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A B S T R A C T

The analysis of the damage on plasma facing materials (PFM), due to their direct interaction with the plasma
environment, is needed to build the next generation of nuclear fusion reactors. After systematic analyses of
numerous materials over the last decades, tungsten has become the most promising candidate for a nuclear
fusion reactor. In this work, we perform molecular dynamics (MD) simulations using a machine learned in-
teratomic potential, based on the Gaussian Approximation Potential framework, to model better neutron
bombardment mechanisms in pristine W lattices. The MD potential is trained to reproduce realistic short-range
dynamics, the liquid phase, and the material recrystallization, which are important for collision cascades. The
formation of point defects is quantified and classified by a descriptor vector (DV) based method, which is in-
dependent of the sample temperature and its constituents, requiring only modest computational resources. The
locations of vacancies are calculated by the k-d-tree algorithm. The analysis of the damage in the W samples is
compared to results obtained by Finnis–Sinclair and Tersoff–Ziegler–Biersack–Littmark potentials, at a sample
temperature of 300 K and a primary knock-on atom (PKA) energy range of 0.5–10 keV, where a good agreement
with the reported number of Frenkel pair is observed. Our results provide information about the advantages and
limits of the machine learned MD simulations with respect to the standard ones. The formation of dumbbell and
crowdion defects as a function of PKA energy were identified and distinguished by our DV method.

1. Introduction

In order to design the next generation of fusion reactors, the analysis
of different types of crystal defects in plasma facing material (PFM) is
necessary to better understand the effects of plasma irradiation on
several physical and chemical properties of the materials. The materials
of the first wall of a fusion machine is exposed to a hostile environment
due to the plasma interaction, high temperatures, and energetic neutron
irradiation, to mention a few [1,2]. Tungsten has emerged as the pri-
mary PFM due to its physical and chemical properties like low erosion
rates, small tritium retention, and high melting point [3]. When an
atom of the sample materials receives a higher kinetic energy than the
threshold displacement energy [4,5] it can produce permanent point or
extended defects [6,7]. For example, it has been observed that at high
initial energies of the primary knock-on atom (PKA), defect clusters can
be formed directly in crystalline materials [3,8], whereas simple point
defects like self-interstitial-atoms (SIA) are commonly formed at low
impact energies. Specifically, in body-center-cubic (bcc) W lattice

samples, SIA’s are commonly observed in an atomic arrangement
known as dumbbells and crowdions [9,10].

Molecular dynamics (MD) simulations are frequently used to model
collision cascades during neutron bombardment in fission or fusion
reactors [11]. The better the interatomic potentials on which the MD
simulation is based are, the better the obtained results can predict the
induced damage in crystalline materials. Recently, machine learning
potentials have been proposed to improve the accuracy on the model-
ling of point defects formation in damaged PFMs. W. Szlachta et al. [12]
recently developed the interatomic potential based on the Gaussian
Approximation Potential (GAP) framework [13,14] to investigate
tungsten in the bcc crystal phase and its defects. However, this GAP
potential cannot be utilized in the study of material damage by neutron
bombardment due to the lack of information of the repulsive region to
treat short distance interactions realistically. In the current work, we
take into use a very recently developed machine learning interatomic
potential for tungsten based on GAP [15], that includes relevant phy-
sical properties for collision cascades simulations in the training data
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set. Usually, the resulting damaged samples obtained from MD simu-
lations are analyzed by Wigner-Seitz cell or Voronoi diagram methods
to quantify the number of Frenkel pairs (interstitials and vacancies)
formed after the cascade [16–20]. Nevertheless, formation of complex
defects and thermal motion have not been well studied or modeled by
these methods [8]. Therefore, we analyze the damaged material by the
descriptor vector (DV) based method, which is developed by us [21]
and is capable to assign a probability of being a point defect to each
atom in the sample.

Our paper is organized as follows: in Section 2 we discuss the theory
to develop the machine learned (ML) potential [15] for W, and the DV
based method to identify, classify and quantify standard and un-
common crystal defects [21]. In Section 3, we present the analysis of
point defects and more complex defects formation in W samples at the
PKA range of 0.5 10 keV. In order to provide an insight of the lim-
itations and advantages of our new ML interatomic potential, we
compare our results to those obtained by commonly used Finnis-Sin-
clair (Embedded Atom Method (EAM)-like [22] and Tersoff-ZBL [23]
potentials. Finally, in Section 4, we provide concluding remarks.

2. Theory

2.1. Machine learned interatomic potential

Machine Learned (ML) interatomic potentials are not restricted to
an analytical form and can be systematically improved towards the
accuracy of the training data set. In order to model collision cascades,
the ML potential must be able to treat realistic short-range dynamics
defined by its repulsive part. In addition, the structure of the liquid
phase and re-crystallization process (including elastic energies) should
be well described, to accurately emulate atomic mixing together with
defect creation and annihilation during the collision cascade. In this
work, we use a ML potential recently developed [15] within the
Gaussian Approximation Potential (GAP) framework [13,14]. Here, the
total energy of a system of N atoms is expressed as
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where 2,mb
2 is the standard deviation of the Gaussian process that sets

the energy ranges of the training data, which contains the energy in-
formation and is chosen by systematic convergence tests [15]; K2,mb is
the kernel function representing the similarity between the atomic
environment of the ith and jth atoms; α is a coefficient obtained from
the fitting process; and q is the normalized descriptor vector of the
local atomic environment of the ith atom (See Section 2.3). In the
computation of the ML potential the descriptors for two bodies, 2b, is
utilized to take into account most of the interatomic bond energies,
while the atomic environment due to the many-body, mb, contributions
are treated by the SOAP descriptor.

The GAP method has been applied by Szlachta et al. [12] to develop
the ML interatomic potential for tungsten to reproduce the properties of
screw dislocations and vacancies. However, this potential lacks of in-
formation for the structures relevant modeling of collision cascades
(See Appendix A) such as self-interstitial atom formation, the liquid
phase, and realistic repulsive interactions. The new ML potential de-
veloped in Ref. [15] included these types of structures, and is therefore
suitable for performing MD simulations of material damage due to

neutron bombardment, for example. The elastic response of bcc W is
also included in the training data of the new ML potential, which is an
important property to treat the recrystallization of the highly affected
target region during a collision cascade. More details about the devel-
opment of this new potential can be found in Ref. [15].

2.2. MD simulations

In order to explore the advantages and limitations of our new ML
interatomic potential, MD simulations are performed to emulate a
neutron bombardment process by using both the ML potential and well
known analytical interatomic potentials [24]. Then, a comparison be-
tween the obtained results, under the same numerical and physical
conditions, is carried out. For all potentials, we first define a simulation
box as a pristine W lattice sample based on a body-centered-cube (bcc)
unit cell with a lattice constant of =a 3.16 Å [25]. Then, the sample is
subjected to a process of energy optimization and thermalization to
300 K using the Langevin thermostat, with the time constant of 100 fs.
[26]. Most of the experiments of tungsten damaging are done at room
temperature, which is used in our simulation to perform MD simula-
tions as close as possible to them [27,28].

Every MD simulation starts by assigning a chosen PKA energy in a
range of 0.5–10 keV to a W atom, which is located at the center of the
numerical cell. We use ten velocity directions for each PKA: ⟨001⟩,
⟨011⟩, ⟨111⟩, and 7 cases for ⟨r1r2r3⟩, where ri are random numbers
uniformly distributed in an interval of [0,1]. We utilize the Velocity
Verlet integration algorithm to model the collision dynamics, which is
performed for 10 ps, followed by an additional relaxation run for 5 ps.
In Tab. 1, we present the dimensions of the numerical boxes as the
number of unit cells with a side length of a; the number of W atoms in
each numerical box; and the time step used in the simulations as a
function of the PKA. The MD simulations were done in a traditional
desktop computer by using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) [29] with the Quantum mechanics and
Interatomic Potential package (QUIP) [30] that is used as an interface
to implement machine learned interatomic potentials based on GAP
[13]. We also perform MD simulation by using the reactive interatomic
potential for the ternary system W-C-H by Juslin et al. [23] referred as
J-T-ZBL in our work, which is based on an analytical bond-order
scheme. This potential has been used to study neutron damage in poly-
crystalline tungsten [31], trapping and dissociation processes of H in
tungsten vacancies [32]; and cumulative bombardment of low energetic
H atom of W samples for several crystal orientations [33]. In addition,
we use a second standard interatomic potential for MD simulations
based on the embedded-atom method-like Finnis-Sinclair model with
modification by Ackland et al. [22], and the repulsive potential fit re-
ported in Ref. [34]. This MD potential is denoted as AT-EAM-FS in this
work and has been applied to study Frenkel pair formation as a function
of the PKA in pristine tungsten [35] and self-sputtering of tungsten in a
wide impact energy range [36].

Table 1
Size of the numerical boxes based on a bcc unit cell as a function of the impact
energy (PKA velocity), which is used in the MD simulations. The box size is
reported as the number of unit cells with side length of =a 3.16 Å, that is the
lattice constant of W at 300 K.

PKA Num. atoms Box size [a] Δt (ps)

0.5 35 152 (25, 25, 25) 10 3

1 35 152 (25, 25, 25) 10 3

2 35 152 (25, 25, 25) 10 3

5 124 722 (38, 38, 40) 10 4

10 235 008 (47, 47, 50) 10 4
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2.3. Descriptor vectors based method

The quantification and classification of point defects in a damaged
sample starts by computing the descriptor vector (DV) of all the atoms

in the material sample. The DV of the ith atom of the sample,
i

(defined below), is invariant to rotation, reflection, translation, and
permutation of atoms of the same species, but sensitive to small changes
in the local atomic environment [14]. It can be considered as a finger-
print of the particular atomic environment of an ith atom, which is
expressed by a sum of truncated Gaussian density functions as [14],
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where r ij is the difference vector between the atom positions i and j.
The term atom

2 defines the broadening of the atomic position, which is
set according to the lattice constant of the sample. Finally, f r(| |)ij

cut is
a smooth cutoff function, that limits the considered neighborhood of an
atom. The function r( )i can also be defined in terms of expansion
coefficients, cnlm, that corresponds to the ith-atom in the lattice as [12],
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of orthonormal radial basis functions =g r g r( ) ( ) ,n m nm and Y r(^)lm are
the spherical harmonics with the atom positions projected onto a unit
sphere. Thus, Eq. (4) is averaged over all possible rotations to be in-
variant against rotations, by the product of the cn lm with its complex
conjugate coefficient c * ,nlm summed over all m. Then the DV of the ith

atom, ,
i

is defined as [12]
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where each component of the vector corresponds to one of the index
triplets {n, n′, l}.

In this work, we refer to the DV as the normalized vector

=q /| |i i i
for the local environment of the ith atom. Depending on

the choice of the expansion orders in Eq. (4) for the spherical harmonics
and the radial basis functions, the number of components of q i varies.
In order to compute the DVs, we used the SOAP descriptor tool in QUIP
with a cutoff distance of 3.1 Å, which allows us to describe the local
atomic environment and to identify lattice distortions and defects at the
first nearest neighbors. This parameter is chosen according to the W
lattice constant at 0 K, 3.16 Å. The values for the spherical harmonics
are =N 4, and =L 4 (with L m L) which results in a vector with
k = 51 (0 50) components.

2.4. Identification of point defects

The difference of two local environments of the ith atom and jth
atom can be computed by calculating the distance, d, between two DVs,

=d d q q( , )i j . However, we keep in mind that some vector compo-
nents may be more fluctuating than others and an appropriate measure
to compare the DVs is done as follows: We define a small simulation box
with hundreds of W atoms to apply a Langevin thermostat, which
generates a thermalized tungsten bcc lattice without defects to a desire
sample temperature, =T 300 K, in our case. Then, we compute the DVs
of all the W atoms to calculate a mean reference DV,

= =v T q T( ) ( ),N i
N i1

1 for defect-free environments; as well as the as-
sociated covariance matrix, Σ(T), which highly depends on the tem-
perature of the sample. Therefore, the distance difference between a
thermalized atomic environment and a damaged one is computed by
the Mahalanobis measure as [37]

=d T q v T q v T T q v T( )( , ( ) ) ( ( )) ( )( ( )) ,M i i iT 1 (6)

where q v T( ( ))i T
is the transpose vector. This provides us in-

formation about the presence of an unexpectedly large distortion of the
local environments [21]. In order to detect common types of defects, a
similar approach has been chosen at =T 0 K. A small simulation box
containing the defect of interest (e.g. an interstitial, an atom next to a
single vacancy) is prepared and the DVs of all the atoms are then
computed, subsequently acting as a fingerprint for this specific type of
defect (see Section 3).

The definition of the distance difference, dM(T), between two local
atomic environments provides a probabilistic interpretation of the ob-
tained results. Thus, the probability, P q v T( ( )),i of an ith atom being
in a locally undistorted lattice can be computed using

=P q v T P d T( ( )) exp 1
2

( ) ,i M
0

2
(7)

where P0 is the normalization factor. Therefore, all the atoms in a da-
maged material sample have an assigned probability of being in a lat-
tice position and atoms with the lowest probability will be labeled as
point defects in the sample, following a type defect classification [21].
Here, atoms with lower probability define the distorted region around
the permanent defects, which provides a good visualization of the da-
maged in the material

3. Results

In order to test the advantages and limitations of the new ML in-
teratomic potential [15] to traditional ones like J-T-ZBL and AT-EAM-
FS potentials; we performed MD simulations at a primary knock-on
atom (PKA) energy of 1 keV, in the ⟨001⟩ velocity direction, with a
sample temperature of 300 K. Then, the damaged sample was analyzed
by applying our DV based method to identify the formation of standard
point defects (e.g. interstitial, vacancies) and unforeseen point defects
[21]. The comparison of our results with those obtained by using AT-
EAM-FS [22] and J-T-ZBL [23] potentials, under the same numerical
and physical conditions, serves as a test for our ML potential.

In Fig. 1, we present the distance difference between the reference
DV vector of a W atom in an interstitial site to all the W atoms in the
damaged sample after collision cascade. These results are obtained by
Eq. (6), considering a reference DV of an interstitial site at =T 0 K,

=v T( 0)I . We observe that the shape of the histograms in Fig. 1(a) and

Fig. 1. Histogram of the distance difference between the interstitial DV and the
W atoms in the damaged sample after relaxation process. MD simulation were
performed by the ML potential in a), J-T-ZBL in our previous work [21], and the
AT-EAM-FS potential in c).
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Fig. 1(b) are similar, however the results for the ML potentials present a
clear distance gap between the W atoms in a lattice position and the
ones in an interstitial site and the distorted region, at a distance dif-
ference of 0.88. This makes the identification of the W atoms in the
vicinity of the interstitial atoms simple, and works for a good test for
this new MD potential. The W atoms can recover to their lattice posi-
tions (material re-crystallization) after collision cascade during the re-
laxation process due to the elastic energy. The histogram reported in
Fig. 1(b) and in our previous work [21] shows a narrow shape and the
W atoms that are in the vicinity of the interstitial atoms are defined as
atoms in a distorted region. Finally, our results are compared to those
computed by the Wigner-Seitz cell analysis [16], which is implemented
in OVITO [19]. Although, this analysis is limited by the definition of
spatial region around the W atoms, we have a good agreement by
finding the two Frenkel pairs (single vacancy and a single self-inter-
stitial atom) formed at the location in the damaged W lattice. These W
atoms, called SIA, have the lowest probability to be at a lattice position
[21]. However, our method is capable to identify the W atoms that are
in the vicinity of the SIAs. This visualization can be done via OVITO and
choosing different distance thresholds manually.

Since the formation of interstitials is well modeled by the new ML
interatomic potential, it is interesting to investigate the formation of
different point defects as a function of the simulation time by con-
sidering ten different velocity directions (i.e. 10 MD simulations). In
Fig. 2 we present the quantification and classification of material de-
fects formation during collision dynamics (0–10 ps) by using the new
ML potential, J-T-ZBL, and AT-EAM-FS in the MD simulations. The
defects remain in the material during the relaxation process (10–15 ps).
The total number of SIA and atoms in their distorted region (Fig. 2a)
after the collision cascade presented by the ML potential is similar to
those performed with the standard potentials, under the same numer-
ical parameters. Nevertheless, W atoms tend to adapt to their interstitial
site gradually during the collision cascade simulation. While the J-T-
ZBL and AT-EAM-FS simulations show more W atoms as interstitial in
the time interval of 1–3 ps. In the same Fig. 2(a), we add a fitting curve
to the number of SIA and atoms in the distorted region as:

= +f t f t( ) exp( ) ,0 with =f 31,0 = 0.65 ps 1, and = 17.0. The
second classification is defined as a W atom next to a single vacancy,

=v T( 0),V in a bcc unit cell, at 0 K [21]. In Fig. 2(b) we notice that the
number W atoms that belong to this classification is similar for the ML
potential and AT-EAM-FS results. A third classification is a type-A de-
fect, =v T( 0),A which is defined as a W atom in the vicinity of a split

vacancy or di-vacancy [21]. In Fig. 2(d) the formation of this point
defect is observed at the beginning of the MD simulations by the three
interatomic potentials, however only the ML potential does not pre-
serve this defect after collision cascade. It is known that this defect is
energetically unstable according to DFT calculations [38]. Therefore, it
is important to notice that the formation of a type-A defect after the
annealing process is not observed in MD simulations that uses the
machine learned potential [15]. Providing an advantage over the
standard MD potentials.

In order to identify the location of vacancies and to obtain a vi-
sualization of their spatial volume, we first define a sampling grid by
200 points of lateral dimension and a spatial step of 0.5 Å that fits the
numerical box of the damage sample. Then the nearest neighbor dis-
tance between the spatial position of the atoms and the grid points can
be calculated by a k-d-tree algorithm [21,39] with the KDTREE code
ver. 2 [40]. Then, squared distances larger than the lattice constant,
3.16 Å for W, are used to identify the spatial volume around a vacancy
in the damaged material [21]. Sampling grid points with the largest
distances are associated to the location of a single vacancy. These re-
sults are presented in Fig. 2(c) as Frenkel pairs. We notice that at the
beginning of the MD simulations the number of vacancies and W atoms
next to single vacancy have the same trend (Fig. 2b–c). Then, the ML
potential and AT-EAM-FS potential reach an agreement for the number
of vacancies formed, however the J-T-ZBL results present a lower
number of vacancies in the sample. The detailed analysis of the material
damage due to neutron bombardment by the DV based method and k-d-
tree algorithm show that standard interatomic potentials have some
unexpected errors during the modeling of collision cascades. We pro-
vide the visualization of the point defects formation during collision
dynamics in the supplementary material. In conclusion, the ML po-
tential shows its first advantage at a PKA of 1 keV, regardless of the
good agreement of the number of point defects with the standard po-
tentials.

3.1. Classification and quantification of crystal defects as a function of the
PKA energy

We calculate the number of crystal defects at different PKAs as a test
of our ML potential and DV based method. For this, we perform MD
simulations for an impact energy range of 0.5–10 keV at 10 different
velocity directions to count the remaining crystal defects at the last
frame of the simulation. Collision cascade is performed for 10 ps and
the MD simulation run for 5 ps to model the relaxation process.
However, at 10 keV of PKA simulations are performed for 20 ps due to
the longer lifetime of the collision cascade at this highest energy. In
Fig. 3, we report (a) the average of the number of Self-Interstitial-Atom
(SIA) and atoms in its distorted region; (b) W atoms next to a single
vacancy; (c) Frenkel pair formation and (d) type-A (W atom in the vi-
cinity of a split-vacancy or di-vacancy [21]) defects, all as a function of
the impact energy. A fitting curve to the energy dependence of point
defects formation in different metals has been proposed by Bacon et al.
and Stoller et al. [41,42] to be Counts = EPKA; where EPKA is the PKA
energy, and α and β are fitting parameters. Recently, Nordlund et al.
have used this fitting law in an analysis of realisitc atomic displacement
simulations with physically realistic material damage [43]. We apply
here the damped least-square method to fit this functional form to our
results for the number of atoms in a distorted region, obtaining the
fitting parameters as = 18.49 and = 0.553, with a correlation factor
of 0.99. Besides that, a Frenkel pair is a typical defect, where the for-
mation of an SIA is related to the creation of a vacancy, thus we can
compare to the fitting curve reported by Setyawan et al. [25]. This
fitting law is expressed as a function of a reduced cascade energy as:
0.49(EPKA/Ed)0.74 at a sample temperature of 300 K with =E 128d eV.
Although the authors performed MD simulations by using corrected
semi-empirical potentials by Finnis and Sinclair [22], this fitting law is
in good agreement with our results. In the Table 2, we report the

Fig. 2. (Color online) Quantification and classification of crystal defects for-
mation as a function of the time for 10 MD simulations. We follow the for-
mation of point defects during and after collision dynamics obtained by using
the new ML potential, J-T-ZBL, and AT-EAM-FS. We add a fitting curve to the
SIA and distorted region counting as = +f t f t( ) exp( )0 in a).
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average of the number of crystal defects as a function of the PKAe en-
ergy. Interstitials are counted as SIA and atoms in its local neighbor-
hood, and only those atoms with the maximum probability are counted
as interstitial sites (Frenkel pair) reported into parentheses. In good
agreement with the number of vacancies formation, quantified and
identified by the k-d-tree method. The total number of defects is defined
as: Total = Interstitials+Next to vac.+type-A.

There is a couple of common and complex materials defects that are
formed by several atoms in their interstitial sites. A dumbbell defect,
where two atoms share a lattice site, is the most likely material defect to

be found in a bcc unit cell based material [9,44], this type of defect
oriented on ⟨11ξ⟩ with ξ ≈ 0.5 is the most stable one according to DFT
calculations [44]. It is well modelled by our new ML potential and
found in our MD simulations with an orientation of ⟨11ξ⟩ with
0.55 ≤ ξ ≤ 1 due to the thermal motion. In Fig. 4(a), we show the
structure of a dumbbell defect found in our MD simulations after col-
lision cascade at 2 keV of PKA; where W atoms represented by black
sphere correspond to the dumbbell atomic geometry and blue spheres
are included to have a better visualization of this type of defect. The
average distance between the W atoms 1 and 2 is 2.18 Å. This atomic
arrangement is used to count the number of dumbbell defects found in
the W sample at different velocity direction and PKA. Another common
defect where four atoms share three lattice sites is called a Crowdion
[45], which is stable at the ⟨111⟩ direction and found it in our MD
simulations at this orientation. Fig. 4-(b) shows a snapshot of this
particular material defect at the end of the MD simulation for a PKA of 1
keV. W atoms illustrated as golden spheres representing the geometry
of a crowdion defect, while W atoms depicted as light-blue spheres are
considered as atoms in their lattice position. The average inter-nuclear
distance between the W atoms that define a crowdion is 2.3 Å. The
geometries of the crystal defects are reported in the Supplementary
material. In Fig 4 (c) and (d), we report the number of dumbbells and
crowdions as a function of the PKA obtained by the ML potential [15]. A
comparison to results given by MD simulations with the J-T-ZBL po-
tential shows the absence of a crowdion defects formation at low impact
energies, where the machine learned MD simulations predicts the for-
mation of this type of defects in the whole PKA range. The higher the
PKA value is, the bigger the number of crowdion defects is. Besides that,
the J-T-ZBL potentials are able to model dumbbell defects, and its
quantification agrees with the results obtained by using the ML po-
tential. A second comparison to the results obtained by AT-EAM-FS for
the identification of these types of defects is presented in the same
figure. The same number of crowdion defects, in average, is formed
after collision cascade by the ML potential and AT-EAM-FS potentials.
Also, the formation of dumbbells defects is observed in the MD simu-
lations by these two potentials, but the total number of defects is dif-
ferent.

4. Concluding remarks

In this paper, we performed molecular dynamics simulations to
emulate neutron bombardment on Tungsten samples in an impact en-
ergy range of 0.5–10 keV, and a temperature of 300 K. For this, we use a
new machine learning (ML) interatomic potential based on the
Gaussian Approximation Potential framework. This new ML potential is
accurately trained to the liquid phase, which is important to model the
highly affected collision target; the short-range interatomic dynamics
by including an accurate repulsive potential; and some samples to
better model the re-crystallization of the molten region. The damage in
the W material sample is analyzed by the classification and identifica-
tion of point defects with our descriptor vector (DV) based method,
which is based on the calculation of the rotation and translation in-
variant DV that describes the unique atomic neighborhood of each W
atom in the material sample. Common point defects like self-interstitial-
atoms and W atom next to a vacancy, and vacancy formation are
quantified and classified as a function of the PKA energy. We found that
the formation of W atoms as SIA and those in their distorted local en-
vironment follow a law of E18.49 PKA

0.553 with EPKA is the PKA energy. Point
defects as crowdion shapes and W atoms next to a single vacancy are
formed in the whole impact energy range. Our results have, in average,
a good agreement with reported results by standard potentials.
However, some energetically unstable point defects are corrected in the
training data set for the ML potential to improve the accuracy of the MD
simulations. Finally, these two methods are quite general and can be
applied to develop efficient machine learning interatomic potentials for
bcc metals and the damaged material samples are analyzed by the DV

Fig. 3. (Color online) Number of crystal defects as a function of the PKA energy,
EPKA. We include a fitting curve to the average number of SIA and atoms in its
distorted region as: Counts = EPKA [41] with = 18.49 and = 0.553 with a
correlation factor of 0.99. Results at 1 keV were obtained in our previous work
[21]. The number of vacancies are in good agreement with the reported results
by Setyawan et al. [25] .

Table 2
Average number of point defects and vacancies as a function of the PKA, which
are identified by our DV based method. Interstitials are counted at the total
number of SIA + atoms in its distorted region. SIA are identified as W atoms
with the highest probability to be in an interstitial site, reported into par-
entheses. Total number of defects is calculated as: Interstitials+Next to vac.
+type-A .

PKA (keV)

Defect 0.5 1 2 5 10

ML potential
Interstitial 12 ± 2

(2 ± 1)
17 ± 2
(3 ± 1)

26 ± 3
(4 ± 1)

45 ± 5
(7 ± 2)

64 ± 6
(11 ± 2)

Next to vac. 7 ± 1 12 ± 1 17 ± 1 29 ± 2 43 ± 3
type-A 0 0 0 0 0
Total 19 ± 2 30 ± 2 43 ± 3 74 ± 5 107 ± 7
Vacancy 2 ± 1 3 ± 1 4 ± 1 7 ± 2 11 ± 2

J-T-ZBL

Defect 0.5 1 2 5 10
Interstitial 15 ± 2

(2 ± 1)
21 ± 2
(2 ± 1)

29 ± 3
(4 ± 1)

44 ± 5
(8 ± 2)

65 ± 6
(12 ± 3)

Next to vac. 3 ± 1 7 ± 1 14 ± 1 25 ± 2 38 ± 3
type-A 2 ± 1 2 ± 1 4 ± 1 6 ± 1 9 ± 2
Total 20 ± 2 30 ± 2 47 ± 3 75 ± 5 112 ± 7
Vacancy 2 ± 1 2 ± 1 4 ± 1 8 ± 2 12 ± 3

AT-EAM-FS

Defect 0.5 1 2 5 10
Interstitial 10 ± 2

(2 ± 1)
15 ± 2
(3 ± 1)

24 ± 3
(4 ± 1)

42 ± 5
(7 ± 2)

63 ± 6
(10 ± 2)

Next to vac. 5 ± 1 10 ± 1 17 ± 2 33 ± 2 49 ± 4
type-A 0 1 ± 1 1 ± 1 1 ± 1 2 ± 1
Total 15 ± 2 28 ± 2 48 ± 4 76 ± 5 114 ± 7
Vacancy 2 ± 1 3 ± 1 4 ± 1 7 ± 2 10 ± 2
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based method, which is a future work for our research group.
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Fig. 4. (Color online) A dumbbell defect is
shown in a) and a crowdion line defect is
presented in b), identified at the final
snapshot frame of the MD simulation with
the ML potential at 2 and 1 keV of PKA,
respectively. W atoms depicted as black
(dumbbell) and golden (crowdion) spheres
represent the atomic arrangement of the
defects and atoms in a lattice position are
illustrated as blue (light-blue) spheres.
These defects are identified by the re-
ference DV for an interstitial site, =v T( 0)I
with a ⟨111⟩ orientation. The quantifica-
tion of these defects is presented in c) and
d). We compare results to those obtained
by J-T-ZBL and AT-EAM-PS potentials. (For
interpretation of the references to colour in
this figure legend, the reader is referred to
the web version of this article.)

Fig. 5. Projectile trajectory comparison, as a function of the time, between the results obtained by new ML potential (GAP-W) and the one with the original GAP
training data (old-GAP) in a), which shows the need of repulsion information in the training data set to model collision cascades. We also compare the GAP results to
those by Juslin et al [23] potential and Ackland–Thetford (A–T) potentials [22] in b).
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Appendix A. Test of original GAP potential

A machine learned interatomic potential for tungsten based on the Gaussian Approximation Potential formalism was developed by W. Szlachta
et al. [12]. However, it lacks of information about the repulsive potential, so that the projectile is expected to travel freely when a primary knock-on-
atom is assigned to it, in a MD simulation. The new ML potential [15] includes a realistic short-range repulsion to correctly simulate collision
cascades. In order to test our new ML potential, we perform a MD simulation at 1 keV of PKA with a sample temperature of 300 K. The original GAP
[12], Juslin et al. (J-T-ZBL) [23], Ackland–Thetford (AT-EAM-FS) [22], and our ML potentials are used to compare the projectile trajectory as a
function of the simulation time.

In Fig. 5(a), we present the comparison between the projectile trajectory calculated by the original GAP and the new ML potentials. The distance
difference between two projectile trajectories is calculated as t t( ( ) ( ))i i i

2 where t( ) and t( ) are the projectile trajectory obtained by
different MD potentials, with =i x, y, z. We observe a remarkable difference, where in the original GAP the projectile travels freely in the material
sample during the whole simulation. This result is caused by the original GAP potential not having a high-energy repulsive part. In Fig. 5(b), a similar
comparison is done to the results obtained by using the J-T-ZBL and AT-EAM-FS potentials (which do have the high-energy repulsive part), as a
function of the time. The distance difference is smaller than 1 Å for the complete MD simulation and the final position of the projectile is the same for
the three cases. This result shows that the high energy collisional interactions are well treated by our new ML potential.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.nme.2019.100724 .
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