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Fast and accurate machine-learned interatomic potentials
for large-scale simulations of Cu, Al, and Ni

A. Fellman®,” J. Byggmistar ©, F. Granberg ©, K. Nordlund ®, and F. Djurabekova
Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki, Finland

® (Received 28 August 2024; revised 3 February 2025; accepted 14 April 2025; published 23 May 2025)

Machine learning (ML) has become widely used in the development of interatomic potentials for molecular
dynamics simulations. However, most ML potentials are still much slower than classical interatomic potentials
and are usually trained with near-equilibrium simulations in mind. In this work, we develop ML potentials for
Cu, Al, and Ni using the Gaussian approximation potential (GAP) method. Specifically, we create the low-
dimensional tabulated versions of the potentials, which allow for two orders of magnitude higher computational
efficiency than the GAPs, yet similar accuracy, enabling simulations of large multimillion atomic systems. The
ML potentials are trained using diverse curated databases of structures and include fixed external repulsive
potentials for short-range interactions. The potentials are extensively validated and used to simulate a wide range
of fundamental materials properties, such as stacking faults and threshold displacement energies. Furthermore,
we use the potentials to simulate single-crystal uniaxial compressive loading in different crystal orientations with
both pristine simulation cells and cells containing preexisting defects.
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I. INTRODUCTION

Machine learning (ML) approaches have become in-
creasingly commonplace in the development of interatomic
potentials for atomistic simulations. Machine learning inter-
atomic potentials (MLIPs) have shown excellent accuracy
compared to traditional analytical potentials [1,2]. Therefore,
MLIPs can bridge the gap between ab initio methods, such
as density functional theory (DFT), and classical analytical
models. A growing number of different ML frameworks exist
for the creation of interatomic potentials, and the number of
available ML potentials is increasing rapidly. ML potentials
do not assume fixed functional forms, which allows them to
be more flexible than their analytical counterparts, mainly
at the cost of computational efficiency. Although numerous
different ML potentials for single elements have been devel-
oped [3-7], these potentials are usually trained mainly with
near-equilibrium simulations in mind. In extreme environ-
ments, the simulated systems exhibit far from equilibrium
phenomena, and care must be taken to avoid the models
breaking down due to the poor extrapolation capability of ML
[8]. Additionally, for the Al-Cu alloy system, there exists a
Behler-Parrinello neural network potential (NNP), which has
been used to study a wide range of materials properties [9].

Molecular dynamics (MD) has been widely used to study
the fundamental properties of compressive loading [10-16].
Even though direct comparison between MD simulations and
experiments is difficult due to timescale limitations and, there-
fore, exaggerated strain rates, MD can still provide valuable
insights into the fundamental mechanisms with atomic res-
olution. In particular, MD can provide understanding of the
dynamics of dislocation nucleation caused by straining of
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the materials. Single-crystal compression has been studied
extensively in elemental metals with a good portion of the
work focusing on Cu. However, most of the simulations are
performed on pristine systems without any preexisting de-
fects, even though real materials are never defect-free. In BCC
metals, such as tantalum, the effects of preexisting defects
on compression has been studied in some detail [17]. There
exist some studies of effects of defects on materials response
during uniaxial loading of the FCC materials as well [18-22].
However, the defects in these simulations under compressive
loading were well defined, such as voids or stacking fault
tetrahedra (SFT).

Additionally, it has been shown that the choice of inter-
atomic potential in terms of accuracy is crucial for loading
simulations that lead to plastic deformation, i.e., compression,
tension, or nanoindentation [23]. In this respect, ML poten-
tials can offer the required accuracy for modeling of these
phenomena. However, in large-scale simulations, computa-
tional costs may become prohibitively high, limiting the use
of the most accurate machine learning potentials. Thus, the
development of more efficient, but still sufficiently accurate
ML potentials for large-scale simulations (length and time) is
highly desirable.

In this work, we train ML potentials for elemental copper,
aluminium, and nickel, with the specific focus on large-scale
simulations and far-from-equilibrium conditions such as those
found in radiation damage events. The potentials are validated
and ultimately used to study both the threshold displacement
energies as well as single-crystal uniaxial compression. For
the compression tests, in contrast to most of the previous stud-
ies, we consider the simulation cells with the saturated level
of defects. The latter were introduced by means of Frenkel
pair insertion with subsequent annealing. This technique
allows to obtain uniform distributions of defects of different
kind, including point defects, defect clusters, and dislocations.

©2025 American Physical Society
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Uniaxial compressive loading is then performed along various
crystallographic orientations with both the pristine cells and
the cells with saturated level of radiation defects.

II. METHODS

A. Gaussian approximation potentials

All potentials presented in this work are Gaussian approx-
imation potentials (GAP) trained with different combinations
of descriptors [24]. GAP is a ML framework based on sparse
Gaussian process regression and some combination of de-
scriptors for the encoding of local atomic environments. The
total energy of models used in this work are defined as

E. = Erep. + EmL, (1)

where the energy of the system is separated into an ex-
ternal repulsive potential, Erp, and a machine-learned part,
Ewmp, trained as a GAP. The repulsive part is included in
order to more accurately describe short-range interactions, as
shown in more detail in Ref. [8]. The repulsive part in our
case is a Ziegler-Biersack-Littmark-type (ZBL) [25] repulsive
potential:
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The screening function ¢(7;;/a) is not the universal ZBL one,
but refitted to repulsive dimer data from all-electron DFT cal-
culations [26]. Additionally, the screened Coulomb potential
is multiplied by a cutoff function, feu(7;;), to force it to zero
well below the nearest-neighbor distance of each material, to
avoid interfering with the near-equilibrium interactions de-
scribed by the machine-learned part. The range of the cutoff
was chosen to be 1.0-2.2 A to ensure a smooth transition
between the all-electron calculations and short-range DFT
data that were part of the training data.

The ML part of the model can be further divided into two-
body and many-body terms. For the models referred to in this
work as GAP, the total energy is described using the following
equation:
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Here the sum over N refers to the sum over local descriptor
environments and M refers to selected sparsified subset of de-
scriptor environments from training structures. The two-body
term consists of prefactors 83, and regression coefficients .
Furthermore, it uses a squared exponential kernel K. and a
two-body descriptor that corresponds simply to the distance
between two atoms. The many-body term uses the widely
known SOAP (smooth overlap of atomic positions) kernel
and descriptor [27]. The inner sums in the equation run over

sparsified subsets of the reference systems used for the train-
ing of the potential.

In addition to the GAP (with the SOAP descriptor), we
created low-dimensional tabulated versions (tabGAP) of the
ML potentials [28,29]. The total energy for the tabGAP is
defined similarly as for the model described in Eq. (4), but
with a different selection of descriptors:
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Whereas the model in Eq. (4) uses the SOAP descriptor, the
tabGAP potential uses a three-body cluster descriptor (de-
fined as a three-valued permutation-invariant vector [30]) and
an embedded atom method (EAM) density descriptor. The
EAM density is a scalar pairwise summed radial function,
as in standard EAM potentials [28,31,32]. Cutoff functions
are applied on the kernels to limit the interaction range. No
inner cutoffs are applied, but for short interatomic distances
the contributions from the ML terms are negligible compared
to the repulsive potential Ep, [8].

The tabGAP potential is trained similarly as the GAP
potential, but after the initial training of the model, the en-
ergy contributions of the different terms of the potential are
tabulated onto low-dimensional grids and evaluated using
cubic-spline interpolation. The repulsive and two-body terms
are tabulated into a one-dimensional grid, the three-body term
into a three-dimensional grid and the EAM term into two
one-dimensional grids. With dense enough grid sampling, the
interpolation errors are negligible [33]. Further details on the
tabulation process can be found in Refs. [28,29]. The simpler
descriptors of the tabGAP model allows for this tabulation,
which while sacrificing a little accuracy compared to SOAP-
GAP gives the model a two-orders-of-magnitude increase in
computational efficiency from the GAP, making the model
more suitable for large-scale simulations. Furthermore, previ-
ous work using the tabGAP formalism in BCC high-entropy
alloys has demonstrated good extendability of the method
with increased number of chemical species [28].

B. Density functional theory calculations

All the DFT calculations in this work were performed
using the VASP DFT code [34-37]. The calculations used the
PBE GGA exchange-correlation function [38] and projector
augmented wave (PAW) pseudopotentials (Cu_pv, Al, Ni).
The plane-wave expansion energy cutoff was 500 eV for all
elements. K points were defined using I"-centered Monkhorst-
Pack grids [39] with maximum k spacing of 0.15A~". Ad-
ditionally, first-order Methfessel-Paxton smearing of 0.1 eV
was applied [40]. For Ni, collinear spin-polarized calculations
with initialized ferromagnetic order were performed, while
the Cu and Al calculations did not include spin polarization.
We employ spin polarization for Ni as this makes it easier
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to combine its DFT data in the future with alloying elements
where magnetism might become relevant. Furthermore, the
magnetic moment after a simple relaxation in FCC Ni was
about 0.6 up per atom. Parameters such as energy cutoff, £
spacing, and smearing were kept the same for all calculations
and elements in order to allow for the possibility to combine
data between elements for the creation of alloy potentials in
the future.

C. Training and testing data

Like in most ML applications, the quality of the train-
ing data is critical for the quality of the final model. The
training data should reflect the expected range of circum-
stances that can reasonably occur during the use of the
model. The potentials presented in this work were designed
with the goal of making a good general-purpose model with
additional considerations for short-range repulsive interac-
tions, which take place in far-from-equilibrium simulations,
such as radiation damage simulations. We note that the
database has been constructed for a general-purpose model
with no specific simulation type in mind. In the latter case,
the applicability of the potential must be additionally vali-
dated, since tailored models may still be required in some
cases. The training data consist of the following classes of
structures:

(1) Randomly distorted unit cells (FCC, BCC, and HCP).

(2) FCC, BCC, and HCP lattices at finite temperatures and
different volumes, initially created by running MD simula-
tions with earlier iterations of the final potentials.

(3) Systems containing various small vacancy and in-
terstitial clusters (from one to three defects with different
configurations).

(4) Liquid systems with various densities prepared by
melting MD simulations.

(5) (100),(110), and (11 1) FCC surfaces.

(6) Structures with a few disordered surface layers.

(7) Stacking-fault-like structures where a small slab is
moved on a atom plane randomly.

(8) Dimers and trimers with various distances between
atoms.

(9) Short-range systems, where an atom is randomly in-
serted into an FCC lattice fairly close to other atoms (= 1 10%).

(10) Structures with trajectories of a single atom being
moved along a rigid path in various high-symmetry directions
while the other atoms remained fixed.

The training datasets for the GAP and tabGAP were kept
identical. However, there are slight differences between the
different DFT databases for the different elements. The Al
potentials do not include dimers as the inclusion of the dimer
data degraded the accuracy and computed properties of the
potentials. Likewise, for Cu and Ni trimers were omitted
from their respective training databases, due to similar con-
cerns. This degradation came mostly in the form of overfitting
issues to the high-energy structures included in the dimers
and trimers and affected especially the elastic properties and
formation energies. This is mostly due to the challenging
structures we wanted to include into the training data for
nonequilibrium properties. These detrimental effects can be
mitigated by hyperparameter tuning and by careful curation

TABLE 1. Hyperparameters used for the different descriptors:
cutoff radius ., width of the cutoff region rac,, energy prefactor &,
and the number of sparse descriptor environments from the training
structures M.

Formalism  Descriptor Feut(A) Facar(A) ) M

2b 5.2 1.0 10 20

tabGAP EAM 5.2 1.0 1.0 20
3b 4.0 (4.5 Al 0.6 1.0 700

GAP 2b 5.2 1.0 10 20
SOAP 4.5 1.0 2.0 2000

of the training data, but ultimately the omission of certain
structures yielded best results in our case. Before training,
a random subset (5%—-10%) of the training data containing
systems from each category was removed and put aside and
used as testing datasets.

D. Hyperparameters

The GAPs described here have a number of hyperparam-
eters that have to be set before training. Table I shows the
hyperparamaters used for the different descriptors. The cutoff
distance of the three-body descriptor for Al was chosen to be
longer, as Al has a significantly larger lattice constant. The
results showed that, indeed, the longer cutoff in case of Al
improved the model accuracy for this material. Additionally,
the SOAP descriptor used 8 as the number of radial basis
functions (n,,x) and number of spherical harmonic ([p,y)-
Another set of hyperparameters are the regularization terms
o for the energies, forces and virials. The default values for
these parameters were 1 meV/atom, 0.04 eV A-'and 0.1 eV,
respectively. For systems such as liquid structures, dense
structures, and short-range interactions (including trajecto-
ries) these regularization terms were increased by a factor
of 10 (100). The sparse sampling used CUR (datapoints)
for the SOAP descriptor, while all other descriptors in this
work used uniform sampling as implemented in the GAP
framework. The number of grid points used in the tabulation
was chosen after convergence testing to be 5000 for both
two-body and EAM descriptors and for the three-body grid
to be 80 x 80 x 80.

E. Threshold displacement energy calculations

All MD simulations in this work were done using the
LAMMPS simulation package [41]. The threshold displace-
ment energies were determined by sampling 800 random
spherically uniformly distributed lattice directions. A series of
simulations were performed for each direction, where an atom
is given higher and higher kinetic energy (2 eV increments) in
the specific direction until a stable defect is formed. During
this simulation, border cooling was applied (NVT) with a
temperature of 10 K, while the rest of the system was kept
in the NVEensemble. The simulation cell was chosen to be
(12 x 13 x 14) units cells which corresponds to 8736 atoms.
A noncubic simulation cell size was specifically chosen to
reduce the possibility that replacement collision sequences
along low-index crystal directions interact with themselves
across the periodic boundaries.
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F. Uniaxial compressive loading

For the uniaxial compressive loading simulations, cells in
two crystal orientations were created: one with the (100)
lattice orientation aligned with the z axis and one with (11 1)
alignment. Furthermore, for each direction, a simulation cell
containing defects was created in addition to the pristine bulk
cells. All side lengths of the simulation cells were roughly
equal, and they were around 22-27 nm in length depending
on element and orientation. This corresponds to a system size
of around 1.1 million atoms. These simulation cells were large
enough for imaging effects from periodic boundary conditions
to be negligible [12]. The pristine systems were thermalized
to 300 K in NPT conditions for 60 ps. The simulation cells
containing defects were created from the pristine cells by
manually inserting around 10000 randomly placed Frenkel
pairs (FPs) into the cell. The created structures were then
minimized using the conjugate gradient method in order to
ensure that atoms were not accidentally moved too close to
each other during the insertion of FPs. The cells were then
heated up from 100 K to 300 K in the NPT ensemble for 200
ps after which the system was additionally relaxed for 400 ps
at the 300 K temperature in the same NPT ensemble. The final
configurations were periodic in all directions and were used as
starting points for the uniaxial loading simulations. The com-
pression simulations were performed by uniaxial compressive
loading of a given orientation with a constant strain rate of
1 x 10%/s. This strain rate has been used in previous studies
and shown to be sufficiently low with a negligible effect on
the maximal yield stress [11]. The directions orthogonal to
the loading direction were decoupled from the latter and the
temperature and pressure in these directions were controlled
in the NPT ensemble. The temperature of the system was
kept at 300 K and a 0.001 ps time step was used in all
simulations. During compression the stresses were calculated
from the per-atom stresses of all the atoms in the system
and the atomic configurations were stored at regular intervals.
This procedure was continued until the maximal strain of 20%
was reached.

III. RESULTS AND DISCUSSION
A. Train and test errors

Table II shows the root-mean-square (RMS) errors of the
testing data of each potential. Overall the errors show that
the simpler descriptors of tabGAP only slightly reduces the
accuracy in regards to energy and force errors compared to
GAP with the SOAP descriptor. The largest difference be-
tween GAP and tabGAP is seen for Ni, but the RMS errors
of the Ni tabGAP are still low, a few meV/atom, and hence
acceptable. Furthermore, we divide here the testing data into
crystalline and liquid structures in order to highlight the dif-
ference between them, as liquids and disordered structures are
in general more difficult to describe.

B. Computational efficiency

Computational efficiency was measured by running simu-
lations containing 32 000 atoms with the different interatomic
potentials. All simulations were done on a single Xeon Gold

TABLE II. Energy E and force F RMS errors of the testing data
for crystalline and liquid structures separately.

(meV/atom) (eV/A)
Ecryslalline Eliquid Fcryslalline Fiiquid
Cu
GAP 0.8 3.0 0.015 0.06
tabGAP 1.1 2.0 0.015 0.03
Al
GAP 0.6 24 0.014 0.06
tabGAP 1.1 3.0 0.02 0.06
Ni
GAP 0.5 1.9 0.012 0.1
tabGAP 1.6 39 0.07 0.12

6230 CPU core. Table III shows the benchmarking results of
different potentials (smaller number equals to a more compu-
tationally efficient potential). We can clearly see that tabGAP
is about 80-150 times faster than its GAP counterpart. In
recent years significant developments have been made in the
computational efficiency of ML potentials with methods such
as neural network potentials (NNP) and atomic cluster ex-
pansion which show significant improvements in performance
and computational efficiency compared to GAP [4,5]. Further-
more, we compare computational efficiency of the presented
models with the recent implementation of the atomic cluster
expansion (PACE) model as it has been shown to be the best
performing in terms of accuracy and efficiency [5]. Compared
with the PACE model the tabGAP potential is about 17 times
faster. Furthermore, we compare against the Al-Cu Behler-
Parrinello neural network potential (NNP11) [9], where we
can also see an order of magnitude difference compared to
tabGAP. Additionally, the tabGAP potential is only an order
of magnitude slower than classical EAM potentials, which is
a reasonable increase of computational costs given the higher
accuracy and the consistency with DFT calculations of the ML
models compared to the EAM ones.

C. Basic material properties

To verify the accuracy of the developed potentials, we
calculated different material properties. Table IV shows the
good agreement with the available DFT and experimental data
of the basic structural, elastic, and defect properties obtained
with the tabGAP and GAP. Generally, we observe minor
differences between the GAP and tabGAP potentials, mainly
in the formation energies of defects and elastic constants.
The largest difference can be seen in the migration energies
of interstitial defects where the GAP model is closer to the

TABLE III. Benchmark of computational efficiency. Computa-
tional efficiency given as milliseconds/(atom x step). All simulations
are run on a single CPU core with a system containing 32 000 atoms.

GAP-SOAP tabGAP EAM MLIP

Cu 37 0.029 0.0014 [42] 0.51 [5], 0.33 [9]
Al 22 0.028 0.002 [43] 0.77 [9]
Ni 43 0.029 0.0036 [44], 0.002 [45] —
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TABLE IV. Calculated material properties compared with DFT and experimental results. a: lattice constant (A); E.qy: cohesion energy
(eV); En,.: energy difference between relaxed structure of given type compared with FCC (meV/atom); E,

def .

mig: defect migration energy in

FCC (eV); C;j: elastic constants (GPa); y(jx: surface energies (mJ/ m?); E;: formation energy of a single vacancy and interstitials (eV); Tpei:

melting temperature (K).

GAP tabGAP DFT Expt.
Cu

a 3.626 3.625 3.632 3.615 [51]
Econ 3.724 3.724 3.724 3.49 [51]
En,.. 38.2 37.9 36.3 —

Eppey 7.9 8.0 7.5 —
E[‘I’:}; 0.742 0.780 0.79 [4] 0.70 [52-54]

Erfég 0.121 0.155 — 0.117 [52-54]
Ci 163 168 166 169 [50]

Cp 122 138 119 122 [50]
Cy 77 81 76 75 [50]
Y(100) 1470 1486 1470 [46] 1520 (no specific direction), [47]
Y(110) 1556 1558 1560 [46] —

Ey© 0.92 1.03 1.08 1.28 + 0.05 [50]
EflooGl 2.95 3.04 3.22 2.82-4.12 [50]
Ep 3.36 3.36 3.51 —

Efm 3.56 3.59 3.90 —

Thelt 1270 1250 — 1356 [49]

Al

a 4.040 4.041 4.043 4.050 [50]
Econ 3.695 3.695 3.693 3.39 [51]
Ep,. 93.1 93.3 88.7 —

Eppey 28.5 28.7 29.2 —

mig 0.527 0.534 0.30-0.63 [55] 0.61 [52-54]
Eﬂ’; 0.097 0.065 — 0.112-0115 [52-54]
Cyy 105 101 101 108 [50]

Ci 63 70 66 62 [50]

Cy 32 37 29 28 [50]
Y(100) 900 897 910 [46] 1140 (no specific direction), [47]
Y(110) 985 975 980 [46] —

Yain 772 810 770 [46] —

E}* 0.67 0.66 0.68 0.67 + 0.03 [50]
Ef'(’od 2.63 2.66 2.66 3.0 [50]
Ep 2.83 2.84 2.88 —

Ef™ 3.16 3.15 3.23 —

Thelt 910 870 — 933 [49]

Ni

a 3.518 3.518 3.519 3.524 [50]
Econ 4715 4.715 4.713 4.44 [51]
En,.. 94.6 94.7 98.3 —

Enpey 27.8 27.6 31.9 —

,YS;‘ 1.0 1.06 1.12 [4] 1.04 [52-54]
Efjg 0.157 0.127 — 0.15 [52-54]
Ci 279 281 273 247 [50]

Cp, 153 156 155 153 [50]

Cyy 125 125 131 122 [50]
Y(100) 2213 2208 2210 [46] 1940 (no specific direction), [47]
Y(110) 2265 2272 2290 [46] —

Ey© 1.46 1.47 1.49 1.79 + 0.05 [50]
Elovd 4.13 4.13 4.07 —

Ep® 4.36 4.35 4.26 —

Ef 4.73 473 4.67 —

Telt 1690 1690 — 1726 [49]
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tabGAP
GAP
DFT
Cu

Al

Ni

Energy (eV/atom)

12.5 150 175 200 225 250

Volume (A3/atom)

5.0 75

FIG. 1. Energy vs volume compared with DFT calculations for
all the potentials in FCC structure.

experimental reference compared to tabGAP. The Cu and
Al potentials slightly underestimate the formation energies
of defects compared to the DFT calculations, while the Ni
potentials slightly overestimate them. The surface energies
show excellent agreement with the DFT calculations [46].
Furthermore, the agreement with experimental surface ener-
gies is good, while it must be noted that experimental values
are not for any specific direction and that there is some
spread in experimental values [47]. The melting point was
estimated using the two-phase method [48] with 20 K temper-
ature increments. It should be noted that in general, the ML
potentials slightly underestimate the experimental melting
temperatures [49].

In Fig. 1 the energy-volume curves are shown for each
of the elements. Here we see an excellent agreement with
DFT calculations in a wide range of atomic volumes. In
particular, we are interested in validating that the poten-
tials reproduce the repulsive interactions correctly and that
there is a smooth transition to the external repulsive poten-
tial. The external repulsive potential is added to describe the
interactions at very short interatomic distances. However, un-
desirable issues can still occur in the transition region, where
the repulsive potential starts to dominate, especially if the
short-range interactions are not properly taken into account. In
the case of the Cu GAP potential, we can see some deviations

tabGAP
- GAP
DFT
1/3(111)
1/2(110)
Al5

25+
20+
154

N
o o

=
w

[y
o

(O]

Formation energy [eV]

o o

Ni

18

6 8 10 12 14 16 20

Number of interstitial atoms
FIG. 3. Defect formation energies of A15 clusters and interstitial
dislocation loops compared with DFT calculations (lowest energy

data points only) from Ref. [57]. Markers and line styles indicate the
method used, and the colors indicate the defect type.

that appear at larger volumes, which are analogous to those
reported for other GAP potentials [5]. The energy-volume
curves for BCC and HCP phases of the materials under
the study can be found in the Supplemental Material [56]
Fig. S1, and the accuracy of those is essentially the same as
for the FCC case.

We also calculated the phonon dispersion curves for each
element in the FCC phase and compared with the available
experimental measurements, as shown in Fig. 2. The agree-
ment between GAP, tabGAP, and experiment is excellent for
all three materials. This further confirms that the developed
potentials can accurately capture elastic and thermal proper-
ties of the materials.

Recently, studies into the A15 Frank-Kasper nanophases
have shed new light into the formation of dislocation loops

10
s 5 SR, al 2 -4 Ve
N I Sy ok 4 8 4 Na S S
o N 4 / V% N4 i
6 ) 8 / [f \ 1 / A P i
—_ —_ 4 \ —_ 4 I
N S # AN A 4 S (PPN NG W
= & ¥ Y, Y 4 e =S /
c 6 ¥ cala, N / < t 4 % A
2 > 1 7T SEe 1 ] > 1 SNy [}
24 2 ¢ SR Y 2 ¥4 NV /
g 1 I SA N f 84 [/ A A
Bl Cu Zoaf 2 f N2 1AL MY | N\ 1A
& £ Ly Q‘f\ 1 [ 73? 2|y Ni \ \)““ 4/
i3 @ = | \
2 —— @bGAP ,,J L bGAP W 1 ”11 y i / bGAP Wy 1
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A Expt.Nilsson et al. i 4 Expt. Stedman et al. \4 ”// W A Expt.Dewit ef al. W 04
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FIG. 2. Phonon dispersion curves calculated using the small displacement method compared to experimental results [59-61].
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FIG. 4. Generalized stacking fault energy curves calculated with
the developed ML potentials and DFT.

in FCC metals [57,58]. Figure 3 shows the defect forma-
tion energies of A15 clusters and interstitial-type dislocations
compared with DFT calculations from Ref. [57]. The Al5
structures were constructed to be the low-energy structures
predicted and detailed in Ref. [57]. Additionally, the calcula-
tion of formation energies followed closely the methodology
detailed in the publication, with system size of 13500 + N,
where N is the number of interstitials. Conjugate gradient
relaxation was performed with a 0.002 eV/A force conver-
gence criterion. We can see from Fig. 3 that the results from
the GAP and tabGAP potentials are virtually identical. The
smaller A15 clusters (N < 7) are in most cases the lowest in
energy compared to the two different dislocations for both
tabGAP and GAP potentials, while at larger sizes the dis-
locations are energetically favorable. Interestingly, there are
differences between the elements when comparing against the
DFT calculations from Ref. [57], where Ni is very similar in
magnitude, Cu is slightly higher compared to DFT and for
Al this difference is most clear. Note that no A15 clusters or
dislocation loops were included in the training database.

The generalized stacking fault energy (GSFE) curves
shown in Fig. 4, were calculated by displacing one of the
{111} slip planes in a (1 12) direction. The DFT results were

calculated for the same systems as with the ML potentials,
using the parameters described in Sec. II B without relax-
ation. A good description of stacking faults is important for
the simulation of dislocations and grain boundaries. We also
observe a good agreement between the potentials and the DFT
results. The GAP potentials predict consistently lower stack-
ing fault energies compared to tabGAP and DFT. Somewhat
worse agreement is observed for Al, where both GAP and
tabGAP underestimate the GFSE value compared to the DFT
calculations. Table V' shows the stable stacking fault (marked
with the subscript “sf””) and unstable stacking fault (marked
with the subscript “usf”) energies compared to the DFT
and experiments. The unstable stacking fault energies of Ni
and Cu in GAP are somewhat lower in comparison to those in
tabGAP and DFT.

D. Dislocation core structures

We investigated the predicted core structures of edge and
screw a(110)/2 dislocations using the energy minimization
method. The dislocations were introduced into a cylindri-
cal cell following the procedure detailed in Ref. [71]. The
radius of the cylinder was 50 x b, where b is the Burgers
vector length, with an additional 20 A annular border region.
The atoms in the systems were initially displaced accord-
ing to anisotropic elasticity. After this a conjugate gradient
minimization is performed on the system, while fixing the
border atoms in place. Atomic illustrations of the minimized
dislocation cores from the tabGAP potentials are shown in
Fig. 5.

As a result after the minimization procedure, all the ini-
tially introduced perfect dislocations dissociated. Although
first-principles calculations of dislocation cores remain chal-
lenging [72], some approximately comparable DFT calcula-
tions have been performed in Al and Ni [73,74]. Interestingly,
in some simulations the tabGAP Al screw dislocation did not
dissociate during the minimization (Supplemental Material
[56] Fig. S2). Previously, a metastable nondissociated core
structure of a screw dislocation has been predicted in Al in
orbital-free DFT calculations. This was suggested to play a
role in the discrepancy of measurements of the Peierls stress
for FCC dislocations [75]. However, it is unclear whether the
nondissociated state observed in this work is an artifact of
the Al tabGAP potential or a feature correctly captured by the

TABLE V. Simulated and experimental values for intrinsic stacking fault energies (y,r) and unstable stacking fault energies (y,ss) for the

created potentials.

GAP-SOAP tabGAP DFT Expt.
Cu
st (mJ/m?) 20 40 35 (this work), 39 [62], 39 [63], 41 [64] 41 [69], 45 [65,68]
Vst (MJ/m?) 136 170 167 (this work), 158 [63], 164 [62], 180 [64]
Al
st (mJ/m?) 122 117 153 (this work), 134 [64], 140 [62], 158 [63] 120 [66], 150 [67], 166 [68]
Vst (MJ/m?) 168 158 182 (this work), 169 [64], 177 [62], 175 [63]
Ni
st (mJ/m?) 145 161 150 (this work), 137 [70], 145 [62] 125 [68]
Vst (MJ/m?) 274 308 296, and 278 (this work), 289 [62]
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FIG. 5. Dissociated dislocation cores of a{110)/2 dislocations
after minimization using the tabGAP potentials. Coloring is accord-
ing to common neighbor analysis: green atoms are FCC, red HCP,
white unidentified atoms, and the small green dots the positions of
dislocation lines according to DXA analysis [76].

tapGAP, since this metastable state was not observed in either
the GAP or the EAM potential.

For a quantitative comparison, we report in Table VI the
dissociation distances obtained by different methods. In gen-
eral, the agreement is reasonable. However, in the case of Cu,
the tabGAP results in somewhat lower values of the dissoci-
ation distance as compared to the GAP values. Overall, we
see that the dissociation distances in Cu are systematically
more compact in tabGAP while somewhat broader in GAP
as compared to the values reported in the literature.

E. Equation of state

Further validation of the developed potentials versus ex-
periment can be done by comparing the equation of states, as
measured in experiment and simulated using the potentials.
Figure 6 shows the pressure-volume relation calculated with

500 .
—— tabGAP /
—— EAM /
---- PACE /
-------- NNP '
400 ¢ Expt.
= Expt.
. Cu
Al
0N
300 . Ni Bonny
i~ B i Stoller
[a¥ B Ni Mishin
o B Al Mishin
o, I AaINNp
200{ B CuMishin
I cuPACE
B cunnp
100
§ R0 OO
00 10 20 30 40

AVIVy, %

FIG. 6. Equation of state calculated with various different inter-
atomic potentials compared to experimental data (Ni [82], Cu, and
Al [83]). The different markers for experimental data for Ni are from
different experiments [84,85]. Comparison is made to previously
developed potentials: EAM [42-45], PACE [5], Al-Cu NNP11 [9].

various potentials compared with experimental data. From the
figure we see that the tabGAPs can reproduce very well the ex-
perimental results. Although the agreement with experiment is
also good for the potentials previously developed for Al and
Cu, the results for Ni in different classical EAM potentials
agree to much lesser extent with experiment, especially for
higher compression. The good agreement of tabGAP results
with experiment for this material is encouraging, since an
accurate response to pressure is important for extreme envi-
ronment simulations, such as the uniaxial compressive loading
presented in Sec. III H.

F. Threshold displacement energies

The threshold displacement energy (TDE) defines the min-
imum energy required to displace an atom from its lattice
position, creating a stable defect. This is a key parameter
for experimental damage dose estimation when using the
NRT equation [86]. Moreover, the accuracy of the TDE val-
ues predicted by the interatomic potential is important for

TABLE VL. Dissociation distances estimated from different methods (A). The dissociation distances from this work are estimated from the

distance between dislocation lines predicted by DXA [76].

GAP tabGAP EAM [42,43] Literature

Cu

Edge 46.6 28.8 35.5 38.6 [77] (MLIP), 38 & 6 [69] (DFT)

Screw 16.7 10.0 12.1 15.7 [77] (MLIP), 18 & 6 [69] (Expt.)
Al

Edge 124 114 13.3 15.0 [78] (MLIP), 9.5 [73], and 12.8 [79] (DFT)

Screw 6.5 6.5 6.2 8.6 [78] (MLIP), 7.5 [73], and 8.2 [80] (DFT)
Ni

Edge 18.0 19.3 23.0 19.3 [81] (MLIP), 26 & 8 [65] (Expt.)

Screw 8.8 9.8 11.9 11.8 [81] (MLIP), 12.0 [74] (DFT)
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FIG. 7. Threshold displacement energy as a function of PKA direction. The same color range (10-120 eV) is used for all materials.

radiation damage simulations since they correlate directly
with the amount of defects produced in cascade events
[87,88]. We have calculated the TDEs as a function of lat-
tice direction for each element with the tabGAP potentials;
see Fig. 7. Table VII shows the TDEs for some high-
symmetry directions of the lattice as well as the average
TDE over all directions. Additionally, for the GAP poten-
tials only high-symmetry directions were considered as the
full TDE map would have been prohibitively computationally
expensive. In this case, 10 runs were initialized with random
directions within a 5° cone of each high-symmetry direction.
The TDEs predicted for the high-symmetry directions are
in good agreement with experimental results. Comparison
with the ab initio MD results [89] shows that the tabGAP
predicted TDE values are consistently lower, but closer to
experiment than the ab initio MD values. The Al tabGAP
potential has a somewhat higher average TDE when com-
paring with the previous MD results (17-27 eV) for both
EAM and MEAM potentials and a more recent deep-learning
potential [90]. The ASTM recommends as the effective TDEs
30, 25, and 40 eV for Cu, Al, and Ni, respectively [91].
The calculated averages for the tabGAP potentials are con-
sistently higher than the ASTM recommended values, while
still in fairly good agreement. Since the accuracy of the

TABLE VII. Threshold displacement energy (eV) for high sym-
metry directions (£1eV) and the average (with standard errors).
Values given inside parentheses are the averages of the data points
within a 5° cone from the specific direction.

tabGAP GAP AIMD Expt.
Cu 19 [93]
(100) 19(203) 19(19.4) 25[89] 19 (100) [92]
(110)  21(224) 21(21.2) 19 (110) [92]
(111)  31(52.2) 29(34.8)
(avg) 444408 29 [94], 4344 [93]
Al 16 [93]
(100) 15(17)  17(17.0) 19 [89]
(110)  17(19)  15(18.4)
(111)  19(37.5) 21(29.2)
(avg) 343406 27 [94], 66 +12 [93]
Ni 23 [93]
(100) 21(233) 19(20.6) 27 [89]
(110) 19(19.5) 21 (21.4) 30 [89] 21 (110) [92]
(111)  29(58.6) 29 (39.0) 70 [89]
(avg) 429407 33 [94], 69 [93]

reproduced key properties of materials is overall very sim-
ilar in tabGAP and GAP, and considering the much lower
computational cost of the simulations with tabGAP, here-
after we only calculate and include results obtained with the
tabGAPs.

G. Frenkel pair insertion

To verify the stability of the potential as well as investigate
the microstructure of defects predicted by the tabGAPs, we
now study the dynamics of the system with high concentration
of vacancies and interstitials via insertion of large numbers
of randomly created Frenkel pairs, which was followed by
MD relaxation runs. During the simulations, the number of
vacancies was tracked using the Wigner-Seitz (WS) analysis
[95]. Additionally, DXA dislocation analysis [76] as imple-
mented in OVITO [96] was performed to find the types of
dislocations present in the simulation cell after relaxation.

Figure 8 shows the evolution of the number of vacancies
identified by WS analysis during relaxation. The initial drop
of the number of defects is explained by the relaxation of
unstable manually inserted defects during the initial relaxation

7000

6500

6000

Number of vacancies
= ul [@)]
()] o ()]
= S =
S S S

4000

3500

3000

0 100 200 300 400 500 600
Time [ps]

FIG. 8. Number of vacancies as a function of time during re-
laxation of inserted Frenkel pairs. The number of FPs in the initial
configurations was on the order of 10000. The two differently
oriented simulation cells ((100) and (11 1)) are depicted. The simu-
lation cells were heated up from 100 K to 300 K during the first 200
ps after which the temperature was maintained at 300 K for the rest
of the simulation.
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(c) Ni

FIG. 9. Final dislocation structures after relaxation of Frenkel pair insertion. Green lines represent Shockley-partial dislocations, cyan lines
represent Frank dislocations, pink lines represent stair-rod dislocations, and white blobs are defect clusters not identified as dislocations. The

configurations depicted are the (1 00) lattice-oriented simulation cells.

using the conjugate gradient algorithm. During the following
relaxation runs in the NPT ensemble, the vacancies and in-
terstitials continue recombining but much slower until they
reach a plateau at about 500 ps. The different saturation points
seen are dependent on the defect structures formed during the
relaxation. The final dislocation structures visualized using
the DXA analysis in OVITO are shown in Fig. 9. It must be
noted that we do not aim to compare the dislocation structure
in different materials, since the final structures represent nei-
ther typical dislocation structures induced by irradiation nor
those from simulations of overlapping cascades. Recently, it
has been demonstrated that there are significant differences
in the structure of defects created via FP insertion method
and in radiation damage simulations [97]. Nevertheless, the
FP insertion simulations give insight into the type of dislo-
cations preferred by different potentials. From our results we
clearly see that Frank loops are the preferred dislocations in
Al, while in Cu Shockley partial dislocations dominate. In Ni
we see both types of dislocations, but most of the defects are
in clusters where no dislocation structure can be identified.
From the FP insertion simulations we conclude that a sat-
urated simulation cell has approximately a 0.004% vacancy
concentration and we will use these structures in the compres-
sion simulations.

H. Uniaxial compressive loading

The stress-strain responses of Cu, Al and Ni using the
tabGAP potentials during compression are shown in Fig. 10.
Additionally, some selected pristine cells were simulated with
EAM potentials as a reference. The strain in the figures are
defined as the change in length of the simulation cell in
the loading direction compared to the initial length. During
loading, the stress in the system builds up until the system
yields after which the stress drops to a low value of the flow
stress. In general, there is a clear order in ranking of materials
with respect to the yield stress (in this case defined as the
maximal stress before the sudden drop): Ni has the highest
and Al the lowest values of the yield stress in pristine cells. As
an exception, we observe the lowest yield stress in the (1 00)
loading direction for Cu. The order which we observe in our

simulations is the same as that in the experimental equation of
state and is in line with the known properties of the materi-
als such as the Young’s modulus of the respective materials.
Overall, the yield stresses in the pristine cells in Fig. 10 are
in good agreement with the values reported in previous MD
studies of uniaxial compression [14,16,98]. However, in the
case of Ni there is a significant difference between tabGAP
and the classical EAM potentials, where there is a surprisingly
wide spread in the predicted yield stresses [see Fig. 10(a); the
different potentials in the legend are shown as Ni subscripts].
Additionally, the Mishin et al. potential for Ni shows irregular
stress response in the (1 00) direction compared to the other
Ni potentials and predicts significantly higher flow stress in
the (1 00) case than the others. This irregular shape can also
be seen in work on nanopillar compression, where the same
EAM potential was used [99]. For the other elements there
are no significant differences between tabGAP and the Mishin
et al. EAM potentials with regards to the stress-strain relation,
other than the strain at which the yield occurs. For all ma-
terials, we observe elastic hardening in the (1 10) direction
and softening in (1 00) [compare in Fig. 10(b) and Fig. 10(a),
where the peak sharpens or becomes blunt because of strain-
ing right before the yield point]. This is a known effect and
has been reported previously [15,98]. In reality, some defects
always exist that can act as nucleation sites for dislocations,
thus the pristine cases are in practice artificial. In comparison,
the systems containing defects (the cells relaxed after the
Frenkel pair insertion) yielded with significantly lower strain
and with a lower yield stress, at a value between 17 and 12 of
the pristine cells. This is expected, as preexisting defects serve
as nucleation sites for heterogeneous dislocation nucleation,
which takes place at lower stresses than the homogeneous
dislocation nucleation in the pristine cases. Before yielding
the stress-strain curves of the cells with defective structures
follow closely their pristine counterparts. Additionally, there
are no significant differences in the flow stress between the
damaged and pristine cells.

Figures 11, 12, and 13 show the dislocation structures iden-
tified by DXA analysis of the cells with all pristine materials
and loading directions simulated with the tabGAP potentials.
The figures show both the dislocation structures shortly after
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FIG. 10. Stress-strain curves during uniaxial compressive loading in different loading direction for different elements simulated with both
tabGAP and EAM potentials. The simulation cells containing defects are here referred as Frenkel pair systems. The results are from simulations

done using tabGAP potentials and EAM potentials [42—45].

yielding and the final structures at 20% strain. We see that
shortly after yielding there is a complex dislocation network
that mostly consists of Shockley-partial dislocation segments
with some stair-rod-type dislocations. During continued com-
pression, the dislocation network sparsifies, and at the end of
the simulations there are fewer dislocations, but they span the
whole simulation cell. In addition, stacking-fault tetrahedra
(SFTs) can be observed for all materials, although fewer SFT's
are found in Al. Furthermore, we also find considerably fewer
SFTs in all materials during the compression in the (100)
loading direction.

The (1 00) loading direction in Cu falls out from the gen-
eral trend that we observe in our simulations. To clarify the
reason for this behavior, we plot in Fig. 14 the resulting atomic
structures of the Cu pristine cells after the loading in the
(100) and (111) directions [Figs. 14(a) and 14(d), respec-
tively] along with the dislocations as identified by the DXA in
Figs. 14(b) and 14(e). We color the dislocations according to
their type, i.e., the screw dislocations are shown in red and the
edge ones in blue.

We see in the Cu cell deformed with the loading in
the (100) direction a family of parallel stacking faults has
formed, while loading in the (11 1) (or any other) direction
does not cause similar cascade of the slips parallel to one
another. Furthermore analyzing the dislocation structures, we
observe that in the cell deformed in the (1 00) loading direc-
tion only the edge-type dislocations are present. In the cell
deformed in the (111) loading direction we observe the
mixture of both edge- and screw-type dislocations. For the
other elements and loading directions we see a mixture of
screw- and edge-type dislocations, similar to that in the Cu
deformed in the (111) loading direction, but the ratio be-
tween the two types varies. Additionally, during compression
no SFTs were identified in Cu for the (1 00) direction. The
dislocation structure of the Cu cell during the (1 00) loading
was not an artefact of the potential, since similar structures
have developed in the cells simulated with the EAM potential
[Figs. 14(c) and 14(f)]. Comparing against the EAM potential
we can see that the structures are qualitatively similar. Further-
more, in Ni simulated with the EAM potentials the dislocation
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(b) (110) strain 9%

(e) (100) strain 20% (f) (110) strain 20%

(c) (111) strain 11%

(g) (111) strain 20%  (h) (112) strain 20%

FIG. 11. Dislocation structures in Cu during compression in different loading directions with pristine cells. First row is immediately after
yielding, and second row is the final configuration. Green lines represent Shockley partial dislocations, cyan lines represent Frank dislocations,
pink lines represent stair-rod dislocations, and white blobs are defect clusters not identified as dislocations.

structures are formed similar to those in the Cu cells deformed
in the (1 00) loading direction.

Figure 15 demonstrates the evolution of dislocation struc-
tures under compression in the (1 11) loading direction of
the defected Al as relaxed after the random insertion of FPs.
We see that at early stages of compression, small dislocations
start nucleating at the preexisting defects in the system. The
longer dislocations connecting the small initially disconnected

ones appear at the strain of 4.7%, after which the dislocation
network first grows denser and more connected, and then
the initial smaller dislocations start fusing forming larger
dislocation structures. Eventually, we observe formation of
the dislocation network which is rather similar to that formed
at deformation of the cell with the pristine structure. The
dislocation networks grown in the cells during the loading
in other directions as well as in the remaining materials with

(e) (100) strain 20%

(f) (110) strain 20%

(g) (111) strain 20%  (h) (112) strain 20%

FIG. 12. Dislocation structures in Al during compression in different loading directions with pristine cells. First row is directly after
yielding, and second row is the final configuration. Green lines represent Shockley partial dislocations, cyan lines represent Frank dislocations,
pink lines represent stair-rod dislocations, and white blobs are defect clusters not identified as dislocations.
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(e) (100) strain 20% (f) (110) strain 20% (g) (111) strain 20% (h) (112) strain 20%

FIG. 13. Dislocation structures in Ni during compression in different loading directions with pristine cells. First row is directly after
yielding, and second row is the final configuration. Green lines represent Shockley partial dislocations, cyan lines represent Frank dislocations,
pink lines represent stair-rod dislocations, and white blobs are defect clusters not identified as dislocations.

the predamaged structures can be found in the Supplemental total dislocation density at the end of the compression is
Material [56]. higher for the pristine structures. Furthermore, in pristine

In Fig. 16 we analyze the dislocation densities in all three ~ materials the total dislocation density rises rapidly reaching
materials in different loading directions. In most cases, the = the peak at the yielding point. After that the total density

(d) (111) (e) (111) (f) (111) EAM

FIG. 14. Panels (a) and (d) show the atomistic structure of Cu in (100) and (111) loading directions at the final strain of 20%. The
coloring of the atoms indicate lattice type of the atom based on common neighbor analysis. Green atoms are FCC, red atoms are HCP, and
white atoms are without defined lattice structure. Half of the atoms are cut away in order to get a better view of the internal structure. Panels
(b) and (e) show the corresponding dislocation structure with screw-type dislocations shown in red and edge type in blue. Panels (c) and (f)
show the final dislocation structure like in (b) and (e) but using the Cu EAM potential [42].
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(e) strain 5%

(f) strain 10%

(g) strain 15% (h) strain 20%

FIG. 15. Al cells containing preexisting defects from Frenkel pair insertion during compression in (1 1 1) loading direction. Green lines
represent Shockley partial dislocations, cyan lines represent Frank dislocations, pink lines represent stair-rod dislocations, and white blobs are

defect clusters not identified as dislocations.

first drops significantly, but then decrease of the density slows
down reaching a steady state value. The dislocation densities
reported here are of similar order of magnitude as those re-
ported in the MD study in tantalum [17]. It should be noted
that these dislocation densities are orders of magnitude higher
than those typically reported in the experimental literature
[100-104], due to the extreme strain rates in MD. The MD
conditions are closer to those found in shock compression
experiments, where higher dislocation densities are possible
[105-107]. Recently, a model has been proposed that links
strain rate, dislocation density, and yield stress, which could
be used to bridge the gap between MD and experiments
[108]. Although there is a large difference in the total dis-
location densities after yielding between the cells with the
initially pristine and damaged structures, under the continued
compression the dislocation density converges to the same
steady-state values in all loading directions, except for the
(100) one. The path independence and loss of microstructure
history has been also demonstrated during the simulation of
compression in BCC materials (tantalum) [17]. This suggests
that in most cases one could not determine from the final
structure whether the initial one contained defects. Neither
it is possible to do when analyzing the type of dislocations
present in the metal after yielding. We note that the main dif-
ference appears in the density of stair-rod dislocations, which
is significantly higher in the initially pristine cell.

In the (100) direction, on the other hand, there is a clear
difference between the damaged and pristine structures, es-
pecially for Cu. This is due to the different dislocation types
as is shown in Fig. 14 with different loading directions in Cu.
Looking at the Frank dislocation densities we can observe that
in all cases they are very low. A curious detail is that in some
cases the EAM potentials show somewhat higher Frank-type
dislocation densities in Al and Ni. Additionally, comparing
the tabGAP to EAM potentials we can generally conclude that

EAM potentials have higher dislocation densities during com-
pression, with the results of Cu being closest to its tabGAP
counterpart.

IV. CONCLUSIONS

We have developed machine-learned interatomic poten-
tials for Al, Cu and Ni using the Gaussian approximation
potential method. Fast and accurate tabGAP versions were
created and extensively tested. The tabGAPs show similar
accuracy as their GAP counterparts, while being orders of
magnitude more computationally efficient, enabling large-
scale simulations containing millions of atoms. The potentials
were validated and are in good agreement with DFT calcula-
tions and experimental data for various material properties.
Using the developed potentials, we simulate the threshold
displacement energies as a function of lattice direction for
each of the elements. In addition to this, uniaxial compres-
sion simulations were performed on both pristine simulation
cells and cells containing preexisting defects. The stress strain
curves for the pristine cases were in agreement with what
has been reported previously. However, in Ni we could see
large differences between different interatomic potentials. The
compression simulations demonstrate the feasibility to simu-
late large-scale systems on the order of millions of atoms with
the machine-learned tabGAPs. Furthermore, the diverse DFT
databases for the training of the potentials can be augmented
and used for future work on alloys.

ACKNOWLEDGMENTS

This work has received funding from Research Council
of Finland through the HEADFORE project (Grant No.
333225). The authors wish to thank the Finnish Computing
Competence Infrastructure (FCCI) and CSC-IT Center for

053807-14



FAST AND ACCURATE MACHINE-LEARNED ...

PHYSICAL REVIEW MATERIALS 9, 053807 (2025)

Total

Total

Total

w
@

— pristine

—— Frenkel pair
EAM pristine
cu

Dislocation density 10%/A
o oL T
5 5 5 8 &5 8

°
>

Dislocation density 10%/A?
P M )

®

— Pristine

@ <
g
g
g

@

Dislocation density 10?/A?
[

IS

Dislocation density 10%/A
o

Total

— pristine

W N mishin

0 o
0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
Strain Strain Strain Strain
(a) (100) (b) (110) (c) (111) (d) (112)
Frank 1/3<111> Frank 1/3<111> Frank 1/3<111> Frank 1/3<111>
— Pristine N — Pristne . — Pristine . — Pristne
025 7, 0.30 A = Fronkolpair fen, = Fronkel pair 0.30 4 —— Fronkelpair
o B i EAM pristine o, 025] ¥ % EAM pristine B Fa EAM pristine
= = VA W 23 y S Zos| A ' cu
B 2025 of i Al = \ = i Al
S 020 S i BN 2020 | S i Ni
B Cumishin c i B cumishin
z Zo20 ! ALmishin 2 B oA 2020 i B Almistin
£0.15 F i W i mishin 2 015 W i mishin a ; W i mishin
So1s ! e <o1s i
g g i g g i
Lo10 2 2 2 i
E %010 w5 E A
g g g g
S 2 S S
Z005 z z 2
A A005 A A
0.00 0.00
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
Strain Strain Strain
(e) (100) (f) (110) (g) (111) (h) (112)
Shockley 1/6<112> Shockley 1/6<112> Shockley 1/6<112> Shockley 1/6<112>
— Pristine : 6 — Pristine 6 — prisine s — Pristine
3.0~ Frenkel pair = Frenkel pair —= Frenkel pair ~= Frenkel pair
o EAM pristine D o Eae D EAM pristine P EAM prisine
= cu cu cu 4 cu
228 D =° N =° = N
N N N
S B S E
B Cumishin B Cumishin 3 g B cumishin
220 W A mishin 2t B Al mishin i3 . B Almishin Z3 B Al mishin
2 | W Nimsn @ B Nimishn ] : [ ] B Moo
S | B nivomy g, . 5, B b}
T L5 W Nistwller b ° : °
: : : : )\
k] ] ° N
£os ER g1 3
0.0 of == o =5 0
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
Strain Strain Strain Strain
(i) (100) () (110) (k) (111) (1) (112)
Stair-rod 1/6<110> Stair-rod 1/6<110> Stair-rod 1/6<110> Stair-rod 1/6<110>
0.175f _ pristine —— Pristine —— Pristine. . —— Pristine
—— Frenkel pair —— Frenkel pair 0.7{ == Frenkel pair H 0.4{ —— Frenkel pair
0.150| o EAMpristine 08 ol EAM pristne EAMpristne
a
BN Ni
0.5/ M Cu mishin 03] W cu mishin
0.6 B ALmishin ¥
B ¥ nishin B Nimishin

0.0001

N i
0025 \"f'ﬁ“.ﬁ
Y

°
=

Dislocation density 10%/A?
°
o

°
w

Dislocation density 10?/A?
o o
N -

Ay Ak
Ay N

1A
o |

e

2

Dislocation density 10°/A2
o

0.01 0.0 0.0
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
Strain Strain Strain Strain
(m) (100) (n) (110) (0) (111) (p) (112)

FIG. 16. Dislocation density as a function of strain for various types of dislocations (rows) and different loading directions (columns). The
dislocation types are shown in the caption of the individual panels: “Total” includes all types of dislocations found in the structures; “Frank
1/3(111),” “Shockley 1/6(112),” and “Stair-rod 1/6(112)” refer to the corresponding dislocation types. The loading directions (100),
(110), (111), and (112) for each case are given under the corresponding panels. Pristine refers to the cells with no preexisting defects, and
Frenkel pair refers to the cells relaxed after insertion of Frenkel pairs. Results from simulations with the developed tabGAP potentials and

EAM potentials in the literature [42—45].

Science for supporting this project with computational and
data storage resources. This work has been partially carried
out within the framework of the EUROfusion Consortium,
funded by the European Union via the Euratom Research and
Training Programme (Grant Agreement No. 101052200—

EUROfusion). Views and opinions expressed are, however,
those of the authors only and do not necessarily reflect those of
the European Union or the European Commission. Neither the
European Union nor the European Commission can be held

responsible for them.

[1] A. P. Bartdk, J. Kermode, N. Bernstein, and G. Csanyi, Ma-
chine learning a general-purpose interatomic potential for
silicon, Phys. Rev. X 8, 041048 (2018).

[2] V. L. Deringer and G. Csanyi, Machine learning based in-
teratomic potential for amorphous carbon, Phys. Rev. B 95,

094203 (2017).

053807-15


https://doi.org/10.1103/PhysRevX.8.041048
https://doi.org/10.1103/PhysRevB.95.094203

A. FELLMAN et al.

PHYSICAL REVIEW MATERIALS 9, 053807 (2025)

[3]1 G. P. Pun, V. Yamakov, J. Hickman, E. H. Glaessgen,
and Y. Mishin, Development of a general-purpose machine-
learning interatomic potential for aluminum by the physically
informed neural network method, Phys. Rev. Mater. 4, 113807
(2020).

[4] Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G.
Csényi, A. V. Shapeev, A. P. Thompson, M. A. Wood, and S. P.
Ong, Performance and cost assessment of machine learning
interatomic potentials, J. Phys. Chem. A 124, 731 (2020).

[5] Y. Lysogorskiy, C. van der Oord, A. Bochkarev, S. Menon,
M. Rinaldi, T. Hammerschmidt, M. Mrovec, A. Thompson,
G. Csanyi, C. Ortner et al., Performant implementation of the
atomic cluster expansion (PACE) and application to copper
and silicon, npj Comput. Mater. 7, 97 (2021).

[6] N. Lopanitsyna, C. Ben Mahmoud, and M. Ceriotti, Finite-
temperature materials modeling from the quantum nuclei to
the hot electron regime, Phys. Rev. Mater. 5, 043802 (2021).

[7]1 K. Song, R. Zhao, J. Liu, Y. Wang, E. Lindgren, Y. Wang,
S. Chen, K. Xu, T. Liang, P. Ying et al., General-purpose
machine-learned potential for 16 elemental metals and their
alloys, Nat. Commun. 15, 10208 (2024).

[8] J. Byggmistar, A. Hamedani, K. Nordlund, and F
Djurabekova, Machine-learning interatomic potential for
radiation damage and defects in tungsten, Phys. Rev. B 100,
144105 (2019).

[9] D. Marchand, A. Jain, A. Glensk, and W. A. Curtin, Machine
learning for metallurgy I. A neural-network potential for Al-
Cu, Phys. Rev. Mater. 4, 103601 (2020).

[10] A.C.Lund, T. G. Nieh, and C. A. Schuh, Tension/compression
strength asymmetry in a simulated nanocrystalline metal,
Phys. Rev. B 69, 012101 (2004).

[11] D. Spearot, M. Tschopp, and D. McDowell, Orientation and
rate dependence of dislocation nucleation stress computed us-
ing molecular dynamics, Scr. Mater. 60, 675 (2009).

[12] M. Tschopp, D. Spearot, and D. McDowell, Atomistic simula-
tions of homogeneous dislocation nucleation in single crystal
copper, Modell. Simul. Mater. Sci. Eng. 15, 693 (2007).

[13] M. A. Tschopp and D. L. McDowell, Tension-compression
asymmetry in homogeneous dislocation nucleation in single
crystal copper, Appl. Phys. Lett. 90, 121916 (2007).

[14] Z. Li, Y. Gao, S. Zhan, H. Fang, and Z. Zhang, Molecular
dynamics study on temperature and strain rate dependences
of mechanical properties of single crystal Al under uniaxial
loading, AIP Adv. 10, 075321 (2020).

[15] L. Zhang, C. Lu, and A. K. Tieu, Nonlinear elastic response of
single crystal Cu under uniaxial loading by molecular dynam-
ics study, Mater. Lett. 227, 236 (2018).

[16] H. Xie, T. Yu, and F. Yin, Tension—compression asymmetry
in homogeneous dislocation nucleation stress of single crys-
tals Cu, Au, Ni and NizAl, Mater. Sci. Eng. A 604, 142
(2014).

[17] L. A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, and V. V.
Bulatov, Probing the limits of metal plasticity with molecular
dynamics simulations, Nature (London) 550, 492 (2017).

[18] L. Salehinia and D. Bahr, Crystal orientation effect on disloca-
tion nucleation and multiplication in FCC single crystal under
uniaxial loading, Int. J. Plast. 52, 133 (2014).

[19] L. Zhang, C. Lu, K. Tieu, L. Su, X. Zhao, and L. Pei, Stacking
fault tetrahedron induced plasticity in copper single crystal,
Mater. Sci. Eng. A 680, 27 (2017).

[20] J. Hu, X. Ye, X. Liu, and Z. Chen, The effects of initial void
and dislocation on the onset of plasticity in copper single
crystals, J. Appl. Phys. 126, 165104 (2019).

[21] B. Tang and R. Yang, Molecular dynamics study of uniaxial
deformation in perfect and defective aluminum, Chin. J. Phys
53, 120802 (2015).

[22] J. Wang, Z. Yue, Z. Wen, D. Zhang, and C. Liu, Orientation
effects on the tensile properties of single crystal nickel with
nanovoid: Atomistic simulation, Comput. Mater. Sci. 132, 116
(2017).

[23] T. Zhu, J. Li, K. J. Van Vliet, S. Ogata, S. Yip, and
S. Suresh, Predictive modeling of nanoindentation-induced
homogeneous dislocation nucleation in copper, J. Mech. Phys.
Solids 52, 691 (2004).

[24] A. P. Barték, M. C. Payne, R. Kondor, and G. Csényi,
Gaussian approximation potentials: The accuracy of quantum
mechanics, without the electrons, Phys. Rev. Lett. 104, 136403
(2010).

[25] J. F. Ziegler, J. P. Biersack, and U. Littmarck, The stopping
and range of ions in matter, Treatise on Heavy-lon Science
(Pergamon, New York, 1985), pp. 93—129.

[26] K. Nordlund, N. Runeberg, and D. Sundholm, Repulsive
interatomic potentials calculated using Hartree-Fock and
density-functional theory methods, Nucl. Instrum. Methods
Phys. Res. B 132, 45 (1997).

[27] A. P. Barték, R. Kondor, and G. Csanyi, On representing
chemical environments, Phys. Rev. B 87, 184115 (2013).

[28] J. Byggmistar, K. Nordlund, and F. Djurabekova, Simple
machine-learned interatomic potentials for complex alloys,
Phys. Rev. Mater. 6, 083801 (2022).

[29] J. Byggmistar, G. Nikoulis, A. Fellman, F. Granberg, F.
Djurabekova, and K. Nordlund, Multiscale machine-learning
interatomic potentials for ferromagnetic and liquid iron,
J. Phys.: Condens. Matter 34, 305402 (2022).

[30] A. P. Barték and G. Csdnyi, Gaussian approximation poten-
tials: A brief tutorial introduction, Int. J. Quantum Chem. 115,
1051 (2015).

[31] M. S. Daw and M. 1. Baskes, Embedded-atom method: Deriva-
tion and application to impurities, surfaces, and other defects
in metals, Phys. Rev. B 29, 6443 (1984).

[32] M. W. Finnis and J. E. Sinclair, A simple empirical N-body
potential for transition metals, Philos. Mag. A 50, 45 (1984).

[33] J. Byggmistar, K. Nordlund, and F. Djurabekova, Modeling
refractory high-entropy alloys with efficient machine-learned
interatomic potentials: Defects and segregation, Phys. Rev. B
104, 104101 (2021).

[34] G. Kresse and J. Hafner, Ab initio molecular dynamics for
liquid metals, Phys. Rev. B 47, 558 (1993).

[35] G. Kresse and J. Hafner, Ab initio molecular-dynamics simula-
tion of the liquid-metal-amorphous-semiconductor transition
in germanium, Phys. Rev. B 49, 14251 (1994).

[36] G. Kresse and J. Furthmiiller, Efficiency of ab-initio total
energy calculations for metals and semiconductors using a
plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).

[37] G. Kresse and J. Furthmiiller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[38] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gra-
dient approximation made simple, Phys. Rev. Lett. 77, 3865
(1996).

053807-16


https://doi.org/10.1103/PhysRevMaterials.4.113807
https://doi.org/10.1021/acs.jpca.9b08723
https://doi.org/10.1038/s41524-021-00559-9
https://doi.org/10.1103/PhysRevMaterials.5.043802
https://doi.org/10.1038/s41467-024-54554-x
https://doi.org/10.1103/PhysRevB.100.144105
https://doi.org/10.1103/PhysRevMaterials.4.103601
https://doi.org/10.1103/PhysRevB.69.012101
https://doi.org/10.1016/j.scriptamat.2008.12.037
https://doi.org/10.1088/0965-0393/15/7/001
https://doi.org/10.1063/1.2715137
https://doi.org/10.1063/1.5086903
https://doi.org/10.1016/j.matlet.2018.05.094
https://doi.org/10.1016/j.msea.2014.03.018
https://doi.org/10.1038/nature23472
https://doi.org/10.1016/j.ijplas.2013.04.010
https://doi.org/10.1016/j.msea.2016.10.034
https://doi.org/10.1063/1.5125061
https://doi.org/10.6122/CJP.20150928A
https://doi.org/10.1016/j.commatsci.2017.02.024
https://doi.org/10.1016/j.jmps.2003.07.006
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1016/S0168-583X(97)00447-3
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1103/PhysRevMaterials.6.083801
https://doi.org/10.1088/1361-648X/ac6f39
https://doi.org/10.1002/qua.24927
https://doi.org/10.1103/PhysRevB.29.6443
https://doi.org/10.1080/01418618408244210
https://doi.org/10.1103/PhysRevB.104.104101
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevLett.77.3865

FAST AND ACCURATE MACHINE-LEARNED ...

PHYSICAL REVIEW MATERIALS 9, 053807 (2025)

[39] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-
zone integrations, Phys. Rev. B 13, 5188 (1976).

[40] M. Methfessel and A. T. Paxton, High-precision sampling for
Brillouin-zone integration in metals, Phys. Rev. B 40, 3616
(1989).

[41] A.P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu,
W. M. Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer,
S. G. Moore, T. D. Nguyen et al., LAMMPS—A flexible
simulation tool for particle-based materials modeling at the
atomic, meso, and continuum scales, Comput. Phys. Commun.
271, 108171 (2022).

[42] Y. Mishin, M. Mehl, D. Papaconstantopoulos, A. Voter, and
J. Kress, Structural stability and lattice defects in copper:
Ab initio, tight-binding, and embedded-atom calculations,
Phys. Rev. B 63, 224106 (2001).

[43] Y. Mishin, D. Farkas, M. J. Mehl, and D. A.
Papaconstantopoulos, Interatomic potentials for monoatomic
metals from experimental data and ab initio calculations,
Phys. Rev. B 59, 3393 (1999).

[44] R. Stoller, A. Tamm, L. Béland, G. Samolyuk, G. Stocks,
A. Caro, L. Slipchenko, Y. N. Osetsky, A. Aabloo, M.
Klintenberg et al., Impact of short-range forces on defect
production from high-energy collisions, J. Chem. Theory
Comput. 12, 2871 (2016).

[45] G. Bonny, N. Castin, and D. Terentyev, Interatomic poten-
tial for studying ageing under irradiation in stainless steels:
The FeNiCr model alloy, Modell. Simul. Mater. Sci. Eng. 21,
085004 (2013).

[46] R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K. A.
Persson, and S. P. Ong, Surface energies of elemental crystals,
Sci. Data 3, 160080 (2016).

[47] V. Kumikov and K. B. Khokonov, On the measurement of
surface free energy and surface tension of solid metals, J. Appl.
Phys. 54, 1346 (1983).

[48] J. R. Morris, C. Z. Wang, K. M. Ho, and C. T. Chan, Melting
line of aluminum from simulations of coexisting phases, Phys.
Rev. B 49, 3109 (1994).

[49] W. M. Haynes, CRC Handbook of Chemistry and Physics, 96th
ed. (CRC Press, Boca Raton, FL, 2015).

[50] P.-W. Ma and S. L. Dudarev, Nonuniversal structure of point
defects in face-centered cubic metals, Phys. Rev. Mater. 5,
013601 (2021).

[51] C. Kittel, Introduction to Solid State Physics, 3rd ed. (John
Wiley & Sons, New York, 1968).

[52] P. Ehrhart, Atomic defects in metals ¢ Cu datasheet
from Landolt-Bornstein - Group III condensed matter, in
Atomic Defects in Metals, Springer Materials Vol. 25, edited
by H. Ullmaier (Springer-Verlag, Berlin, Heidelberg, 1991).

[53] P. Ehrhart, Atomic defects in metals ¢ Al datasheet
from Landolt-Bornstein - Group III condensed matter, in
Atomic Defects in Metals, Springer Materials Vol. 25, edited
by H. Ullmaier (Springer-Verlag, Berlin, Heidelberg, 1991).

[54] P. Ehrhart, Atomic defects in metals ¢ Ni datasheet
from Landolt-Bornstein - Group III condensed matter, in
Atomic Defects in Metals, Springer Materials Vol. 25 edited
by H. Ullmaier (Springer-Verlag, Berlin, Heidelberg, 1991).

[55] R. Qiu, H. Lu, B. Ao, L. Huang, T. Tang, and P. Chen,
Energetics of intrinsic point defects in aluminium via
orbital-free density functional theory, Philos. Mag. 97, 2164
(2017).

[56] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevMaterials.9.053807 for the BCC and HCP
volume energy curves, nondissosiated screw dislocation in Al
for the tabGAP potential, and visualizations of the dislocation
structures of the uniaxial compressive loading in predamaged
Cu, Al, and Ni.

[57] A. M. Goryaeva, C. Domain, A. Chartier, A. Dézaphie, T. D.
Swinburne, K. Ma, M. Loyer-Prost, J. Creuze, and M.-C.
Marinica, Compact A15 Frank-Kasper nano-phases at the ori-
gin of dislocation loops in face-centred cubic metals, Nat.
Commun. 14, 3003 (2023).

[58] T. Jourdan, A. M. Goryaeva, and M.-C. Marinica, Preferential
nucleation of dislocation loops under stress explained by A15
Frank-Kasper nanophases in aluminum, Phys. Rev. Lett. 132,
226101 (2024).

[59] G. Nilsson and S. Rolandson, Lattice dynamics of copper at
80 K, Phys. Rev. B 7, 2393 (1973).

[60] R.t. Stedman and G. Nilsson, Dispersion relations for phonons
in aluminum at 80 and 300 K, Phys. Rev. 145, 492 (1966).

[61] G. A. deWit and B. Brockhouse, The lattice dynamics of
ferromagnetic and paramagnetic nickel, J. Appl. Phys. 39, 451
(1968).

[62] A. Hunter, R. Zhang, and 1. Beyerlein, The core structure of
dislocations and their relationship to the material y-surface,
J. Appl. Phys. 115, 134314 (2014).

[63] S. Ogata, J. Li, and S. Yip, Ideal pure shear strength of alu-
minum and copper, Science 298, 807 (2002).

[64] M. Jahndtek, J. Hafner, and M. Kraj¢i, Shear deformation,
ideal strength, and stacking fault formation of fcc metals:
A density-functional study of Al and Cu, Phys. Rev. B 79,
224103 (2009).

[65] C. Carter and I. Ray, On the stacking-fault energies of copper
alloys, Philos. Mag. 35, 189 (1977).

[66] R. Rautioaho, An interatomic pair potential for aluminium
calculation of stacking fault energy, Phys. Status Solidi B 112,
83 (1982).

[67] M. J. Mills and P. Stadelmann, A study of the structure of
lomer and 60 dislocations in aluminium using high-resolution
transmission electron microscopy, Philos. Mag. A 60, 355
(1989).

[68] P. M. Anderson, J. P. Hirth, and J. Lothe, Theory of Disloca-
tions (Cambridge University Press, Cambridge, 2017).

[69] W. Stobbs and C. Sworn, The weak beam technique as applied
to the determination of the stacking-fault energy of copper,
Philos. Mag. 24, 1365 (1971).

[70] C. Brandl, P. M. Derlet, and H. Van Swygenhoven, General-
stacking-fault energies in highly strained metallic environ-
ments: Ab initio calculations, Phys. Rev. B 76, 054124
(2007).

[71] Y. Hu, B. Szajewski, D. Rodney, and W. Curtin, Atomistic
dislocation core energies and calibration of non-singular dis-
crete dislocation dynamics, Modell. Simul. Mater. Sci. Eng.
28, 015005 (2020).

[72] D. Rodney, L. Ventelon, E. Clouet, L. Pizzagalli, and F.
Willaime, Ab initio modeling of dislocation core properties in
metals and semiconductors, Acta Mater. 124, 633 (2017).

[73] C. Woodward, D. R. Trinkle, L. G. Hector, Jr., and D. L.
Olmsted, Prediction of dislocation cores in aluminum from
density functional theory, Phys. Rev. Lett. 100, 045507
(2008).

053807-17


https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.40.3616
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1103/PhysRevB.59.3393
https://doi.org/10.1021/acs.jctc.5b01194
https://doi.org/10.1088/0965-0393/21/8/085004
https://doi.org/10.1038/sdata.2016.80
https://doi.org/10.1063/1.332209
https://doi.org/10.1103/PhysRevB.49.3109
https://doi.org/10.1103/PhysRevMaterials.5.013601
https://materials.springer.com/lb/docs/sm_lbs_978-3-540-48128-7_61
https://materials.springer.com/lb/docs/sm_lbs_978-3-540-48128-7_58
https://materials.springer.com/lb/docs/sm_lbs_978-3-540-48128-7_63
https://doi.org/10.1080/14786435.2017.1328139
http://link.aps.org/supplemental/10.1103/PhysRevMaterials.9.053807
https://doi.org/10.1038/s41467-023-38729-6
https://doi.org/10.1103/PhysRevLett.132.226101
https://doi.org/10.1103/PhysRevB.7.2393
https://doi.org/10.1103/PhysRev.145.492
https://doi.org/10.1063/1.2163474
https://doi.org/10.1063/1.4870462
https://doi.org/10.1126/science.1076652
https://doi.org/10.1103/PhysRevB.79.224103
https://doi.org/10.1080/14786437708235982
https://doi.org/10.1002/pssb.2221120108
https://doi.org/10.1080/01418618908213867
https://doi.org/10.1080/14786437108217418
https://doi.org/10.1103/PhysRevB.76.054124
https://doi.org/10.1088/1361-651X/ab5489
https://doi.org/10.1016/j.actamat.2016.09.049
https://doi.org/10.1103/PhysRevLett.100.045507

A. FELLMAN et al.

PHYSICAL REVIEW MATERIALS 9, 053807 (2025)

[74] A. M. Z. Tan, C. Woodward, and D. R. Trinkle, Disloca-
tion core structures in Ni-based superalloys computed using
a density functional theory based flexible boundary condition
approach, Phys. Rev. Mater. 3, 033609 (2019).

[75] I. Shin and E. A. Carter, Possible origin of the discrepancy in
peierls stresses of fcc metals: First-principles simulations of
dislocation mobility in aluminum, Phys. Rev. B 88, 064106
(2013).

[76] A. Stukowski and K. Albe, Extracting dislocations and non-
dislocation crystal defects from atomistic simulation data,
Modell. Simul. Mater. Sci. Eng. 18, 085001 (2010).

[77] F. Deng, H. Wu, R. He, P. Yang, and Z. Zhong, Large-scale
atomistic simulation of dislocation core structure in face-
centered cubic metal with deep potential method, Comput.
Mater. Sci. 218, 111941 (2023).

[78] L. Mismetti and M. Hodapp, Automated atomistic simulations
of dissociated dislocations with ab initio accuracy, Phys. Rev.
B 109, 094120 (2024).

[79] M. Iyer, B. Radhakrishnan, and V. Gavini, Electronic-structure
study of an edge dislocation in aluminum and the role of
macroscopic deformations on its energetics, J. Mech. Phys.
Solids 76, 260 (2015).

[80] S. Das and V. Gavini, Electronic structure study of screw
dislocation core energetics in aluminum and core energetics
informed forces in a dislocation aggregate, J. Mech. Phys.
Solids 104, 115 (2017).

[81] X. Gong, Z. Li, A. S. Pattamatta, T. Wen, and D. J. Srolovitz,
An accurate and transferable machine learning interatomic
potential for nickel, Commun. Mater. 5, 157 (2024).

[82] V.N. Antonov, V. Y. Milman, V. V. Nemoshkalenko, and A. V.
Zhalko-Titarenko, Equation of state and thermodynamics of
fce transition metals: A pseudopotential approach, Z. Phys. B
79, 233 (1990).

[83] A. Dewaele, P. Loubeyre, and M. Mezouar, Equations of
state of six metals above 94 GPa, Phys. Rev. B 70, 094112
(2004).

[84] M. Rice, R. McQueen, and J. Walsh, Compression of solids by
strong shock waves, in Advances in Research and Applications,
edited by F. Seitz and D. Turnbull, Solid State Physics, Vol. 6
(Academic Press, San Diego, 1958), pp. 1-63.

[85] L. Al'Tshuler, A. Bakanova, and R. Trunin, Shock adiabats
and zero isotherms of seven metals at high pressures, Sov.
Phys. JETP 15, 65 (1962).

[86] K. Nordlund, S. J. Zinkle, A. E. Sand, F. Granberg, R. S.
Averback, R. E. Stoller, T. Suzudo, L. Malerba, F. Banhart,
W. J. Weber et al., Primary radiation damage: A review of
current understanding and models, J. Nucl. Mater. 512, 450
(2018).

[87] K. Nordlund, S. J. Zinkle, A. E. Sand, F. Granberg, R. S.
Averback, R. Stoller, T. Suzudo, L. Malerba, F. Banhart, W. J.
Weber et al., Improving atomic displacement and replacement
calculations with physically realistic damage models, Nat.
Commun. 9, 1084 (2018).

[88] M. Norgett, M. Robinson, and I. Torrens, A proposed method
of calculating displacement dose rates, Nucl. Eng. Des. 33, 50
(1975).

[89] Q. Yang and P. Olsson, Full energy range primary radiation
damage model, Phys. Rev. Mater. 5, 073602 (2021).

[90] H. Wang, X. Guo, L. Zhang, H. Wang, and J. Xue, Deep
learning inter-atomic potential model for accurate irradiation
damage simulations, Appl. Phys. Lett. 114, 244101 (2019).

[91] ASTM Standard E521-96, Standard practice for neutron radia-
tion damage simulation by charged-particle irradiation (2009),
https://doi.org/10.1520/E0521-96.

[92] P. Vajda, Anisotropy of electron radiation damage in metal
crystals, Rev. Mod. Phys. 49, 481 (1977).

[93] P. Jung, Average atomic-displacement energies of cubic met-
als, Phys. Rev. B 23, 664 (1981).

[94] P. Lucasson, The production of Frenkel defects in metals, in
Fundamental Aspects of Radiation Damage in Metals, edited
by M. T. Robinson and F. N. Young Jr. (ORNL, Springfield,
1975), pp. 42-65.

[95] A. Stukowski, Visualization and analysis of atomistic sim-
ulation data with OVITO—The open visualization tool,
Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).

[96] A. Stukowski, V. V. Bulatov, and A. Arsenlis, Automated
identification and indexing of dislocations in crystal interfaces,
Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012).

[97] E. Granberg, D. Mason, and J. Byggmaistar, Effect of simula-
tion technique on the high-dose damage in tungsten, Comput.
Mater. Sci. 217, 111902 (2023).

[98] M. Tschopp and D. McDowell, Influence of single crystal
orientation on homogeneous dislocation nucleation under uni-
axial loading, J. Mech. Phys. Solids 56, 1806 (2008).

[99] D. Zhang, X. Liu, T. Li, K. Fu, Z. Peng, and Y. Zhu, New
insights of the strength asymmetry in fcc single-crystalline
nanopillars, Comput. Mater. Sci. 208, 111360 (2022).

[100] F. W. Young, Jr., On the yield stress of copper crystals, J. Appl.
Phys. 33, 963 (1962).

[101] J. D. Livingston, The density and distribution of dislocations
in deformed copper crystals, Acta Metall. 10, 229 (1962).

[102] J. Edington, The influence of strain rate on the mechanical
properties and dislocation substructure in deformed copper
single crystals, Philos. Mag. 19, 1189 (1969).

[103] G. Van Drunen and S. Saimoto, Deformation and recovery of
[001] oriented copper crystals, Acta Metall. 19, 213 (1971).

[104] C. Chiem and J. Duffy, Strain rate history effects and observa-
tions of dislocation substructure in aluminum single crystals
following dynamic deformation, Mater. Sci. Eng. 57, 233
(1983).

[105] F. Greulich and L. Murr, Effect of grain size, dislocation cell
size and deformation twin spacing on the residual strengthen-
ing of shock-loaded nickel, Mater. Sci. Eng. 39, 81 (1979).

[106] M. A. Meyers, F. Gregori, B. Kad, M. Schneider, D. Kalantar,
B. Remington, G. Ravichandran, T. Boehly, and J. Wark,
Laser-induced shock compression of monocrystalline cop-
per: Characterization and analysis, Acta Mater. 51, 1211
(2003).

[107] W. Murphy, A. Higginbotham, G. Kimminau, B. Barbrel,
E. M. Bringa, J. Hawreliak, R. Kodama, M. Koenig, W.
McBarron, M. Meyers et al., The strength of single crystal
copper under uniaxial shock compression at 100 GPa, J. Phys.:
Condens. Matter 22, 065404 (2010).

[108] H. Fan, Q. Wang, J. A. El-Awady, D. Raabe, and M. Zaiser,
Strain rate dependency of dislocation plasticity, Nat. Commun.
12, 1845 (2021).

053807-18


https://doi.org/10.1103/PhysRevMaterials.3.033609
https://doi.org/10.1103/PhysRevB.88.064106
https://doi.org/10.1088/0965-0393/18/8/085001
https://doi.org/10.1016/j.commatsci.2022.111941
https://doi.org/10.1103/PhysRevB.109.094120
https://doi.org/10.1016/j.jmps.2014.12.009
https://doi.org/10.1016/j.jmps.2017.03.010
https://doi.org/10.1038/s43246-024-00603-3
https://doi.org/10.1007/BF01406589
https://doi.org/10.1103/PhysRevB.70.094112
https://doi.org/10.1016/j.jnucmat.2018.10.027
https://doi.org/10.1038/s41467-018-03415-5
https://doi.org/10.1016/0029-5493(75)90035-7
https://doi.org/10.1103/PhysRevMaterials.5.073602
https://doi.org/10.1063/1.5098061
https://doi.org/10.1520/E0521-96
https://doi.org/10.1103/RevModPhys.49.481
https://doi.org/10.1103/PhysRevB.23.664
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088/0965-0393/20/8/085007
https://doi.org/10.1016/j.commatsci.2022.111902
https://doi.org/10.1016/j.jmps.2007.11.012
https://doi.org/10.1016/j.commatsci.2022.111360
https://doi.org/10.1063/1.1777198
https://doi.org/10.1016/0001-6160(62)90120-7
https://doi.org/10.1080/14786436908228644
https://doi.org/10.1016/0001-6160(71)90148-9
https://doi.org/10.1016/0025-5416(83)90213-6
https://doi.org/10.1016/0025-5416(79)90172-1
https://doi.org/10.1016/S1359-6454(02)00420-2
https://doi.org/10.1088/0953-8984/22/6/065404
https://doi.org/10.1038/s41467-021-21939-1

