
Analytic bond-order potential

for atomistic simulations of zinc oxide

Paul Erhart1, Niklas Juslin2, Oliver Goy3, Kai Nordlund2,

Ralf Müller3, and Karsten Albe1

1Institut für Materialwissenschaft, Technische Universität Darmstadt,
Petersenstraße 23, D-64287 Darmstadt, Germany
2Accelerator Laboratory, PO Box 43, FIN-00014 University of Helsinki, Finland
3Fachbereich Bauingenieurwesen und Geodäsie, Technische Universität
Darmstadt, Hochschulstraße 1, D-64289 Darmstadt, Germany

PACS numbers: 02.70.Ns 34.20.Cf 71.55.Gs 82.20.Wt

Submitted to: J. Phys.: Condens. Matter

Abstract. An interatomic potential for zinc oxide and its elemental constituents
is derived based on an analytical bond-order formalism. The model potential
provides a good description of the bulk properties of various solid structures of
zinc oxide including cohesive energies, lattice parameters, and elastic constants.
For the pure elements zinc and oxygen the energetics and structural parameters
of a variety of bulk phases and in the case of oxygen also molecular structures is
reproduced. The dependence of thermal and point defect properties on the cutoff
parameters is discussed. As exemplary applications the irradiation of bulk zinc
oxide and the elastic response of individual nanorods are studied.

1. Introduction

Zinc oxide is a traditional semiconductor with manifold applications in electronic and
optoelectronic devices [1, 2], which more recently attracted much attention, because
nanostructures such as rods, wires, belts, and rings [3, 4] were experimentally prepared.

In order to improve the understanding of the physical and chemical properties of
zinc oxide, computer simulations can be a valuable tool complementing experiments
or aiding their interpretation. Quantum-mechanical methods such as Hartree-Fock
(HF) or density-functional theory (DFT) have been extensively used to investigate
e.g., surfaces [5, 6], high-pressure phase transitions [7, 8, 9], elastic properties [9],
phonon dispersion [10], and point defects (see e.g., references [11, 12, 13, 14, 15, 16])
in ZnO. While such methods are highly transferable and allow for accurate and
reliable calculations, they very computationally demanding. Atomistic simulations
of multi-million atom systems that go beyond nanoseconds in time are therefore only
possible if the electronic degrees of freedom are removed and interatomic potential are
introduced, which are computationally more efficient. Upon reducing the complexity
of the system some information is inevitably lost, but a sensibly chosen potential
scheme in combination with a carefully constructed fitting database can nevertheless
realistically mimic chemical bonding and structure of solids.
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Metal oxides represent an especially difficult case for atomistic modelling because
of their complex electronic structure and intricate mixture of ionicity and covalency.
Therefore, very few potentials have been devised and most of them are shell-model
potentials (see section 2) that are not capable of describing the elemental components
(see section 2). The situation is further complicated if the system of interest features
such diverse phases as a hexagonal close packed metal (zinc), a gaseous phase (dimeric
oxygen), and a ionic-covalent semiconductor (zinc oxide). In the following, we briefly
review potential schemes which have been previously used to model compounds with
ionic and ionic-covalent bonding characteristics. In doing so we motivate our interest
in exploring the applicability of a purely covalent model to zinc oxide, which can
be considered a prototype for other oxide systems. In section 4 a concise summary
of the potential formalism adopted in the present work is given. Sections 5, 6,
and 7 introduce and discuss the potentials for Zn–O, Zn–Zn, and O–O interactions,
respectively. Finally, the potential is applied in simulations of the irradiation of bulk
zinc oxide and to study the elastic response of individual nanorods (section 9).

2. Review of potential schemes

Bonding and structure of many elemental metals and semiconductors can be
reasonably described by analytic potentials that have been used in a wide range of
applications [17, 18, 19, 20, 21, 22, 23]. With regard to compounds, the situation is
more complex as in most systems cohesion arises from a mixture of covalent, ionic
and van-der-Waals interactions. Formally, the cohesive energy can be written as a
sum of these contributions, and if a realistic description of the bonding behaviour is
pursued, one needs to assess the relative weight and the mathematical representations
of each of these terms. In the following, potential schemes from the literature are
compared focusing on the treatment of covalency vs ionicity, and, where applicable,
charge equilibration.

The alkaline-halides and alkaline earth-oxides are typical example for ionic
compounds in which long-range Coulomb interactions between the ions dominate.
Simple Born-Mayer potentials which combine a Coulomb potential with a short-
ranged, spherically symmetric repulsive potential are usually sufficient in order to
obtain a satisfactory description. Shell-model potentials (see e.g., references [24, 25]
and [26]) represent a somewhat more refined approach combining short-ranged
repulsive, long-ranged dispersive, and ionic interactions with a simple, usually
harmonic, model for atomic polarisability [27]. The ionic charges are kept fixed at
their nominal values (and independent on the atomic environment). In the past,
shell-model potentials have been applied to a wide range of materials since they offer
a very handy formalism with few fitting parameters and yield useful models when only
a small section of configuration space is of relevance. Since three-body interactions are
not explicitly taken into account covalent contributions either have to be neglected or
are subsumed in the fitting parameters. The formalism is incapable of describing pure
elements which renders it inapt for simulations which include the boundary phases
of the material. Furthermore, due to the long range of the Coulomb potential the
treatment of electrostatic interactions is computationally very demanding.

In contrast to ionic interactions, covalent bonding is characterised by strong
directional bonds, and therefore angle dependent many-body terms need to be taken
into account. By merging Stillinger-Weber type [28] two and three-body potentials
with terms describing Coulomb, monopole-dipole, and van-der-Waals interactions,
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Vashishta and coworkers arrived at a scheme capable of describing materials such as
silicon carbide [29, 30], gallium arsenide [31], and zinc oxide [32]. The ions are assigned
fixed, effective charges and the long-range electrostatic interactions are truncated
at some intermediate distance reducing the computational effort substantially. The
potentials are designed such that the boundary phases can be described on the same
basis as the compound.

In an effort to simulate metal/metal-oxide systems Streitz and Mintmire devised
a scheme (ES+) which merges the embedded-atom method (EAM) with an ionic
potential [33]. The model explicitly accounts for charge transfer between anions
and cations by equilibrating the ionic charge for each configuration which renders
it computationally very demanding. The scheme has been applied with some success
for modelling alumina [33] and with modifications to titania [34].

More recently, Duin et al constructed a reactive force field (ReaxFF) which
features a combination of many-body, van-der-Waals, and Coulomb terms [35].
Originally, designed for hydrocarbons the scheme is sufficiently flexible for describing
also oxidic compounds and metals as shown for the case of alumina [36]. Similar to
the Vashishta potentials, the Coulomb potential is truncated at some distance while
the effective ionic charges are determined via charge equilibration akin the Streitz-
Mintmire approach. The full functional form features 93 parameters. Many degrees of
freedom for fitting increase the flexibility of the potential scheme but parameter space
sampling becomes tremendously complex and the risk to generate spurious minima in
the potential hypersurface grows.

Purely covalent bonding exemplified by elemental semiconductors such as carbon,
silicon, or germanium, can be well described within the bond-order approach pioneered
by Abell [37] and Tersoff [38] and later extended by Brenner [39]. It turns out the
formalism works similarly well for strongly covalent compounds. The bond-order
formalism was shown to be formally equivalent to the embedded-atom method (EAM)
which has been very successful in modelling metallic bonding [40]. In fact, it turns
out that the bond-order ansatz is capable of describing many pure metals (including
transition metals) on the same footing as covalent materials [21, 23]. Therefore, it is
possible to derive a consistent set of potentials which describe the compound as well
as its components within a single formalism.

Pettifor and coworkers were able to show that bond-order potentials can be
rigorously derived within tight-binding theory based on a moment expansion of the
density of states [41, 42]. They later extended their approach to higher moments and
multi-component systems [43]. The scheme has been applied to obtain potentials for
example for hydrocarbons [44], but oxide materials have not been considered so far.

3. Motivation

In this work, we pursue the question whether it is possible to treat a highly ionic
compound such as zinc oxide within a purely covalent model. The neglect of
charges avoids the computationally expensive treatment of long-range interactions
and therefore, allows to obtain an atomistic model which is significantly more efficient
than any of the formally ionic potentials described in the foregoing section.

We employ an analytic bond-order potential (ABOP) scheme [21, 20] which has
already been successfully applied to a number of systems including purely metallic
[21, 23], predominantly covalent [45, 20, 18], molecular [22] as well as mixed ionic-
covalent bonding [23, 22]. Thus, the ABOP scheme in principle offers the possibility
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to describe the Zn–O, O–O as well as Zn–Zn interactions within a single framework.
Although, it turns out that for many situations the neglect of charges is legitimate,
it needs to be acknowledged that the applicability of the ABOP is limited if internal
or external electric fields become dominant as in the case of interfaces or surfaces.
The restriction to first-nearest neighbours also implies that the energy difference
between the zinc blende and the wurtzite structures becomes zero, since their local
environments are indistinguishable. The ABOP performs, however, very well in
reproducing a variety of bulk properties including cohesive energies, structures, and
elastic properties as will be shown in the next sections.

We anticipate the analytic bond-order potential presented in this work to be useful
for atomistic simulations of a variety of phenomena and processes as exemplified in
section 9.

4. Methodology

The bond-order potential scheme and the fitting strategy used in this work have
been extensively described elsewhere (see e.g., references [21] and [20]). Differences
in the fitting strategy are pointed out where applicable. For completeness we briefly
summarise the functions needed to calculate the potential energy.

The total energy is written as a sum over individual bond energies

E =
∑

i>j

fc
ij(rij)

[

V R
ij (rij) −

bij + bji

2
︸ ︷︷ ︸

bij

V A
ij (rij)

]

(1)

where for the pair-like attractive and repulsive terms Morse-like pair potentials are
adopted
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)

. (2)

The parameters in these equations are the dimer bond energy D0, the dimer bond
distance r0 and the parameter S which determines the slope of the Pauling plot (see
reference [21] and figures 1 and 5 below). The parameter β can be obtained from
the ground-state oscillation frequency of the dimer. The cutoff function restricts the
range of the interaction to first or second nearest neighbours
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2
(r − Rc)

/
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(3)

where Dc and Rc are adjustable parameters. Explicit three-body interactions are
included via the bond-order parameter

bij = (1 + χij)
− 1

2 , (4)

χij =
∑

k( 6=i,j)

fc
ik(rik) gik(θijk) exp[2µik(rij − rik)]. (5)



Analytic bond-order potential for atomistic simulations of zinc oxide 5

Table 1. Parameter sets for describing Zn–Zn, O–O, and Zn–O interactions.
Re

c , De
c : cutoff parameters derived for the pure elements; Rc, Dc: default cutoff

parameters for simulations of ZnO (see section 8).

Parameter Zn–Zn O–O Zn–O

D0 (eV) 0.6470 5.166 3.60
r0 (Å) 2.4388 1.2075 1.7240
S 1.8154 1.3864 1.0455
β (Å−1) 1.7116 2.3090 1.8174
γ 4.3909 × 10−5 0.82595 0.019335
c 77.916 0.035608 0.014108
d 0.91344 0.046496 0.084028
h [θc] 1.0 0.45056 0.30545

[180◦] [116.8◦] [107.8◦]
2µ (Å−1) 0.0 0.0 0.0
Re

c (Å) 3.00 2.10, 2.60 -
De

c (Å) 0.20 0.20 -

Rc (Å) 2.85 2.45 2.60
Dc (Å) 0.20 0.20 0.20

The indices monitor the type-dependence of the parameters, which is of importance
for the description of compounds. The angular dependence is described by

g(θ) = γ

(

1 +
c2

d2
− c2

d2 + (h + cos θ)2

)

. (6)

The parameter sets for Zn–Zn, O–O, and Zn–O derived in this work are given
in table 1 and will be discussed in the following sections. Cutoff parameters derived
for the pure elements are denoted Re

c and De
c , while the parameters appropriate for

simulations of the compound ZnO are given in rows Rc and Dc.

5. Zinc oxide

Our fitting methodology requires data on cohesive energies, lattice constants, and
elastic constants of a variety of structures in order to cover a range of coordinations
as wide as possible. For zinc oxide a plethora of data from experiment and quantum-
mechanical calculations is available which could be used for fitting and benchmarking
the potential. Therefore, no additional reference calculations were necessary. In
order to simplify fitting we transformed the experimentally measured hexagonal elastic
constants to the cubic system by means of Martin’s transformation method [46] and
included the latter values in the fitting database.

5.1. Dimer properties

As the pair parameters of the ABOP are usually adjusted to dimer data, we begin
by discussing the properties of the ZnO molecule. The dimer behaves peculiar in the
way that its ground state dissociates into excited atomic states (T1: ZnO(X1Σ) →
Zn(1S) + O(3P)) while the dissociation into the atomic ground states occurs from
an excited state of the dimer (T2: ZnO(a3Π) → Zn(1S) + O(1D)). This implies
that the lowest experimentally determined dimer energy (associated with the extrinsic
bond energy, EBE) cannot be described by a single pair potential but corresponds to
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Table 2. Summary of properties of the ZnO dimer. Experimental data from
references [47], data from quantum-mechanical calculations from references [48,
49]; EBE: extrinsic bond energy (eV); IBE: intrinsic bond energy (eV); r0: bond
length (Å); ω0: ground state oscillation frequency (cm−1); IBE, r0 and ω0 are
given for the dissociation of the dimer ground state into higher energy atomic
states (T1: ZnO(X1Σ) → Zn(1S) + O(3P)).

Expt. Theory ABOP

EBE 1.61 ± 0.04 1.20 – 1.63
IBE 3.58 3.31, 3.60 3.60
r0 1.679 – 1.771 1.724
ω0 805 ± 40 646 – 913 708

a crossing-over of the potentials describing the transitions T1 and T2, respectively
[47, 49]. For consistency, we only consider the dimer energy, bond length and
oscillation frequency which describe transition T1, that is the decomposition of the
dimer ground state into the excited atomic states (intrinsic bond energy, IBE). The
parameter set given in table 1 yields very good agreement with both the experimental
as well as the quantum-mechanically computed data for this transition as shown in
table 2.

5.2. Bulk Properties

The performance of the ABOP with respect to bulk properties is compared to
experiment and DFT calculations in table 3. The energy difference between the
wurtzite and zinc blende structures is zero due to the neglect of long-range interactions.
For the same reason the axial ratio (c/a =

√

8/3) as well as the internal relaxation
parameter (u = 3/8) of the wurtzite structure are restricted to their ideal values.
Otherwise, the agreement with respect to cohesive energies, volumes and bulk moduli
is excellent. In particular, the elastic constants of the wurtzite phase compare very well
with experiment. In table 3 we also give the elastic constants of wurtzite calculated
directly with the values obtained by Martin’s transformation method from the elastic
constants of the zinc blende structure and find very good agreement.

The semi-logarithmic plot of bond energies vs bond lengths in figure 1 reveals
an almost perfect agreement with the Pauling relation. By applying the common-
tangent construction to the energy-volume curves shown in figure 2 one obtains
the transition pressure for the wurtzite-rock salt transformation as 10 GPa in good
agreement with experimental values in the range of 8.6 to 10 GPa as well as first-
principles calculations predicting transition pressures between 8.6 and 14.5 GPa (see
reference [55] and references therein).

The comparison also includes the shell-model potential by Lewis and Catlow
(LC) [24, 25] which is computationally much more expensive than the ABOP. For our
calculations with the LC potential we employed the General Utility Lattice Program
(GULP) [59]. The LC potential yields elastic constants in good agreement with
experiment but reveals some deficiencies in the description of the equilibrium volumes
and energies of the rock salt and zinc blende phases.

As a final test, we have evaluated the phonon dispersion for wurtzite with the
ABOP and the LC potential and compared the results with experiment and quantum-
mechanical calculations as shown in figure 3 (reference [10] and references therein).



Analytic bond-order potential for atomistic simulations of zinc oxide 7

Table 3. Summary of bulk properties of zinc oxide as obtained from the
analytic bond-order potential (ABOP) in comparison with data from experiment
[50, 51, 52, 53, 54], density-functional theory (DFT) [9, 55, 7, 8, 56, 57] and
Hartree-Fock (HF) [7, 56] calculations as well as the shell-model potential due to
Lewis and Catlow (LC) [24, 25]. Ec: cohesive energy (eV/f.u.); ∆E: energy
difference with respect to ground-state structure (eV/f.u.); V0: equilibrium
volume (Å3/f.u.); a: lattice constant (Å); c/a: axial ratio; u: internal parameter
of wurtzite structure; B, B′: bulk modulus (GPa) and its pressure derivative. cij :
elastic constants (GPa); c0

44
: unrelaxed shear modulus of zinc blende structure

(GPa); ζ: Kleinman parameter [58].

Experiment ABOP Quantum-mechanical calculations LC

LDA-DFT GGA-DFT HF

zinc blende (F4̄3m), no. 216, B3
∆E 0.0a 0.015 0.013 0.052 0.097
a 4.552 4.509 4.633 4.614 4.547
B 145b 144 162 135 157 144
B′ 4.4 4.0 3.7 3.6 3.6
c11 193b 192 175
c12 121b 122 129
c′c 36b 36 23
c44 54b 56 106
c0
44

149
ζ 0.72

wurtzite (P63mc), no. 186, B4
Ec −7.52 −7.52 −9.769 −7.692 −5.658 −39.92d

V0 23.61 23.59 22.874 24.834 24.570 23.46
a 3.242c 3.219 3.199 3.292 3.290 3.268
c/a 1.6003c 1.6330 1.6138, 1.604 1.6076 1.593 1.553
u 0.3819c 0.3750 0.3790 0.3802, 0.381 0.3856 0.3920
B 136 – 183 14 (144b) 162, 138, 160 134, 125 154 143
B′ 3.6 – 4 4.4 4.1, 4.4 3.8 3.6 3.3
c11 207, 210 212 (210b) 209 230 236
c12 121 116 (117b) 85 82 112
c13 106, 105 109 (108b) 95 64 105
c33 210, 211 219 (220b) 270 247 188
c44 43, 45 43 (41b) 46 75 74
c66c 45, 44 48 (47b) 62 74 62

rock salt (Fm3̄m), no. 225, B1
∆E 0.237 0.158 0.237 0.242 0.095
a 4.271 – 4.283 4.275 4.229 4.345 4.225, 4.294 4.267
B 170 – 228 200 206, 205 173 203, 132 192
B′ 3.5 – 4 4.7 3.9, 4.9 3.7 3.6, 3.8 3.7

caesium chloride (Pm3̄m), no. 221, B2
∆E 0.976 1.307 1.358 1.555
a 2.642 2.624 2.705 2.605
B 218 194 157 216
B′ 5.0 4.0 3.8 3.8

a due to restriction to first neighbours.
b transformed from the hexagonal/cubic elastic constants using Martin’s transformation method [46].
c cubic: c′ = (c11 − c12)/2; hexagonal: c66 = (c11 − c12)/2.
d This value includes the atomic ionisation energy
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Figure 1. Pauling plot for zinc oxide comparing the analytic bond-order potential
(ABOP) with data from experiment, Hartree-Fock (HF) and density-functional
theory (DFT) calculations.
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Figure 2. Energy-volume curves for bulk structures of zinc oxide illustrating
the good agreement between the analytic bond-order potential (ABOP) and the
reference curves which were obtained by combining data from experiment and
first-principles calculations. The transition pressure can be obtained from this plot
by means of the common tangent construction which is equivalent to finding the
crossing point of the enthalpy curves. For the Lewis-Catlow shell-model potential
(LC) the cohesive energy of the wurtzite structure was set to the experimental
value (see footnote in table 3).

The ABOP shows a very good agreement with the experimental and first-principles
data for the lower six branches of the dispersion relation. The deviations are somewhat
larger for the LC potential but the overall agreement is still reasonable. On the other
hand, the differences are more significant for the upper six (optical) branches. The LC
potential yields qualitatively the correct shapes of these bands but fails to predict the
phononic band gap and largely overestimates the splittings. In contrast, the ABOP
underestimates the splitting of the bands but successfully predicts the existence of
a phononic band gap. The shortcomings of both potential in the description of
the higher lying branches are related to an overestimation (LC) or respectively an
underestimation (ABOP) of the ionicity of the bond and the atomic polarisabilities.
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(——) developed in the present work and (b) the shell-model potential by Lewis
and Catlow. Dashed lines (- - - -) and black circles (•) show data from density-
functional theory calculations and experiment, respectively [10].

In particular the very good description of the lower branches is very encouraging with
respect to the applicability of the ABOP.

6. Zinc

Since Zn–Zn interactions are practically absent in the compound, they have to be fitted
independently of the Zn–O parameter set. Although the role of d-electrons is per-se

not taken into account in the ABOP scheme (compare section 2), it has turned out
that the transition metals platinum [21] and tungsten [23] can be very well described
within the ABOP framework. While this experience is encouraging with respect to
fitting a similar potential for zinc, it must be acknowledged that the 3d-electrons in
zinc have a much more pronounced effect on the bonding behaviour than in platinum
or tungsten most prominently embodied by the unusually large axial ratio of hcp-Zn.
Keeping these considerations in mind, we are aiming to devise a parametrisation that
can be used in conjunction with the Zn–O parameter set but is not primarily intended
to be employed for simulations of pure zinc. It should also be recalled that in the past
attempts to model zinc using the embedded-atom method (EAM) and modified EAM
schemes have essentially failed [64, 65].

Within the ABOP scheme it turns to be impossible to reproduce all properties
equally well with a single parameter set. In particular due to the short-ranged nature
of the potential it is very difficult to reproduce the fcc-hcp energy difference (and
thus the stacking fault energy) realistically. We have therefore focused on obtaining
a reasonable fit to the energies and equilibrium volumes of various structures and
accepted larger deviations in the elastic constants and the hcp axial ratio.

The fitting database comprised data from experiment and calculations. As
information on low-coordinated structures is not available in the literature,
we performed additional density-functional theory (DFT) calculations on several
hypothetical bulk phases as described in the appendix.



Analytic bond-order potential for atomistic simulations of zinc oxide 10

Table 4. Compilation of bulk properties of zinc as calculated using the analytic
bond-order potential (ABOP) in comparison with experiment [60, 61, 52, 62] and
density-functional theory (DFT, literature data from reference [63]) calculations.
Symbols as in table 3 but energies and volumes are given in units per atom.

Experiment DFT ABOP

Literature This work

hexagonal-close packed (P63/mmc, no. 194, A3)
Ec −1.359 −1.359
V0 14.90a 14.53 14.90 14.88
a 2.660a 2.607 2.581 2.764
c 4.863a 4.937 4.791 4.498
c/a 1.8282a 1.8937 1.8563 1.627
B 73 78 (100b) 73
B′ 4.8 5.4 5.6

face-centred cubic (Fm3̄m, no. 225, A1)
∆E 0.033 0.032 0.005
a 3.85 3.90 3.91
B 95 95 72
B′ 4.2 5.1 5.6

body-centred cubic (Im3̄m, no. 229, A2)
∆E 0.177 0.106 0.149
a 3.07 3.11 3.07
B 84 89 67
B′ 5.1 5.2 5.5

diamond (Fd3̄m, no. 227, A4)
∆E 0.576 0.419
a 5.72 5.86
B 40 25
B′ 5.1 5.2

simple cubic (Pm3̄m, no. 221, Ah)
∆E 0.270 0.281
a 2.54 2.62
B 65 43
B′ 5.1 5.4

a at 0K as cited in reference [63].
b energy-volume curve obtained at fixed axial ratio, c/a = 1.8563.

6.1. Dimer properties

The Zn2 molecule is a van-der-Waals dimer with a very low binding energy on one side
and a very large bond length on the other side. Since dispersion interactions are not
taken into account in the ABOP scheme (compare equations (1), and (2)), we made
no attempt to fit the dimer properties but instead treated D0 and r0 as adjustable
parameters. It is noteworthy that the final values of D0 = 0.647 eV and r0 = 2.439 Å
are comparable in magnitude to the Morse parameters describing the second excited
state [66] (4p)1Σ+

u (the first excited state is also of the van-der-Waals type). For
this state ab initio calculations yield bond energies between 1.00 and 1.13 eV (bond
lengths between 2.65 and 2.97 Å), while values of 1.12 and 1.30 eV have been derived
from experiment (bond length 3.30 Å, reference [66] and references therein).
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Figure 4. Energy-volume curves for bulk structures of zinc as obtained from the
analytic bond-order potential (ABOP) in comparison with reference curves which
were obtained by combining data from experiment and density-functional theory
(DFT) calculations.

6.2. Bulk properties

Table 4 provides an overview of the performance of the ABOP with respect to bulk
properties in comparison with experiment and DFT calculations. The potential
reproduces the energetics very well; the largest deviation from the DFT calculations
occurs for the low coordinated diamond structure. The lattice parameters and bulk
moduli are also in good overall agreement with the reference data as illustrated in
figure 4.

The vacancy formation enthalpy and volume have been determined as 0.4 eV and
−0.3Ω0 (Ω0: atomic volume) which is in reasonable agreement with the experimental
values of 0.5 eV and −0.6Ω0 [67]. For the interstitial a formation enthalpy of 2.7 eV
and a formation volume of 1.7Ω0 have been calculated. Experimentally, a formation
volume of 3.5Ω0 has been determined but the formation enthalpy is unknown [67].

6.3. Melting behaviour

The melting behaviour of elemental zinc has been investigated by means of molecular
dynamics simulations of a solid-liquid interface [68]. The simulation cell contained
768 atoms. The system was equilibrated at zero pressure at temperatures between 0
and 1000 K for at least 0.5 ns. Temperature and pressure were controlled using the
Berendsen temperature and pressure controls [69] with coupling constants of 100 and
200 fs, respectively. For temperatures below 650 K and above 685 K either complete
solidification or complete melting was observed while for intermediate temperatures
the interface was stable for at least 2 ns. This observation agrees very well with the
experimental melting point of 693 K.

7. Oxygen

In order to reproduce the O2 molecule a simple pair potential would be sufficient
but then the thermodynamically most stable phase would be a close-packed structure
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relation while the symbols correspond to data from experiment, density-functional
theory (DFT) and the analytic bond-order potential (ABOP) calculations. The
deviation of the ABOP data points from the Pauling plot for larger bond lengths
is due to the penetration of the cutoff range (Re

c = 2.60 Å).

(either hexagonal or cubic). In the present work we aim to obtain a more general
representation of the bonding behaviour of oxygen.

The fitting database comprised experimental data on the dimer and ozone
molecules complemented by data from first-principles calculations (compare
appendix). The bond energy, bond length and oscillation frequency of the dimer
fix the parameters D0, r0 and β. The bond angle of the ozone molecule determines
h. Thus there are four parameter left to be fitted. The parameter set which gave
the best overall agreement with the input data is given in table 1. The properties
calculated with the ABOP are compared in table 5 to experiment and quantum-
mechanical calculations. Data sets are given for two different choices of the cutoff
parameter Re

c. The first value (Re
c = 2.10 Å) reproduces the experimental data for

the bond angle as well as the cohesive energy of the ozone molecule but the cohesive
energies of the higher coordinated structures are systematically overestimated. The
longer cutoff (Re

c = 2.60 Å) yields a superior description of the higher coordinated
phases but sacrifices the ozone molecule. The good overall agreement of the oxygen-
oxygen parameter set with the reference data is further illustrated by the Pauling plot
shown for Re

c = 2.60 Å in figure 5.

8. Defect properties, melting, and the role of cutoff parameters

The geometries and the energetics of point defects in zinc oxide result from an intricate
interplay of electronic effects leading to rather complicated configurations such as the
oxygen dumbbell interstitials [75, 76, 77]. The existence of many different stable
charge states furthermore leads to a strong dependence of the formation enthalpies
on the Fermi level. Obviously, these complications are impossible to capture in any
analytic potential scheme, which owes its efficiency to the neglect of the electronic
structure. For modelling of an ensemble of several hundred or thousand atoms, it
is, however, usually sufficient to have a reasonable description of the energetics, while
defect geometries play a minor role. Therefore, no attempt has been made to reproduce
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Table 5. Cohesive energies and structural parameters of oxygen molecules
and bulk phases calculated with the analytic bond-order potential (ABOP)
in comparison with experimental data [60] and quantum-mechanical (QM)
calculations [70, 71, 72, 73, 74]. Ec: cohesive energy (eV/atom), ∆E: energy
difference with respect to oxygen dimer (eV/atom); rb: bond length (Å); θ: bond
angle of ozone molecule (deg); a: lattice constant (Å).

Experiment QM calculations ABOP

Literature This work Re
c = 2.1 Å 2.6 Å

Dimer
rb 1.21 1.22 – 1.25 1.21 1.21
Ec −2.58 −2.24 – −3.07 −2.85 −2.58

Ozone, ground-state, C2v

rb 1.28 1.27 – 1.39 1.28 1.35 1.40
θ 116.8 116.0 116.8 178.7
∆E 0.49 0.48 – 0.67 0.47 0.50 0.83

Ozone, equilateral triangle (ring)
rb 1.45 1.45 1.60
∆E 0.90 – 1.13 0.98 1.43

O4 molecule
rb 1.80 1.81
∆E 2.26 1.81

graphene sheet
rb 1.71 1.75
∆E 1.60 1.60

diamond (Fd3̄m, no. 227, A4)
a 4.40 4.46
∆E 1.95 1.95

simple cubic (Pm3̄m, no. 221, Ah)
a 2.50 2.07 2.15
∆E 2.49 2.08 2.17

body-centred cubic (Im3̄m, no. 229, A2)
a 2.91 2.43 2.76
∆E 2.32 2.12 2.27

face-centred cubic (Fm3̄m, no. 225, A1)
a 3.65 3.03 3.54
∆E 2.29 2.14 2.31

the defect structures obtained from quantum mechanical calculations with the analytic
bond-order potential.

The bond-order potential scheme used in the present work employs a cutoff
function in order to scale the interaction to zero between the first and second
nearest neighbour shells. Therefore, the cutoff parameters can be varied within a
certain range without affecting the ground state properties considered during fitting
(cohesive energies, lattice parameters, elastic constants). On the other hand, the
cutoff parameters do affect other properties such as point defect formation enthalpies,
melting behaviour, or migration barriers. In the past the cutoff parameters of existing
potentials have been occasionally modified in order to optimise them for certain
applications, e.g., in the context of point defect properties [78, 45] or in the study
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of large volumetric deformations [79].
The ABOP developed in the foregoing sections was therefore tested with respect

to variations of the cutoff parameters. The impact on point defect formation enthalpies
can be rationalised as follows:

• The vacancy formation enthalpies are unaffected by the cutoff distances. The
extent of relaxation around the vacant site is obviously insufficient for any of the
participating atoms to enter the cutoff region and/or for atoms of the same type
to interact.

• The introduction of surplus zinc atoms leads to direct Zn–Zn interactions
whence the formation enthalpies of zinc interstitials and antisites are strongly
dependent on the zinc cutoff distance. The dependence is typically monotonic
but discontinuous. On the other hand their dependence on the oxygen cutoff
distance is comparably small but usually continuous. The formation enthalpies of
oxygen interstitials and antisites which involve oxygen surplus display the inverse
behaviour of their zinc-surplus counterparts.

• The formation enthalpies for oxygen-surplus defects are virtually independent of
the Zn–O cutoff distance. On the other hand, the zinc-surplus defects display
some variation which can, however, not be easily rationalised as the dependence

on RZn−O
c itself is sensitive to the choice of RZn−Zn

c and RO−O
c .

These observations show that the formation enthalpies of zinc and oxygen-surplus
point defects (in high-symmetry positions) to some extent can be controlled
independently. Vacancies are, however, exempt from this possibility as their formation
enthalpies are independent of the cutoff distances. Note that since the ABOP is
an atomistic model, it cannot capture the Fermi level dependence of the formation
enthalpies of charged defects (see e.g., references [11, 12, 13, 14]).

Zinc oxide does not melt congruently but dissociates into liquid zinc and gaseous
oxygen. Therefore, the melting point cannot be obtained from simulations of a liquid-
solid interface (as done e.g., in section 6.3 and reference [68]). Simulations of single-
crystalline ZnO cells, however, show qualitatively an increase of thermal stability with
increasing Zn–O cutoff distance.

In table 1 a set of cutoff parameters (Rc, Dc) is given suitable for simulations of
compound systems, which has been tested in a variety of simulations and which has
also been used for the applications presented below. Before the present potential is
used in any simulation, it is nonetheless advisable to consider the effect of the cutoff
parameters explicitly with respect to the application in mind.

9. Applications

9.1. Irradiation of bulk zinc oxide

The threshold displacement energy measures which kinetic energy given to a lattice
atom in a certain direction is required in order to produce at least one stable lattice
defect [80, 81]. It is a fundamental quantity in irradiation physics, and the first
step towards understanding the extent and kind of damage produced by any kind
of energetic particle irradiation of a lattice [82]. The definition of this quantity is,
however, not unique since the probability to produce a defect does not always rise
steeply from zero to one at a certain energy [81]. For a more profound understanding
one needs to analyse the integrated displacement probability function [83], i.e. the
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Figure 6. Probability to form a defect during a recoil event in ZnO as a function
of energy. Note that the data illustrates specifically the probability to form at

least one defect; of course at higher energies in many cases more than one defect
is formed.

probability to form a defect at a given energy. In order to determine this function for
zinc oxide, molecular dynamics simulations were carried out employing the analytic
bond-order potential derived in this work (see also Ref. [84]).

Firstly, a cell with 2280 atoms was equilibrated at 5 K and zero pressure. Then
a randomly chosen atom near the centre of the cell was assigned a recoil energy in a
randomly chosen lattice directions. The evolution of the system was followed for 6 ps.
For each recoil atom and direction the energy was successively raised starting from 4
eV in steps of 4 eV until a defect was found. About one thousand O and Zn (atom type
and direction) combinations were simulated. Since some threshold experiments were
carried out with electron irradiation on single crystal samples in the c-axis direction,
another set of simulations was carried out with recoils directed along the positive (”Zn
face”) c-axis direction, assuming an electron beam angular spread of 15 degrees about
the [0001] direction. Due to the 4 eV step size all threshold values reported below have
an uncertainty of ±2 eV.

Voronoy polyhedron defect analysis centred on the perfect atom sites was used
to determine whether a defect had formed at the end of the simulation [85]. Both
Voronoy interstitials and vacancies as well as antisites were counted as defects. In
addition, if the final energy of the cell was at least 3.7 eV (the minimum energy to
form a Frenkel pair) higher than the initial one, a defect was assumed to have formed
as well.

Figure 6 shows the integrated displacement probability function [83], i.e. the
probability to form a defect at a given energy considering all (atom and direction)
combinations simulated. The figure shows that although the minimum threshold
energy is about the same for both Zn and O recoils, the defect production efficiency
increases much more slowly for O recoils. The defect production probabilities for Zn
recoils along arbitrary directions and for recoils along the c-axis are similar.

Threshold values for Zn recoils of 57 eV at 313K [86] and 56 eV at 5K [87] have
been determined from electron irradiation experiments. These studies were carried
out on ZnO single crystals in the c-axis direction. More recently using ion irradiation
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an effective upper limit threshold for Zn recoils of 65 eV was determined [88]. In
electron irradiation experiments the high energy data is fit to a linear function and
the threshold energy is obtained as the intersection with the energy axis. Since at
energies clearly above the threshold, the overall damage production is determined by
the average threshold displacement energy, the electron irradiation threshold is most
appropriately compared to the average threshold energy. Note that in reference [87]
the actual defect production data is clearly higher than the linear fit to the lowest data
points, which can be regarded as an indication for a small defect production probability
even below the average threshold, consistent with the observations in the simulations.
The present simulations give an average threshold energy of 42 eV for all directions,
and 45 eV along the c-axis direction. These values are thus in reasonable agreement
with the experimental values of <65 eV [88] and 56–57 eV [86, 87], respectively.

For oxygen recoils the experimental data is more difficult to interpret. Optical
absorption methods have not detected any defects which can be attributed to the
O threshold [87]. (The threshold energy interpretations reported in [89] were later
disputed [86]). Electron paramagnetic resonance and electrical measurements have
detected an onset of damage at 310 keV electron energy, corresponding to an O
recoil energy of 55 eV [86]. It should be noted, however, that the maximum electron
irradiation energy in this experiment was only about 680 keV, corresponding to an O
recoil energy of 155 eV. This signal may thus be related to the low fractional defect
production probabilities observed in the simulations for oxygen recoils in the energy
range 20–155 eV.

9.2. Elastic properties of nanorods

In recent years a variety of zinc oxide nanostructures such as rings, belts, rods, wires,
and pillars with intriguing properties have been fabricated (see e.g., references [3, 90,
91, 92]). They are currently intensively investigated because of potential applications
in nanoscale photonics and sensing devices. For many applications the elastic
properties of these structures are crucial, which on the nanometre scale are strongly
size dependent. Experimentally, the mechanical properties of individual nanorods or
-tubes can be probed by means of atomic force microscopy as demonstrated e.g., for
silicon carbide nanorods, carbon nanotubes [93], and molybdenum sulfide nanotube
ropes [94]. To the best of our knowledge, the elastic response of individual zinc oxide
nanorods has, however, not been experimentally characterised. Previous theoretical
studies investigated the response of zinc oxide nanowires under tensile loading [95].
In the present work, we are interested in the behaviour of individual nanorods under
shear load resembling the situation in an atomic force microscopy experiment [93, 94].
To this end, we employed conjugated gradients minimisation and analysed the results
in terms of linear elastic beam theory.

Prismatic zinc oxide nanorods oriented along [0001] were created with diameters
ranging from 3 to 12 nm and heights between 8 and 156 nm. The nanorods were placed
on [0001] oriented ZnO substrates with fixed bottom layers. This mimics the effect of
a stiff bulk layer underneath. In order to test the impact of the elastic deformation
substrate all simulations were also carried out with all substrate atoms fixed. Periodic
boundary conditions were imposed in the (0001) plane. First, the atoms in the nanorod
were displaced to impose a specified shear strain. Then, the entire system was relaxed
using conjugated gradients minimisation with the atoms in the top layer tethered in
the [21̄1̄0] direction. This procedure was repeated for different shear strains.
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The elastic energy stored in a beam subject to a force F which causes a
displacement u is

Est =
1

2
Fu.

Taking into account both shearing and bending of the beam, and assuming constant
stiffnesses EI and GAκ, one obtains [96]

Est =
1

2

(
h3

3EI
︸︷︷︸

bending

+
h

GAκ
︸ ︷︷ ︸

shearing

)−1

u2

where E and G are Young’s modulus and the shear modulus, I is the moment of inertia
of the beam, d and h are the diameter and the height of the beam, respectively, A is
the cross section, and κ is a geometry factor which takes into account the shape of the
cross section. Replacing the displacement by the shear strain γ = u/h and dividing
by the volume V = Ah yields

Est/V =
1

2
c∗γ2

with the effective elastic modulus

c∗ =

(
1

Gκ
+

Ah2

3EI

)−1

For a hexagonal cross section, the moment of inertia is I = 5
√

3d4/512, the geometry
factoris κ = 0.901, and the cross section is A = 3

√
3d2/8. Introducing the aspect ratio

β = h/d the effective modulus is given by

c∗ =

(
1

Gκ
+

64β2

5E

)−1

. (7)

For the present geometry the ABOP yields E = 178GPa and G = c44 = 43GPa.
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As shown in figure 7 the elastic response of nanorods is strongly size dependent.
Open symbols indicate the results obtained for a completely rigid substrate while
filled symbols correspond to simulations in which only the bottom layer was fixed.
Since in the latter case the substrate can be deformed, the effective shear moduli are
systematically lower than in the case of a fully rigid substrate.

The solution obtained from classical beam theory given by equation (7) is
indicated by the solid line in figure 7. On the present length scales one would
assume that surface relaxations and non-linear contributions, which are captured
by the ABOP, lead to a pronounced deviation from a continuum description. The
agreement between the atomistic simulations and the continuum model is, however,
very good even for very small dimensions. Since equation (7) works reliably for the
very small nanorods investigated in the present work, it is reasonable to assume that
it is also applicable for much larger nanorods.

10. Conclusions

We have derived an analytic bond-order potential for zinc oxide which describes ZnO as
a predominantly covalently bonded system. Since the interatomic potential developed
in this work is short-ranged it is computationally more efficient than ionic potentials
which require the evaluation of long-ranged Coulombic interactions. The neglect of
charges has some drawbacks in the sense that explicit electrostatic effects which play a
role for example at surfaces due to unscreened charges cannot be captured. Otherwise
the ABOP provides a very good description of many properties of zinc oxide.

The Zn–O parameterisation is complemented by parameter sets for the elemental
phases of zinc and oxygen. The zinc potential yields a good description of the
coordination dependence of the bond lengths and cohesive energies. The oxygen
potential is capable of describing oxygen molecules as well as several hypothetical
bulk phases. Thereby, the present potential is applicable in simulations which require
a thermodynamic model for the entire Zn–O system.

The applicability of the potential has been demonstrated in an exemplary cases,
namely the determination of threshold displacement energies in ZnO and the study of
the elastic response of individual nanorods.
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Appendix A. Total energy calculations

In order to apply the fitting strategy outlined previously [21, 20], the energy differences
and bond lengths of various bulk structures with different coordinations have to be
included in the fitting database. For zinc oxide a broad data basis is available but for
zinc and oxygen, further input was required.
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Appendix A.1. Zinc

Singh and Papaconstantopoulos [63] calculated cohesive energies and lattice
parameters of the face-centred cubic (fcc), body-centred cubic (bcc) and hexagonal-
close packed (hcp) structures based on density-functional theory (DFT) calculations
using the linearised-augmented plane-waves (LAPW) method. We complemented
these data with plane-wave pseudo-potential (PWPP) calculations on the lower
coordinated simple cubic (sc) and diamond (dia) structures. These calculations
were carried out within the local-density approximation (LDA) in the Teter-Pade
parameterisation [97] using the PWPP code abinit [98, 99]. We employed the norm-
conserving pseudo potentials due to Troullier and Martins (TM) [100] including the
3d-electrons as part of the valence. We used a plane-wave cutoff-energy of 70 Ha.
Brillouin zone sampling was performed employing 572 (hcp), 570 (fcc), 240 (bcc),
570 (dia) and 220 (sc) k-points distributed on shifted Monkhorst-Pack meshes. With
these parameters a convergence better than 1meV/atom was achieved. The calculated
energy-volume curves shown in figure 4 were fitted to the Birch-Murnaghan equation of
state [101]. The results are summarised in table 4. The agreement with experimental
data and previous theoretical work is very good. The systematic underestimation of
the lattice constants as compared to experiment is a well know deficiency of the LDA.
In order to compensate for the systematic overbinding of the LDA.

Appendix A.2. Oxygen

A wealth of experimental as well as theoretical data is available for the O2 and O3

molecules (see e.g., references [60, 70, 71, 72, 73, 74]). Additional calculations were
performed on higher coordinated molecules and bulk structures. The castep code
[102, 103] was used to perform DFT calculations within the spin polarised generalised
gradient approximation (GGSA) based on the Perdew-Wang parameterisation [104]
(PW91), and the Gaussian94 code [105] for DFT calculations using the BLYP [106]
and B3LYP [107] functionals as well as for Hartree-Fock calculations. Preliminary
tests proved the GGSA-PW91 DFT method to be reliable whence it was selected for
the further computations.

For the calculations ultrasoft pseudopotentials were used employing a plane
wave cutoff energy of 380 eV (norm-conserving pseudopotentials were also considered
and gave basically identical results); finite basis set corrections were included to
compensate for imperfect Brillouin zone sampling. The number of k-points was
chosen to obtain convergence of the total energy better than 15 meV/atom. Using
these parameters the relaxed structures and cohesive energies of several molecules
and bulk structures were computed. In the case of the O3 molecule the ground state
as well as the equilateral triangle geometry, which is known to be a local minimum
on the potential energy surface (see e.g., reference [74]), were considered. For the O4

molecule the tetrahedron geometry was considered. The higher-coordinated structures
comprised graphene as well as diamond, sc, bcc, and fcc. The data is shown in table 5.
Where comparison is possible the DFT data computed in the present work is in very
good agreement with experiment and previous quantum mechanical calculations.
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