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Abstract

We have performed a systematic molecular dynamics investigation of the ef-
fects of overlap of collision cascades in tungsten with pre-existing vacancy-type
defects. In particular, we focus on the implications for fusion neutron irradi-
ated tungsten in relation to comparisons with damage production under ion
irradiation conditions. We find that overlap of a cascade with a vacancy-type
defect decreases the number of new defects with roughly the same functional
dependence as previously shown for interstitial clusters. We further find that
different mechanisms govern the formation of dislocation loops, resulting in dif-
ferent Burgers vectors, depending on the degree of overlap between the cascade
and the defect. Furthermore, we show that overlapping cascades consistently de-
crease the size of the pre-existing defect. We also observe void-induced cascade
splitting at energies far below the subcascade splitting threshold in tungsten.
The impact of these mechanisms on radiation damage accumulation and dose
rate effects are discussed.
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1. Introduction

Tungsten (W) is currently considered to be a top candidate as a struc-
tural and plasma-facing material for fusion reactors [1]. Tungsten has many
favourable properties, making it well suited for the extreme conditions in a
fusion reactor, including high melting point, good thermal conductivity, and
ability to resist erosion [1, 2, 3]. In fusion reactors, the materials are exposed
to both high temperatures and significant neutron radiation doses, which over
time cause the degradation of the materials’ mechanical and physical properties.
To determine the feasibility of using W in future fusion reactors, the effects of
radiation damage are of great interest.

∗Corresponding author
Email address: andrea.sand@helsinki.fi (A. E. Sand)

Preprint submitted to Elsevier June 17, 2019

Preprint of paper published as J. Phys.: Cond. Matter 31 (2019) 405402



When a neutron collides elastically with an atom in a material, it causes
the atom to recoil. This primary knock-on atom (PKA) may then in turn
collide with neighbouring atoms, causing them to subsequently collide with their
neighbours [4]. This process is called a collision cascade. Primary radiation
damage resulting from collision cascades has been studied quite extensively with
molecular dynamics (MD) methods, and the process of formation of the primary
damage from individual cascades is fairly well understood [5, 4]. However, when
a material is subjected to continued irradiation, eventually a collision cascade
will overlap with a defect already present in the material before the cascade. The
effects of overlap between cascades and pre-existing defects have been studied
much less than individual cascades in pristine materials. Although there have
been some studies of cascades interacting with pre-existing damage [6, 7, 8, 9]
and multiple overlapping cascades [10, 11, 12], the possible number of overlap
types is so large, that the understanding is yet far from comprehensive..

It has been observed experimentally that defects in iron appeared only after
a threshold dose of irradiation was met [13]. Later, it was also demonstrated
that the amount of visible defects increased non-linearly with increased radiation
dose [14]. These findings imply that the effects of cascade overlap have an impact
on the observed defects. Early MD simulations, on the other hand, have shown
that the amount of point defects produced decreases, if the collision cascade
overlaps with pre-existing defects [15]. Most of the current literature on the
effects of overlap in simulations focuses on iron, while effects in tungsten have
been studied considerably less.

Recently, we have investigated the effects of overlap both in α-Fe and W,
using MD simulations [16, 17]. We showed that overlapping cascades have a
significant impact on the morphology of the final defects, in addition to the
effects on defect formation efficiency. In a systematic study of cascade overlap
on interstitial defects, we found that the number of new Frenkel pairs produced
by a cascade is significantly reduced as a result of the cascade overlap in both
iron and tungsten [18]. In addition, we also proposed an analytical model for
predicting the number of Frenkel pairs produced as a function of the degree of
overlap between the cascade and the pre-existing defect.

In this work, we study the effects of cascades overlapping with vacancy-type
defects in tungsten using molecular dynamics. We restrict this study to de-
fects that have radii smaller than the cascade radius. We consider pre-existing
voids and vacancy-type dislocation loops with different Burgers vectors, while
also comparing the predictions of different interatomic potentials. Unlike the
simulations performed in [17], we have not used the end product of a previ-
ous cascade as the initial damage. Instead, we have manually created well
defined vacancy-type defects; this allows a systematic study of how the size and
morphology of the pre-existing defect affects the damage produced by cascade
overlap. These pre-existing defects represent low energy defect configurations,
that are expected to be present in, for example, nuclear reactors at operating
temperatures. They are also the defects that standard object kinetic Monte
Carlo (OKMC) models of long term radiation effects describe [19, 20, 21], so
that this systematic MD study provides direct input for multi-scale modelling
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of radiation damage accumulation.

2. Methods and analysis

2.1. Simulation methods

We introduced defects in cubic simulation cells of bcc tungsten by removing
atoms in the center of the cell to create vacancies. Voids were created in a
lattice with the major crystallographic directions aligned with the cell sides,
by removing atoms that were within a given radius. Dislocation loops were
created by first removing atoms in a circular plane corresponding to a Burgers
vector of 〈1 0 0〉 or 1/2〈1 1 1〉, after which the region was compressed to form a
dislocation loop. The lattice in these simulation cells was oriented so that the
Burgers vector in each case was parallel to one side of the cell. The cells were
then relaxed at 300 K. During the relaxation the temperature was controlled
using a Berendsen thermostat [22], and a barostat set to 0 kBar. In Table 1, we
list the different defects types and sizes that were used in this work, in terms of
the numbers of vacancies in each cluster, and the corresponding cluster radius.

Defect type Nvac rd (Å)
Void (59, 259, 893, 2085) (6, 10, 15, 20)
〈1 0 0〉 (101, 197) (13, 18)
1/2〈1 1 1〉 (109, 199) (14, 19)

Table 1: The pre-existing vacancy-type defects used in this study, their sizes in terms of
numbers of vacancies NVac, and the corresponding defect radius rd.

Cascade simulations were then performed on the relaxed systems. The pri-
mary knock-on atom (PKA) was chosen by first generating a random angle,
with angles uniformly distributed over the sphere, and then selecting an atom
in that direction, at a given distance from the center of the cell.

The PKA was then given a velocity corresponding to the desired kinetic
energy, directed towards the center of the cell. For 10 keV PKAs, the simulation
cells contained approximately 300 000 atoms. In 30 keV simulations the system
size was approximately 1 000 000 atoms. The simulation cell was given periodic
boundaries, and if the kinetic energy of an atom at the border exceeded a 10 eV
threshold, the cascade was considered to have extended over the borders of
the simulation cell, in which case the simulation was aborted, to avoid self-
interaction of the cascade. For each defect type and size, a total of at least 800
individual cascade simulations were run, with the PKAs initiated from between
8 Å to 80 Å from the center of the defect.

The simulations were performed with the MD code PARCAS [23]. We used
three different embedded-atom method (EAM) potentials [24], namely the po-
tential by Derlet et al.[25] and modified by Björkas et al.[26](hereafter referred
to as DND-BN), the Finnis-Sinclair potential by Ackland et al.[27], modified
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by Zhong et al.[28](hereafter referred to as AT-ZN), and finally the more re-
cent potential by Marinica et al.[29] and modified by Sand et al.[30] (hereafter
referred to as M4-S). The AT-ZN potential has been widely used for cascade
simulations, while the DND-BN potential has been shown to give cascade dam-
age results in good agreement with experiment [31, 32]. The M4-S potential, on
the other hand, has been extensively fitted to liquid configurations, and gives a
good representation of line defects.

2.2. Analysis

The results of the collision cascade simulations were analysed using the tools
provided with OVITO [33]. OVITO’s Wigner-Seitz analysis was used to calcu-
late the number and locations of interstitials and vacancies in the system. The
dislocation analysis algorithm DXA [34] was used to determine whether the pre-
existing dislocation loops survived the cascade, whether they had been altered,
or whether new dislocations had been formed. We also performed a cluster
analysis to determine the numbers of interstitial and vacancy clusters in the
systems, and their sizes. The cut-off distance for the vacancy cluster analysis
was chosen to be halfway between the second nearest neighbour and third near-
est neighbours, (r2NN + r3NN )/2. For interstitials, we used the midway-point
between the third nearest and fourth nearest neighbours, (r3NN + r4NN )/2.

To determine the collision cascade center, we calculated the center of mass
position of the liquid atoms existing during the period of maximal extent of the
hot cascade core, with each liquid atom weighted according to its kinetic energy.
We defined an atom as liquid when the average kinetic energy of the atom and
its neighbors exceeds the melting point of the potential [35].

The data are divided into bins with respect to the distance between the
cascade center and defect center. A statistical mean is calculated for the given
bin, and the mean value and the bin’s mean position is then plotted. The error
is calculated by the standard error of the values in the bin. Since the individual
cascades are independent of one another, the final defect count follows a Poisson
distribution. As a result, especially for the low defect count in the case of full
overlap by the second cascade, the mean and median values differ slightly. This
is illustrated in Figure 1, which also shows the peak of the Poisson distribution
fitted to the data. We expect that most applications of these data as input to
larger scale simulations will use only a single value, and disregard fluctuations.
Hence, in what follows, we report only the mean values. We reject the last bin,
included for completeness in Figure 1, since it generally contains too few data
points.
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Figure 1: Binning and statistical representation of an example system (pre-existing 〈1 0 0〉
loop, NVac = 101), showing the mean and median values of the raw data, as well as the peak
value of a fitted Poisson distribution for the data in each bin.

3. Results

3.1. Defect numbers at full overlap

We find that the production of new defects decreases when the cascade de-
velops in a region with a pre-existing vacancy-type defect. This observation
agrees with previous results showing a decrease in the number of defects pro-
duced in pre-damaged material [15, 18]. In Figure 2, we plot the number of new
defects resulting from cascades overlapping with voids of increasing size. In
these simulations, the PKA was initiated 15 Å from the void center, to achieve
maximal overlap. The number of new vacancies decreased with increasing size
of the pre-existing vacancy cluster.

The number of new vacancies Ndef , as a function of void size, is well repre-
sented by

Ndef = N0 − a lnNvac, (1)

where N0 is the (potential dependent) average number of defects formed from
an isolated cascade in the perfect crystal, and Nvac is the number of vacancies
in the pre-existing void. For this study, we determined N0 from 200 cascade
simulations with each potential, initiated in a perfect lattice at 300 K. We find
that a = 0.6 yields a good fit to the data for void overlap with all potentials,
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Figure 2: Numbers of new Frenkel pairs produced as a function of the size of the pre-existing
defect(NVac), using the AT-ZN potential. Each data point represents a statistical mean from
200 (100) simulations for 10 keV (30 keV) PKAs, with the PKA initiated 15 Å from the defect
center.

despite the fact that the M4-S potential consistently predicts a slightly higher
number of defects, compared to the other potentials. However, direct cascade
overlap with pre-existing dislocation loops yields fewer new defects than overlap
with voids. A full dependence of this value on loop size cannot be determined,
since small vacancy-type dislocation loops are not stable at 300 K, but rather
open up to form so called ”open vacancy loops” [36], which are not expected to
occur naturally, due to preference for the void structure. On the other hand,
10 keV cascades are barely large enough to envelop the larger, stable loops
considered here, and a further increase in size would involve defects larger than
the extent of the cascade.

We further note that this function also depends on cascade energy. A full
investigation of the PKA energy dependence will be the focus of future work.
Here, we note that the limited data we have for 30 keV PKAs suggests that
equation (1) may be valid in general for void overlap, with dislocation loops
causing a stronger decrease in the number of new defects than voids, for a given
PKA energy. The origin of this difference between loops and voids is considered
in the following section.
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3.2. Damage as a function of defect - cascade separation

In the case of full overlap between the cascade and a dislocation loop, i.e.
where the sum of the defect radius and the defect-cascade separation is less
than the cascade radius, the number of new vacancies that are produced is at a
minimum. When the cascade develops further away from the defect center, and
the degree of overlap decreases, the number of new vacancies increases, up to the
point where the pre-existing defect is fully outside of the cascade radius, and the
number of new vacancies converges to the value for cascades in pure crystalline
W without defects. Figure 3 shows the effect of the degree of cascade overlap
on the production of new defects. The different potentials agree qualitatively,
but differ in the overall numbers of new vacancies. For the larger loops, partial
overlap occurs out to a larger separation distance, hence the region over which
the number of new defects is reduced is correspondingly larger.

In figures 3-4, we have plotted a slightly modified version of the function
introduced in Ref. [18]:

N =

Ndef , r < rd

N0 − (N0 −Ndef) exp

[
− (r−rd)

2

r2c

]
, r ≥ rd,

(2)

where rd is the radius of the pre-existing defect (see table 1), and rc is the
cascade radius. We define Ndef for 10 keV cascades using Equation (1) (see
Figure 2 for relation to the data). Tables 1 and 2 list the values used here for
the parameters in Eq. (2). We find that the function, developed for interstitial
defect overlap, also fits the data for overlap with vacancy-type dislocation loops
quite well. The main discrepancy is seen in the region of partial overlap, where
the model slightly overestimates defect numbers.

Potential EPKA N0 rc [18]
AT-ZN 10 keV 8.37± 0.1884 19.2
DND-BN 10 keV 8.92± 0.2012 18.8
M4-S 10 keV 10.25± 0.212 17.7

Table 2: Values for the different potentials of number of defects from cascades in perfect
crystal N0, and the cascade radius rc (taken from Ref. [18]) used in Equation (2) for 10 keV
cascades, plotted in Figures 3-4. All values pertain to cascades simulated at 300 K.

The behaviour of cascades overlapping with voids differs slightly from that
of overlap with vacancy-type loops, except for the very smallest void size. When
the center of the cascade is close to the center of a void of significant size, the
number of new vacancies is not at a minimum (see Figure 4). For increased sep-
aration between cascade and void center, the number of new defects decreases,
until at larger separation the value again increases, towards that of isolated
cascades in pure crystal. We note that this effect is not captured by Equation
(2), and in particular that N0 is determined here by the full overlap behavior,
and hence Equation (2) clearly overestimates the defect numbers in the region
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(b) 〈1 0 0〉, Nvac = 197
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(c) 1/2〈1 1 1〉, Nvac = 109
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(d) 1/2〈1 1 1〉, Nvac = 199

Figure 3: Numbers of new defects from cascades overlapping with dislocation loops of
different types (Burgers vectors 〈1 0 0〉 and 1/2〈1 1 1〉) and sizes (Nvac), plotted as a
function of the distance r between defect center and cascade center. All cascades had
10 keV PKA-energy, and were simulated at 300 K.
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of partial overlap of voids with the current choice of parameters. However,
the prediction is nevertheless useful for providing a first approximation to the
damage rates in pre-damaged material.

Closer inspection of the cascade region in cases where the cascade was cen-
tered on the void showed that often the presence of the void had caused the
cascade to split, and develop in fully separate regions around the void. This
void-induced cascade splitting is illustrated in Figure 5(a). The two parts of
the illustrated cascade are largely unaffected by the void (in turn having little
effect on the void itself). Due to the possibility, but not necessity, of the cascade
splitting, the numbers of new defects at full overlap show strong variation, and
the uncertainty in the mean value is large. When the cascade only partially
overlaps with the void, as in Figure 5(b), the decrease in the number of new
defects is the strongest, and simultaneously the spread in the data is smaller.
As with dislocation loops, when the cascade is far enough from the defect, it
has no influence on the defect (Figure 5(c)), and the defect, in turn, does not
affect the numbers of new vacancies produced by the cascade.

3.3. Effect of PKA energy

We have investigated the effect of PKA energy using the AT-ZN potential,
for a selection of the pre-existing defects. Increasing the PKA energy to 30 keV
increases the cascade radius, which in turn means that partial overlap with the
defect occurs for a larger separation distance between cascade center and defect
center, and hence the region where defect numbers are reduced is larger. A
more energetic cascade also increases the number of defects produced. Figure 6
shows the number of new vacancies formed in 30 keV cascades overlapping with
different vacancy-type defects at different separation distances. For the largest
defect sizes, we did not extend the overlap distance of 30 keV cascades to the
fully non-overlapping situation, since this would have required an excessively
large simulation box, considering the large number of individual simulations
needed for adequate statistics. It is, however, clear that the number of new
defects will converge to the value in a perfect crystal at larger separation dis-
tance, as for the 10 keV cascades. Overall, the behaviour for 10 keV and 30 keV
cascades is qualitatively similar.

3.4. Survival of the pre-existing defect

We investigate the effect of cascade overlap on void and loop growth by an-
alyzing the sizes of the resulting vacancy clusters in relation to the pre-existing
voids and loops. The final clusters are products of both the effect of the for-
mation of new defects, as well as the tendency of the cascade to either split or
cluster the final vacancy population. Overall, we find that the vacancy clusters
decrease in size, despite the formation of additional vacancies as a result of the
cascade. This is in clear contrast to the observations of interstitial defects, where
a slight increase in defect size was observed when cascades partially overlap with
interstitial loops [18].

The decrease in cluster sizes for loops and voids are shown in Figures 7 &
8, respectively, both in terms of absolute vacancy numbers, and as a fractional
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(a) void, Nvac = 59
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(b) void, Nvac = 259
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(c) void, Nvac = 893
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(d) void, Nvac = 2085

Figure 4: Number of new defects created in 10 keV cascade simulations on pre-existing
voids, as a function of the separation r between the cascade midpoint and the defect
centre. (NVac: number of vacancies in the initial defect)
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(a) r = 17 Å (b) r = 23 Å

(c) r = 43 Å

Figure 5: Three outcomes of a cascade overlapping with a void of NVac = 259, with
different separation distances r between cascade center and the center of the defect.
Green dots represent atoms that are classified as liquid during the maximum extent of
the cascade heat spike. White spheres represent vacancies, and blue spheres represent
interstitials, at the end of the simulation.
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Figure 6: Number of new defects created in 10 keV and 30 keV cascade simulations
with the AT-ZN potential at 300 K, as a function of the separation r between cascade
center and defect center. (Nvac: number of vacancies in the initial system)12



change. For both loops and voids, the cluster size decreases the most when the
cascade only partially overlaps with the defect. When the cascade fully overlaps
with the defect, the average decrease in cluster size is smaller. When the cascade
does not overlap with the pre-existing defect, no change in the cluster size is
observed. Hence only direct or partial overlap of the cascade region with the
defect affects the sizes of the pre-existing defect clusters. The difference between
full and partial overlap is more pronounced for voids than for loops. This is an
effect of the cascade splitting described earlier, which reduces the effect of the
overlapping cascade when it is centered on a void. For both loops and voids,
the maximum fractional decrease in cluster size is larger for smaller defects, as
can be expected.

The effect of overlap is overall stronger for pre-existing dislocation loops
than for voids, with a decrease in size of up to 60 % for pre-existing vacancy-
type dislocation loops. This is likely due to the fact that a loop exists in nearly
perfectly packed crystal, allowing a cascade at full intensity to overlap the defect,
with the resulting atom deficiency in the cascade region causing a decrease in
the production of new defects. On the other hand, a void, being a completely
empty region, cannot support a cascade, and the energy of the recoils hence
spreads further around the defect, rather than enveloping it in a dense cascade.

For loops, our results show a strong dependence on the interatomic potential,
with the strongest effect of decreasing loop size seen with the DND-BN potential,
and only a very slight effect with the AT-ZN potential. This is related to the
ability of the potential to form dislocations upon recrystallization of the cascade
core, as will be discussed in the following sections.

3.5. Change in defect morphology

A cascade overlapping with an existing defect has the potential to change the
morphology of the defect completely. In many cases, the resulting defect has
a complicated structure [17], and determining what the resulting low-energy
configuration will be after relaxation at a finite temperature is a non-trivial
question, and is beyond the scope of the current work. However, the defect
may also transform already during the cooling and recrystallization phase of
the cascade into a well formed dislocation loop with a defined Burgers vector.
In Figure 9, we plot the fraction of overlapping cascade events that result in a
well-formed dislocation loop. The most striking result is the large discrepancy
between the different interatomic potentials. The sensitivity of the resulting
morphology to the energy landscape of the intermediate, highly distorted atomic
configurations sets huge requirements on the potential.

The AT-ZN potential shows the strongest tendency to form dislocation loops
rather than voids, despite correctly predicting voids to be the more energeti-
cally favourable vacancy configuration (see Appendix and Ref. [37]). For the
predictions of this potential, we identify two distinct mechanisms of loop for-
mation from cascade overlap, resulting in different final Burgers vectors. In full
overlap of the cascade with a pre-existing loop, the end product is most likely
a dislocation loop with Burgers vector 〈1 0 0〉, irrespective of the Burgers vector
of the initial loop. For full overlap with voids, the frequency of formation of a
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Figure 7: The average change in size of the pre-existing dislocation loop (in terms of the
largest surviving cluster) after an overlapping cascade, as a function of the distance
between defect and cascade centers.
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(a) void, Nvac = 59
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(b) void, Nvac = 259
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(c) void, Nvac = 893
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(d) void, Nvac = 2085

Figure 8: The average change in size of the pre-existing void (in terms of the largest
surviving cluster) after an overlapping cascade, as a function of the distance between
defect and cascade centers.

dislocation loop is lower, but if a loop is formed, it has Burgers vector 〈1 0 0〉. In
these overlap events, the initial defect is fully enveloped, and all initial structure
is destroyed by the cascade. As the cascade cools, the lattice recrystallizes inde-
pendently of the pre-existing defect structure. With the AT-ZN potential, the
recrystallization dynamics are such that they favour the formation of a 〈1 0 0〉
loop, despite this structure having a higher formation energy than the 1/2〈1 1 1〉
loop (see Appendix and Ref. [37]). This effect is observed less often for larger
loops than for smaller ones, since the probability of the cascade fully destroying
the initial structure decreases as the loop size increases.

As the overlap distance increases, and cascades overlap only partially with
the pre-existing defect, the prevalence of 〈1 0 0〉 loops decreases. For overlap
with a 1/2〈1 1 1〉 loop, the final product quickly becomes dominated by 1/2〈1 1 1〉
loops. For overlap with 〈1 0 0〉 loops, on the other hand, 〈1 0 0〉 loops are still
a possible outcome of partial overlap events, but the frequency of 1/2〈1 1 1〉
loops increases at the point where the cascade destroys only part of the pre-
existing dislocation loop. In these cases, the dislocation line closes again upon
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Figure 9: Fraction of cascades producing dislocation loops in the surviving damage, for
three different initial defects.
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recrystallization, but frequently the new segment has Burgers vector 1/2〈1 1 1〉.
This mixed dislocation subsequently relaxes to a full 1/2〈1 1 1〉 loop. For overlap
with voids, only very few cases of dislocation formation are observed for partial
overlap, but in all cases the loop that forms has Burgers vector 1/2〈1 1 1〉. As the
distance between the pre-existing defect and the cascade increases further, the
defect is left intact, except for pre-existing 〈1 0 0〉 loops with the M4-S potential,
for which the 〈1 0 0〉 loop is unstable under the disruption by a closely occurring
cascade. For all potentials, the cascade can form more complex loop structures
during partial overlap, consisting of multiple loop segments, or vacancy clusters
with dislocation segments terminating in the disordered region.

Overlap with voids show significantly less tendency to form dislocation loops
than overlap with loops, since the number of vacancies contained in the voids
would require a significantly expanded cascade region in order to accommodate
a full dislocation loop with the same atom count. However, in the AT-ZN
potential one could sometimes observe dislocation loops forming on the side of
the void. Figure 10 shows an example of an almost complete dislocation loop
joined to a void, formed with the AT-ZN potential.

Figure 10: A 〈1 0 0〉 loop formed on the side of a void (Nvac =259) by a 10 keV cascade,
with the AT-ZN potential. White spheres: vacancies, red spheres: interstitials, magenta line:
〈1 0 0〉 dislocation.

In Figure 11, we show a time series of a representative case where a 1/2〈1 1 1〉
loop changes to a 〈1 0 0〉 loop with the AT-ZN potential. The initial 1/2〈1 1 1〉
loop is fully destroyed by the overlapping cascade, with no identifiable disloca-
tion segments remaining. As the disordered region crystallizes, complex dislo-
cation structures can be identified, which eventually stabilize as a fully formed
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(a) time ≈ 0 fs (b) time ≈ 550 fs

(c) time ≈ 24 ps (d) time ≈ 50 ps

Figure 11: Destruction and reformation of a dislocation loop with the AT-ZN poten-
tial, by a 10 keV cascade on a 1/2〈1 1 1〉, Nvac = 199 loop, white: vacancies, red:
interstitials, green lines: 1/2〈1 1 1〉 and magenta lines: 〈1 0 0〉

〈1 0 0〉 loop.

4. Discussion

We find that dislocation loops decrease the numbers of new defects more
efficiently than voids at full overlap. This is partly explained by the fact that
voids are observed to induce cascade splitting, even though these PKA energies
are otherwise well below the subcascade splitting threshold in W [32, 38]. Hence
the final defects are effectively the products of two separate cascade regions.
In this PKA energy range, the defect production from independent cascades
has been shown to follow a power law of the form 2.21(EMD)0.74 [39]. Hence,
splitting the cascade into two separate regions with a combined energy of 10 keV
can potentially result in 20% more defects than from a single 10 keV cascade,
not considering the stochastic variations between individual cascades. Cascade
splitting is observed only when the PKA is initiated close enough to the void
that it has enough kinetic energy when it enters the void to give rise to a second
cascade region on the other side of the void. Hence this effect occurs only in

18



cases of full overlap, while for partial overlap the reduction in defect numbers
is similar for similarly sized loops and voids.

The observed persistent decrease in vacancy cluster size as a result of an
overlapping cascade, in contrast to the case for interstitial defects, is a natural
consequence of the different formation mechanisms of interstitial and vacancy
clusters in cascades. The former are formed from dense regions of atoms ejected
or pushed to the perimeter of the cascade region [40], while vacancies are pushed
towards the center of the cascade as the recrystallization front progresses in-
wards while the cascade region cools [41]. As a result of this inwards migration
of vacancies, the overlapping cascade splits pre-existing vacancy clusters most
efficiently when the cascade partially overlaps with the defect, leaving part of it
in its original position, and pulling part of it towards the center of the secondary
cascade. This is seen as a clear peak in the decrease of void size shown in Figure
7. This mechanism of void destruction presents one of the underlying reasons, in
addition to vacancy mobility, for differences in void formation observed between
neutron [42, 43] and ion [44, 31, 45] irradiation, through efficient destruction of
voids relative to the thermally driven void growth, in the higher dose rate of ion
irradiation experiments.

We observe two different formation mechanisms of dislocation loops, result-
ing in loops with different Burgers vectors. In full overlap, the cascade core has
the potential to recrystallize to a defect configuration that is not determined by
the lowest formation energy. On the other hand, where parts of the initial de-
fect survive, subsequent evolution of a 2-part defect morphology leads to lower
energy configurations, clearly favouring the loop with a Burgers vector involv-
ing the lowest formation energy. This is in contrast to cascade overlap with
interstitial clusters, where the lowest-energy defect configuration is the most
likely product in both full and partial overlap, although higher-energy configu-
rations were also formed with significant probabilities [18]. Hence, ”energetically
unfavourable” defect configurations may become more frequent in neutron irra-
diated tungsten after the onset of cascade overlap, but depend on the relation
between the size of the defect and the diameter of the cascade, through the re-
quirement that the initial defect be fully enveloped by the cascade. However, this
prediction is strongly dependent on the interatomic potential, and it is not clear
which potential provides a physically sound prediction, due to the challenges
associated with benchmarking a potential for the highly non-equilibrium con-
ditions and distorted atomic configurations that occur during cascade core re-
crystallization. Nevertheless, the AT-ZN potential represents the most ’generic’
potential of the ones that were employed in this study. The DND-BN and M4-S
potentials have an increasing number of fitted parameters, introduced through
the cubic knot functions used to represent the various energy contributions in
the potentials. This serves to improve predictions for certain targeted proper-
ties, but simultaneously presents higher challenges for transferability. Cascade
dynamics involves an extremely wide range of states of the material, from the
initial ground state lattice, to an under-dense core and over-dense outer layer in
the heat spike formation phase, to the subsequent liquid-like core which persists
at temperatures in excess of 10 000 K, and finally the recrystallization process
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involving the interface between the lattice and the liquid core, and the defect
structures that emerge from this state. As such, it can be expected that the
more generic potential provides the most comprehensively accurate prediction.
Furthermore, the prediction of 〈1 0 0〉-type dislocation loops in irradiated W is
in agreement with experimental observations [31], increasing the level of con-
fidence in the AT-ZN potential, which alone out of the three potentials tested
here has predicted the in-cascade formation of 〈1 0 0〉-type loops of both vacancy
and interstitial nature [46].

The tendency of overlapping cascades to reduce vacancy cluster sizes will af-
fect predictions of damage evolution, compared to calculations based solely on
vacancy mobility, and stability and growth rates of defects. This implies that
cascade overlap must be taken into account when modelling microstructural
evolution under irradiation, whether the employed methods are based on mean
field calculations or OKMC. Furthermore, this mechanism will serve to inhibit
void formation in the limits of high dose rate or low temperature, which are
typical conditions in ion irradiation experiments. This effect, together with the
void-induced cascade splitting, has profound implications for the comparison of
neutron and ion irradiated materials. Since higher energy cascades typically
form larger clusters [47, 32], void-induced cascade splitting will also shift the
defect production towards smaller, more mobile defects, hence enhancing the
possibility of recombination as compared to prolonged irradiation under con-
ditions that do not favour void formation. This implies that a simple shift
in temperature necessarily cannot compensate for dose rate effects in neutron
versus ion irradiation experiments, if the underlying microstructure is different.
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5. Conclusions

We have shown that the defect production from collision cascades in tung-
sten is decreased by the presence of pre-existing vacancy-type defects, with a
functional dependence on the degree of overlap very similar to that of overlap
with interstitial defects.

However, we find qualitatively different behaviour in many respects, com-
pared to overlap with interstitial defects. We find that overlapping cascades
consistently decrease the size of the pre-existing defects, with the strongest ef-
fect seen when cascades partially overlap with the defect. Further, we observe
void-induced cascade splitting for cascade energies well below the subcascade
splitting threshold in tungsten. These effects will cause clear differences not
described by standard rate theory models in damage accumulation under irra-
diation conditions that favour void formation, i.e. where vacancies are mobile
and dose rates low, as compared to the limit of high dose rate and low temper-
ature.

In addition, we identify two distinct mechanisms of loop formation resulting
from an overlapping cascade, neither one showing dependence on the original
defect structure. On the one hand, when cascades fully envelop a defect, the
final defect is not constrained by considerations of formation energy. Rather,
we observe frequent formation of 〈1 0 0〉 type dislocation loops in such scenarios,
even though the interatomic potential predicts a higher formation energy for
〈1 0 0〉 than 1/2〈1 1 1〉 loops. In contrast, when cascades only partially overlap
a dislocation loop, the resulting - frequently 2-part - structure often relaxes to
a lower energy loop during the cascade relaxation time, i.e. on the order of
picoseconds.

While the different potentials considered in this work show agreement re-
garding the efficiency of production of new defects from overlapping cascades,
they differ significantly with regards to predictions of the structure of the final
defects. In particular, potentials disagree on the readiness to form dislocation
structures during recrystallization of the heat spike. The different loop forma-
tion mechanisms identified in this work are found based on the predictions of
the AT-ZN potential, which shows the strongest tendency to form dislocations.
We conclude that more accurate potentials are needed for quantitatively reliable
predictions of radiation defect morphology.
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Appendix A. Formation energies of vacancy clusters

Figure A.12 shows the formation energies of different vacancy-type clusters
in W as predicted by the different interatomic potentials. The formation en-
ergies were calculated following a conjugate gradient minimization of systems
containing a dislocation loop or spherical void of a given size at zero pressure.
The lines connecting the data points are fits to the corresponding scaling law of
dislocation loops or voids, discussed in [36]. The formation energy of dislocation
loops scales as

Ef = a0
√
N ln(N) + a1

√
N + a2, (A.1)

where N is the number of vacancies in the loop, and ai are used as fitting
parameters. For voids, the formation energy scales as [36]

Ef = aN2/3. (A.2)

All potentials predict the same order of stability for the different clusters at
large sizes, with voids lowest and 〈1 0 0〉 loops highest in energy. The differences
in energy between the two loop types are small in the DND-BN and M4-S
potentials, and at small sizes 〈1 0 0〉 loops are lower in energy.
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