
defects compared to SW and T3 potentials, respectively.
Considering the energies individually, the difference still
exists but the factors are different. Similarly, the defects
in the small clusters (2-10 defects) are 1.5 and 6 times
more (notice the frequencies as well) in GAP with respect
to the SW and T3. The number of defects that are encap-
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TABLE III. Results of the cluster analysis of the final Wigner-Seitz defects at t = 6 ps, obtained from simulations using
mod-GAP, SW, T3 potentials. The analysis was performed with the cutoff value of rcl = 10.8 Å. Clusters are identified by the
number of contained defects, ”isolated” being a single defect. E is the PKA energy in keV and Ndef is the total number of
defects (interstitials+vacancies). For the clusters of size X, focc is the total frequency of occurrence; F is the total fraction(%)
of defects; Fv is the fraction (%) of vacancies; Fi is the fraction (%) of the interstitials, and Fv/Fi shows the ratio of the fraction
of vacancies to interstitials. The results for each case represent the average over 20 simulations. The 0.1, 0.2, and 0.4 keV
PKAs do not produce large size clusters.

Isolated 2-10 def. 10-30 def. >30 def.

Pot. E Ndef focc F Fv Fi Fv/Fi focc F Fv Fi Fv/Fi focc F Fv Fi Fv/Fi focc F Fv Fi Fv/Fi

mod-GAP 0.1 2 1.25 59 19 40 0.48 0.45 41 27 14 1.93 0.0 - - - - 0.0 - - - -

0.2 4 1.85 48 10 38 0.26 0.95 52 39 13 3.0 0.0 - - - - 0.0 - - - -

0.4 8 2.6 37 4 33 0.12 1.25 53 43 10 4.3 0.1 9 5 4 1.25 0.0 - - - -

1.0 26 5.55 26 2 24 0.08 2.05 36 23 13 1.77 0.45 28 18 10 1.8 0.1 10 6 4 1.5

2.0 54 9.4 24 3 21 0.14 3.5 33 21 12 1.75 0.35 14 10 4 2.5 0.35 29 16 13 1.23

SW 0.1 2 0.75 38 16 22 0.73 0.60 62 32 30 1.07 0.0 - - - - 0.0 - - - -

0.2 4 0.75 23 3 20 0.15 0.90 77 47 30 1.57 0.0 - - - - 0.0 - - - -

0.4 8 0.65 11 4 7 0.57 0.75 50 27 23 1.17 0.4 39 20 19 1.05 0.0 - - - -

1.0 22 1.35 8 1 7 0.14 1.0 23 10 13 0.8 0.7 55 30 25 1.2 0.15 14 8 6 1.33

2.0 54 2.45 6 1 5 0.20 1.1 12 5 7 0.71 0.8 35 18 17 1.06 0.55 47 25 22 1.14

T3 0.1 4 0.8 35 14 21 0.67 0.70 65 34 31 1.09 0.0 - - - - 0.0 - - - -

0.2 10 0.6 11 1 10 0.1 0.65 50 28 22 1.27 0.4 39 20 19 1.05 0.0 - - - -

0.4 18 1.1 7 0 7 0.0 0.25 9 5 4 1.25 0.9 82 45 37 1.22 0.0 - - - -

1.0 44 2.0 5 0 5 0.0 0.45 5 2 3 0.67 0.15 12 7 5 1.4 0.85 78 42 36 1.16

2.0 80 3.0 5 0 5 0.0 0.40 2 0.7 1.3 0.54 0.35 12 7 5 1.4 0.95 81 43 38 1.13

sulated within the largest clusters (> 30) is also another
verification for the observed difference in mod-GAP, as
among three potentials GAP has the lowest fraction of
defects in this cluster size division.

We also performed cluster analysis taking the vacancies
and interstitils separately into account in the simulation
boxes. In the prediction of all potentials, the isolated
defects are mostly of interstitial type, though the frac-
tions are different. This could raise an expectation that
larger clusters would be vacancy-rich, which is confirmed
by a closer inspection of the focc and Fv/Fi quantities
for larger clusters (10-30, > 30) in Table III. Fv/Fi is
the fractional ratio of vacancies and interstitials in each
case. Taking the Fv/Fi for the isolated defects into con-
sideration, its value for all potentials and PKA energies
is below 1.0 which indicates the domination of isolated
interstitials over isolated vacancies. The distribution in
the other size bins shows that the number of vacancies
are higher than the interstitials in the clusters, since in
almost all of the larger-size (non-isolated) groups, the
Fv/Fi is greater than 1.0. However, it seems that there is
no direct relation between the size of the cluster and the
fraction of its vacancies and interstitials. The domina-
tion of vacancies over interstitials in the clusters applies
for all energies in GAP’s prediction. For T3 and SW the
exception is ”2-10 defects” group with 1.0 and 2.0 keV
PKA energies which have < 1.0 values but, in the larger
cluster sizes, again, vacancies are forming major part of

the cluster. So, it could be stated that the vacancies are
more likely to be clustered than interstitials.

The second difference in clustering of the defects in
mod-GAP, which, in a way, describes its first difference, is
the different ”evolution pattern” of the cascades in mod-
GAP compared to the T3 and SW potentials. If one con-
siders that (sub)cascades are developing within pocket-
like volumes in the cell, in classical potentials these pock-
ets are larger and contain the major portion of displaced
atoms, which after cooling down results in in localized
and denser clusters of final defects. On the contrary, cas-
cades in the GAP spread across a broader spatial range,
creating relatively smaller pockets (hence smaller clus-
ters of final defects) and leaving more isolated defects. In
other words, more atoms are involved in the distribution
of the injected energy by the PKA in the GAP, while the
dissipation of energy is concentrated more locally in the
classical potentials. This does not imply that there are
no larger clusters in mod-GAP simulations, but rather
that the frequency of larger clusters is lower in GAP and
that their sizes are smaller than their counterparts in T3
and SW. This observation is confirmed by looking at the
fraction of defect clusters with the size of ”> 30 defects”
in Table III, where this class of clusters include lower
fraction of total defects in mod-GAP compared to T3
and SW.

In order to assess the evolution of the cascades and
resulting final clusters in the mod-GAP more quantita-
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tively, we carried out another two analyses. First, we
selected the largest defect clusters in our 2 keV PKA
energy simulations in three potentials (20 simulations for
each potential) and assigned a polyhedral surface to each
cluster. The process was done using the associated mod-
ule implemented in the OVITO package. The probing
radius was set to 10.8 Å, same as the cutoff value in our
cluster analysis, and smoothening level was set to zero in
order to have the maximum number of defects enclosed
by the generated 3D surface. We then calculated the
volume of the constructed geometries around the clus-
ters in three potentials. The mod-GAP with the average
volume of (1248 ± 407) Å3 has smaller volume occupied
by the final defect clusters in the box, against T3 with
(6233 ± 656) Å3, and SW with (1948 ± 330) Å3. In the
second analysis we calculated the average distance be-
tween the initial position of the PKA, and the center of
mass of relatively large clusters that contain 30-45 de-
fects. The average distance in GAP is (38.5 ± 3.8) Å,
which is greater than the average value of (24.3± 6.5) Å
in T3, and (25.4± 2.3) Å with the SW potential, indicat-
ing that in GAP, on average, the atoms which have been
energetically affected by the PKA impact, reside farther
away from the PKA position.

The presence and structure of the small defect clus-
ters is important when characterizing the performance
of semiconductor devices. The optical/electrical activity
[74–76], diffusion, interaction, and placement of dopants
upon thermal annealing [77–80], and nucleation of ex-
tended defects [81, 82] can be greatly influenced by the
density and configuration of small clusters. In Ref. [51]
we observed a new defect cluster in our cascade simu-
lations, which we now analyse and characterize in more
detail. The probability of formation of this cluster in the
cascades was 0.03, 0.01, and 0 in the simulations by mod-
GAP, SW, and T3 potentials, respectively. The cluster
is comprised of a central vacancy and three split intersti-
tials that surround the vacancy and is illustrated in Fig
6. In all cases two of the dumbbells are of [1 0 0] type
and the third one is a [1 1 0] dumbbell. With one case
as exception, the other feature of the cluster is that all
of the six atoms that surround the central vacancy are
four-folded. The exception is with one of the GAP occur-
rences where two of the interstitials have a coordination
number of three. This feature explains the stability of
the cluster upon quenching the system to 0 K. In cases
that the surrounding atoms are all four-folded, the defect
remains stable without any recombination. However, in
the case that the interstitials are three-folded, one of the
interstitials combines with the vacancy and the cluster
collapses.

To investigate the thermal stability and energetics of
this cluster, we checked the stability of the cluster in
DFT and in finite-temperature simulations with the mod-
GAP. The position of the interstitials and vacancy were
extracted (coordination numbers, and relative directional
vectors with respect to the surrounding atoms were taken
into account) and the cluster was put in a new 512-atom

FIG. 6. A defect cluster found in molecular dynamics sim-
ulation of collision cascades with the mod-GAP interatomic
potential. The cluster is comprised of a central vacancy and
three dumbbell interstitials around it. The missing bond in
the array of bonds at the center of the image can be helpful in
locating the vacant site. Two of the dumbbells that surround
the vacancy have [1 0 0] configuration (colored black and blue)
and the third dumbbell is a [1 1 0]-type (green). Red atoms
show the regular atomic sites in silicon lattice. All of the six
atoms around the vacancy are 4-folded. The formation energy
of the cluster is 5.57 eV according to DFT.

perfect cell, yielding a 514-atom defective cell. The DFT
calculations were performed with VASP package as be-
fore, with the PBE GGA exchange-correlation functional.
The PAW potential with 12 valence electrons was used
and the plane-wave cutoff energy was 710 eV was used.
Brillouin-zone sampling was performed using Monkhorst-
Pack mesh grid of (2× 2× 2). To obtain equilibrium ge-
ometries, all atoms were relaxed with conjugate gradient
method until residual forces on atoms became smaller
than 0.01 eV/Å. The cell shape and cell volume were
also allowed to change during the relaxation. The de-
fect cluster remained stable during the DFT relaxation.
Upon relaxation, the (min,max) displacement among the
interstitials is (0.16Å, 0.30Å).

We calculated the formation energy of the cluster, Ef ,
defined by Ef (n) = [Etot(In)−(1+n/N)Ebulk(N)], where
N is the number of atoms in the perfect cell, Etot(In) is
the total energy of defected cell with N + n atoms, and
Ebulk is the total energy of the perfect system. GAP’s
prediction of Ef is 5.97 eV, while DFT gives a slightly
lower value of 5.57 eV. The formation energy of the clus-
ter is comparable to those reported in the previous ab
initio stability analysis studies of the small defect clus-
ters in silicon. Our 3I+V cluster is an alternative 2I
configuration in the net balance of atoms. In Ref. [83]
in which the stability and the formation energy of the
interstitial clusters, In (n 6 10), has been studied, the
formation energy of the I2 cluster was reported to be 5.58
and 5.04 eV with the GGA and LDA calculations, respec-
tively. Also, a value of 5.66 eV with the GGA functional
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in a 216-atom box has been reported in Ref. [84]. These
values are very close to the 5.57 eV by our GGA DFT
of the new cluster, indicating that its stability is simi-
lar to other clusters of the same size. The experimental
Ef value for I2 cluster can be found in Ref.[85] which
amounts to 3.34 eV. In an earlier attempt a value of 2.6
eV had also been reported [84]. These experiments have
been performed in high temperature conditions(600-800
C) and the inverse model has been implemented to derive
the reported values.

To further investigate thermal activation of the cluster
we conducted annealing simulations at the temperature
range of (400-1600)K. The cluster remains stable up to
700 K, for at least 30 ps and collapses at 740 K. The
cluster collapses into two interstitials, that remain stable
up to 50 ps. One of the interstitials is a [1 1 0] dumbbell
and the other one is a tetrahedral interstitial. Regarding
the transformation path of the cluster, although the final
configuration that the cluster collapses into is similar in
all cases (a [1 1 0] dumbbell and a tetrahedral intersti-
tial), the atom that becomes the tetrahedral interstitial
or the atoms that are building the [1 1 0] dumbbell are
not identical. Moreover, the location of the interstitial
and the orientation of the dumbbell are also different in
simulations. As a result, a unique recombination path
is not achieved. However, the formation energy of the
final collapsed-into configuration in all cases is 5.30 eV.
The average lifetime of the cluster, 〈ta〉, at different tem-
peratures can be estimated using the Arrhenius equation
as

1

〈ta〉
= ν exp

(
−Ea

kBT

)
(6)

where Ea is the activation energy of recombination; ν is
the attempt frequency; kB is the Boltzmann constant,
and T is the temperature. The attempt frequency and
activation energy can be calculated by fitting Eq. 6 to
the obtained recombination times at different simulated
temperatures in an Arrhenius plot. Fig. 7 represents
the fit and corresponding activation energy and attempt
frequency for recombination of the cluster. The physics
considerations for the Arrhenius fit presented in Fig. 6
are as follows. In order to have the transition state the-
ory valid, the recombination time should not be shorter
than about three lattice vibrations, or 1 ps. Otherwise,
the recombination occurs in a time span that is shorter
than the thermodynamic relaxation time, which breaks
the transition state theory. Hence, we considered only
the temperature range up to Tmax, which was defined as
the temperature at which the cluster did not recombine
for at least 2-3 ps. Tmax was found to be 1100 K. Starting
from Tmax, subsequent annealing simulations at temper-
atures down to the 800 K, with the narrower interval of
50 K were carried out. For each temperature seven cases
were simulated. The average recombination time and the
associated standard error of the mean at each tempera-
ture were considered in the fitting. Using the acquired
attempt frequency of ν = 15.28 ps−1 and activation en-

ps

6×10
2

2×10
1

3×10
1

1100

FIG. 7. The Arrhenius plot, through which the attempt fre-
quency and activation energy for the recombination of the
3I+V defect cluster is calculated. At each temperature seven
annealing MD simulations with the mod-GAP potential have
been carried out. Uncertainties are standard error of the
mean. With the estimated ν and Ea values, the average life
time of the cluster at room temperature is predicted to be
0.0725 µs.

ergy of Ea = 0.36 eV, Eq. 6 predicts the life time of the
cluster to be 0.0725 µs at room temperature.

V. Conclusion

We exploit the near-DFT accuracy of a Gaussian ap-
proximation machine-learning potential, GAP, to provide
an ab initio perspective of the primary radiation damage
in silicon. We show that there are perceptible differ-
ences between the predictions of GAP and traditional
potentials in both the heat spike phase and in the final
state of the defects. Regarding the threshold displace-
ment energy, SW has the highest global average, where
T3 and GAP potentials yield very close global average
values. Moreover, in contrary to GAP, the global mini-
mum threshold is found in low-index directions in classi-
cal potentials. Ion-beam mixing is greater in GAP by a
factor a two. As for the final state of the damage, larger
defect clusters have lower fraction in the simulations with
GAP and survived defects are majorly in the form of
small-sized clusters or isolated defects. We show that
this feature arises from the form by which the cascades
are evolving in GAP; a more-spread form of propagation
compared to the confined-in-pocket form with classical
potentials. We also present detailed assessment of the
new defect cluster that we encountered in our previous
work. This cluster is comprised of four defects where
a vacancy is surrounded by three dumbbell interstitals,
and its occurrence is higher in simulations with GAP.
The cluster remains stable when quenched to 0 K and
shows no recombination up to 700 K. The stability of
the cluster comes from the four-folded bonding nature of
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the all atoms around the vacant position. The formation
energy of this cluster is 5.97 eV by GAP compared to the
5.57 eV obtained with DFT calculations. Assuming that
the Arrhenius equation holds for thermally-activated re-
combination of the cluster, 0.0725 µs was estimated as
the average lifetime of the cluster at room temperature.
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Pártay, N. Bernstein, G. Csányi, and G. L. W. Hart,
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