
PHYSICAL REVIEW E 83, 026704 (2011)

Atomistic modeling of metal surfaces under electric fields: Direct coupling of electric fields to a
molecular dynamics algorithm
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The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models
developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields,
as well as the general behavior of a metal surface in this condition. However, the derivation of analytical
models does not include explicitly the structural properties of metals, missing the link between the instantaneous
effects owing to the applied field and the consequent response observed in the metal surface as a result of an
extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–
molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of
a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced
on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting
on the partially charged surface atoms (Lorentz and Coulomb) are then introduced in the MD algorithm to correct
the atomic motion in response to the applied field. The enhancement factor at sharp features on the surface for
the electric field and the assessment of atomic charges are discussed. The results obtained by the present model
compare well with the experimental and density-functional theory results.
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I. INTRODUCTION

Many different computational methods have been devel-
oped to investigate the effects of modification of materials
caused by ion beam [1,2] or laser impacts [3–5] on any surface.
Even though many experiments showed that significant modi-
fication of the material can be caused by applied electric fields
[6–9], there is no plausible technique for dynamic simulation
that could predict the possible modification of the structure
when an electric field is applied. However, the need for such
a technique is increasing with the miniaturization of electric
devices, or increasing magnitude of the operated electric fields
in large-scale machines such as linear accelerators with the
sophisticated design of the accelerating structures [10]. A
number of analytical models exist to explain the phenomenon
of the field ion microscopy [11–13], but the gap between
experimental observations and the theoretical predictions
remains unbridged. It has also been proved that the probability
of the vacuum arcs to occur near metal surfaces in ultrahigh
vacuum conditions depends on the structural properties of the
metals [14]. Thus knowing the actual dynamics of the motion
of surface atoms of a certain metal under a high electric field
can shed light on the triggering process of vacuum arcs.

The main reason for the atoms to behave differently under
electric fields is the shift in electronic densities of surface
atoms caused by an external electric field. The higher the field,
the larger the shift is expected. Without discussing the nature
of excess or depletion of an electronic density near surface
atoms, we will use the term “atomic charge” to describe the
state of the partial ionization of an atom. Note that the value of
this charge is not an integer number of electrons and can well
be less than 1.
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There is a previous implementation of the surface charge
into molecular dynamics (MD) algorithms [15], but the calcu-
lation of the charge on an atom is not done in correspondence
with Gauss law. Instead, some atoms obtain a full integer
charge, while others remain neutral although they are exposed
to the field. Moreover, the given charges in that work do
not change dynamically even if the surface shape changes
strongly. However, the controllable operation of many tools
designed for use in electric fields will be strongly dependent
on the accuracy of the predictive model. The process of atom
detachment from the surface under high electric fields is
extensively debated in field evaporation theory. The models
that exist to explain the experimental observation of the atom
detachment under the high electric field [16–19] are based on
the generalized approach to give a qualitative description of
the interaction of a metal surface with a n-charged ion using
a standard potential [13,20]. Such an approach practically
cannot guarantee a reliable prediction on the surface breakage
for a particular metal. Moreover, these models experience
difficulties in distinguishing the two clearly different states of
the atom: the strongly bound state of the atom, which belongs
to the surface (with a maximum number of neighbors in its
vicinity), and the weakly bound state of the atom, which is
located above the surface (an adatom). These cases can be
distinguished only if the real interatomic interactions are taken
into account. The first-principles calculations of the external
field effect on a metal surface [12,21,22] are able to account
for the properties of the particular metal, however, they fail
to encompass the dynamic evolution and complex features
on the surface, which develop under the field. Nevertheless,
these types of calculations can give a reliable estimation of
the charge distribution owing to the rigorous account of the
superposition of the external and internal electric fields.

In this paper we present a concurrent electrodynamic-
smolecular dynamics (ED-MD) model for a real-time simula-
tion of the development of arbitrarily shaped surfaces under
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electric fields; some results on charge distribution on surface
atoms owing to the electric field will be discussed. In the
presence of a sharp feature on the surface, electronic effects
cannot be ignored. Even if the field applied to the metal surface
is much lower than the threshold of the field-emission process,
the field can grow to this value above the top of a tip. In
this case the electric current caused by the field-emission
phenomenon from the tip will raise its temperature by Joule
heating, competing with the conduction of heat to the rest of
the cell. These processes are also introduced in our model, but
are discussed in greater detail elsewhere [23].

II. METHOD

In principle, the effects of an external electric field on the
electrons and nuclei of a metal surface should be calculated
by a quantum-mechanical solution of the electronic states
of the system. Such calculations have been done until now
for the static surface configuration and small atomic systems
only [12,21,22]. However, to enable the dynamic simulation
of morphology evolution on extended surfaces, we introduce
an atomic-level interpolation approach to the application of
the classical Gauss law [24]. The effect of the electric field on
the surface atoms that we consider is through the effect on the
charges induced on these atoms (a result of the depletion or
excess of electronic densities according to Gauss law).

We developed our ED-MD model on the basis of the classi-
cal MD code PARCAS [25]. The main idea is to introduce, into
the Newton’s equations of atomic motion, additional forces of
an electric nature that act on the charges induced by the applied
electric field. Within the Born-Oppenheimer approximation
(which is conventionally used in MD simulations [26]), we
presume that the relaxation of the electronic system in response
to the electric field and the subsequent Coulombic attraction of
nuclei by electrons are momentaneous compared to the thermal
motion of the atomic nuclei. Thus, the atom is considered as a
whole entity with respect to the external electric field.

We consider further that the Gauss law stated for a
continuous metal surface (given by the “pillbox” technique,
which is a surface charge per area, see Sec. II C [24]) is
applicable on an atomic level. We do not account for electron
tunneling effects responsible for the ionization of surface
atoms at the moment of their detachment from the surface.
The process of detachment is considered if a surface atom
(or an adatom) is provided sufficient energy from the electric
field to overcome the surface barrier. When an atom resides
at a metal surface, it can be partially charged, i.e., have an
electron density that is higher or lower than that of an average
atom inside the (uncharged) bulk in a way that fulfills Gauss
law. On the other hand, when an atom is leaving the surface,
the electron density must at some distance from the surface
collapse into a state that corresponds to an integer number
of electrons on the detached atom. We also do not account
for this loss or gain of energy owing to the electron wave
collapsing during the detachment process; this is why there
is no additional energy or energy penalty for these processes
accounted for in the model.

Thus, the degree of ionization of the atom cannot be
considered reliably predicted within the present approach.
Note also that the present approach has been developed

for the electrostatic field; no magnetic components or time
dependences of a rf field as well as its characteristically
significant skin depth are taken into account. The electric field
is not allowed to penetrate deeper than the first atomic layer,
which correspond to the skin depth ∼2 Å, as estimated for
metal surfaces in the classical electrodynamics textbooks [24],
although the boundary between the internal field of the surface
atoms and the external electric field is considered to be sharp.

The atoms leaving the surface in the ionized state, or those
that experienced a postionization, as well as the strong current
of electrons escaping from the surface, affect the field around
the tip. Strictly speaking, to find the field distribution around
the tip at the fields of interest of this paper, one must solve the
Poisson equation with the space-charge component in it [24].
Somewhat simplified approaches (the case of planar electrodes
in Ref. [27]) can help to take into account the space-charge
screening effect by scaling the value of an electric field.
However, a field screening effect owing to a space charge will
not be included in our approach owing to the reasons specified
in the next section.

A. Calculation of an electric field above the metal surface
of an arbitrary shape

We find the distribution of the electric field over the metal
surface of an arbitrarily rough shape (not flat) by solving the
Laplace equation

�∇2�(x,y,z) = 0, (1)

where � is the electrostatic potential [24].
The motivation for the employment of the Laplace equation

rather than the general case of the Poisson equation [24]
for electric-field distribution, accounting for a space charge,
is that that the primary interest of the present research is
focused on the processes within the metal surface. The charges
induced on a conductive surface are maintained by the voltage
from the external source. These define the electric field
between electrodes that will be distorted in the space owing to
the roughness on the surface of the electrodes, or a space
charge growing with the electron current from a surface
emitter. These emitters, in the shape of surface protrusions, will
distort the field efficiently, causing the redistribution of the
charge on the surface atoms of the protrusions and in their
vicinity. We aim to find this redistribution by applying the
Laplace equation. The field enhancement on a protrusion will
be screened eventually by the space charge over the top of the
protrusion, but in the first approximation we can neglect this
effect, which can lower the value of a charge by ∼ 20%, as
estimated in Ref. [27], which the current approach can tolerate
because of the other uncertainties caused by the assumptions
discussed in the following sections.

For the solution of Eq. (1) we employ the fine three-
dimensional (3D) grid and apply the finite-difference method
using Gauss-Seidel iterations [28]. The size of a grid point
is the same order of magnitude as the size of a lattice atom,
therefore one atom belongs in one grid point in such a way
that there is at least one grid point between two neighbor
atoms if the atoms occupy the lattice sites according to the
perfect crystal structure. This algorithm was developed for
{100} planes in fcc lattice structures and can be also applied
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to {110} planes of bcc lattice structures. The grid points of the
Laplace solver are not required to be strict cubes, but they have
measurements proportional to the lattice constants of a metal
of interest in all three dimensions.

We solve Eq. (1) with the mixed boundary conditions; the
Dirichlet type at the bottom of the grid [�(x,y,0) = const
on a metal surface and the constant can be assumed zero
for certainty] and the Neumann type at the top of the grid
( �∇� = − �Fex) [28]. In infinity the field is aligned parallel,
thus only the z component of the potential has a gradient;
this is equal to the value of the external electric field. The
upper boundary is written then as ∂�

∂ẑ
= − �Fex. The bottom

boundary has a complex shape as it is fully defined by
the position of surface atoms. Every atom that belongs to
the surface (an atom with at least one bond to the rest of the
cell) is considered as a bottom boundary and so are the empty
grid points between the atoms. If the surface has a complex
shape with sharp features on it, � must be considered as a
function of the radius vectors of the surface atoms positions,
in other words, the bottom boundary condition for the Laplace
solver is �(x,y,zbottom) = 0, where zbottom is the z coordinate
of the bottom atoms. Because the shape of the surface is
dynamically changing during the MD simulation, the time
dependence is implicitly included in �(x,y,zbottom) function
and is taken into account via the replacement of the bottom
boundary shape every time the Laplace solver is called to
find the electric-field distribution. In this manner the bottom
boundary is dynamically changing with time, depending on
the momentary positions of surface atoms.

For the best performance of the Laplace solver,
we require the convergence criterion

∑
x,y,z(�(x,y,z)i) −

�(x,y,z)i−1) � 10−12 V, where the indices i and i − 1 denote
the current and previous iteration steps, respectively, for
calculating the potential �(x,y,z). The efficiency of the finite-
difference algorithm is, however, fairly low. The iterations
over all the grid points at every MD step demand extensive
computational time, especially if the number of atoms that
form the surface is large. While solving the Laplace equation
at every MD step, the efficiency can be significantly improved
by exploiting the current solution as an initial guess for the
next step. In this way, if the positions of the atoms did not
change so much that the atoms remain within the same grid
points during one MD step, the iterations will not be needed
as the convergence will be reached already at the very first
step. The other trick is to increase the efficiency of a Laplace
solver to apply more advanced iteration techniques, which can
save significantly the computational time, such as a multigrid
method.

B. The multigrid method

Solving Laplace’s equation using the Gauss-Seidel iteration
requires calculating n3 finite differences for every iteration,
assuming a cubic grid with n points in each direction. If a
large accuracy is desired, the iteration must be performed over
thousands of steps which can be very time consuming for large
systems.

However, by using the multigrid method, the process of
solving Laplace’s equation is accelerated significantly. A
comprehensive explanation of the application of the multigrid

method can be found in Ref. [28]. In practice, we solve the
equation at first approximately by using a few iterations of
the Gauss-Seidel algorithm, and calculating a correction term,
which improves upon the initial solution. This correction term
is solved on a coarser grid with half the number of grid points
in each direction, i.e., 1

8 of the total number of points. We
use the full-weighting restriction and linear interpolation to
transfer values between grids of different coarseness.

The determination of the correction term is recursive,
i.e., a correction term to the correction term is calculated by
using a coarser grid, and this is repeated until no coarser grid
can be formed. At the last solution on the coarsest grid, we
apply the plain Gauss-Seidel iteration. For increased efficiency,
movement occurs back and forth between finer and coarser
levels in a W shape, i.e., the solver returns to a coarser level
after temporarily moving back up to a finer grid level (known
as a W cycle).

We also note that the efficiency of the multigrid method
strongly depends on the number of grid points in one direction
on the original grid. If we write the equation for the number of
grid points as n = a2b, where a and b are integers, it is clear
that a points will remain on the coarsest grid, because the
number of points is halved between grids. Thus, it is expected
that no acceleration can be obtained if the size of the system
is odd because the number of points will remain unchanged,
while a size which is a power of 2 will lead to a maximum
calculation speed.

The efficiency of the multigrid method implemented in
our model is illustrated in Fig. 1. Here we compare the
performance of the Laplace solver with various system
sizes using a pure Gauss-Seidel iteration to that utilizing
the multigrid method, while the accuracy of the calculation
remains the same (<10−12 V). The multigrid algorithm is
orders of magnitude faster than the plain version, and the
importance of grid size in the multigrid case is also clearly
seen. Somewhat paradoxically, increasing the number of grid
points can lead to a faster solution, e.g., the solution of a
124 × 124 × 124 system takes ten times longer to calculate
than for a 128 × 128 × 128 system. In our simulations we
thus always choose systems with dimensions close to a power
of 2.
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FIG. 1. (Color online) Comparison of time taken to solve
Laplace’s equation for the Gauss-Seidel iteration to the multigrid
solver using the Gauss-Seidel iteration.
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C. Calculation of a charge induced by the electric field on a
surface atom

Nevertheless, even by having the fastest Laplace solver, we
still encounter the inevitable problem that the discrete informa-
tion obtained in such a Laplace solver must be transferred to the
continuous atomic motion in the MD algorithm. This is one
of the challenging parts while developing a hybrid ED-MD
model. In our approach we require that two atoms cannot
occupy a single grid point, but they are allowed to occupy
as close as two neighboring grid points. With respect to the
Laplace solver, the atoms are considered to be the same cuboid
shape as a grid point of the Laplace solver; the center of the
atom is always forced to the center of the grid point of the
Laplace solver, where the atom was found. The real position
of an atom (obtained in the MD algorithm) can be different,
but this difference always remains within the uncertainty
±0.5ax,y,z, where ax , ay , and az are the sizes of a grid point in
all directions. In this fashion the charge of the surface atom as a
function of its position with regard to the neighbors is slightly
discrete, and still monotonically corresponds to the change of
the field around the atom. However, the charge obtained in the
discrete grid of the Laplace solver is eventually assigned to
the atom in the real position according to the MD algorithm.
This compromise allows for the agreeable conjunction of the
discrete technique of the Laplace solver and the continuous
atomic motion calculated by solving the system of Newton’s
equations [26].

By the charge of surface atoms owing to an applied electric
field, we understand the following. If the field is applied
between two planar electrodes, it will polarize the surface
atoms, inducing either depletion (on an anode) or excess
(on a cathode) of electron density around the atoms. The
process of partial charging of surface atoms (polarization) can
be understood in the framework of the jellium model of a
metal, which has been highly exploited to calculate the metal
properties in analytical and density-functional theory (DFT)
approaches [11,13,21]. Nevertheless, in the present approach
we do not discuss the nature of polarization of metal atoms,
because we are not doing rigorous calculations of electronic
states of the atoms. Presently we employ the Gauss law, which
gives the linear dependence of surface charge density σ on a
value of an applied electric field �F in SI units [24] as

σ = ε0| �F |. (2)

Here, ε0 = 8.85 . . . × 10−12 F/m is the vacuum permittivity
and | �F | is the electric field directly over the metal surface.

We also assume that the Gauss law is valid at the atomic
level; then the charge induced on a surface atom will be

qat = σAat,

where Aat is an area of the surface atom exposed to the
field. The topography of atom location in the {100} face of a
fcc structure (Cu{100}) or in the {110} face of a bcc structure
(W{110}) enables the representation of an atomic layer as a
chessboard with filled (occupied by an atom) and empty (hold
no atom) cuboids (Fig. 2). In other structures the surface pattern
must be reconsidered, although the main algorithm will be still
valid.

FIG. 2. Chessboardlike image of {100} fcc and {110} bcc surface
planes. Dark and white cuboids are the atoms and the empty
space between atoms, respectively; semitransparent cuboids show
the Laplace solver grid points, with the schematic arrows displaying
the direction of the applied field �Fex.

In this figure the dark cuboids represent atoms that are
forced to occupy the same position as the grid point of the
Laplace solver where the center of the atom belongs (while in
reality the atom can be only partly there). Thus we approximate
every atom to a cuboid shape in such a way that every surface
atom has four neighbors on a perfect lattice. We consider
three Cartesian components of the electric field F i

x,y,z in which
the grid point i possesses from the solution of the Laplace
equation (1). Every component F i

x,F
i
y,F

i
z has an opportunity

to contribute to the entire value of the atom charge,

�qi
j = ε0F

i
x,y,zA

j
yz,xz,xy,

where A
j
yz,xz,xy is the area of the side of the atom j

perpendicular to the component F i
x,y,z, respectively. The total

charge of the atom j will be calculated as a sum of all
the contributions �qi

j from the grid points surrounding the
atom j :

qj =
Nj∑
i=0

�qi
j ,

where Nj is the number of grid points with �Fi obtained as
the Laplace solution. As can be seen from Fig. 2, in the case
of a flat surface there is only one grid point, which is located
directly above the atom. If we calculate the charge of the atoms
taking into account only these grid points, the total charge of
the surface will be underestimated by a factor of 2. At the same
time, the grid points, which are not located directly on the top
of the atom, cannot be neglected because the value of the
field in those grid points is also significant. Thus weencounter
another “continuous↔discrete conjunction” problem. In this
case, the continuous distribution of the field should be applied

FIG. 3. Two-dimensional projection of the atomic cell model
with the example of the field direction due to the distortion on the
surface feature. In the model for side atom 1 the contribution of the
Fx component is taken into account (Fy is ignored) and for atom 2
the situation is inverse.
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to the discrete number of surface atoms, which are approxi-
mated to have a geometrically finite shape. The conjunction
between the continuous field and the discrete atoms is done as
follows.

Every grid point is considered in the middle of eight other
grid points that together form a large complete cuboid. All
eight grid point cuboids are divided into three groups: The
first nearest neighbors (nn) are on the faces of the large cuboid,
the second nn’s are on its edges, and the third nn’s are in its
corners. Only those grid points that potentially host the atoms
(not parts of the Laplace solver) are considered. If the atoms
are found, the calculation of the charge contribution to each
atom is made according to the priorities; the field of the given
grid point does contribute in the charge of each atom around,
but not in full strength. It is divided into two halves; one half is
for 1 nn atoms and the other half is evenly divided for second
and third nn atoms. If the atoms are missing, the strength is
distributed between the rest of the atoms with the same rule of
priorities. The equations for the fractions that are accounted
for for each atom found in first, second, and third nn’s are
written as follows

g1nn = g0
1nn + g0

2nn

(
1 − N2nn

N0
2nn

)/
2 + g0

3nn

(
1 − N3nn

N0
3nn

)/
2,

g2nn = g0
2nn + g0

1nn

(
1 − N1nn

N0
1nn

)/
2 + g0

3nn

(
1 − N3nn

N0
3nn

)/
2,

g3nn = g0
3nn + g0

2nn

(
1 − N2nn

N0
2nn

)/
2 + g0

1nn

(
1 − N1nn

N0
1nn

)/
2.

Here Ninn is the number of atoms found in the inn shell;
g0

inn and N0
inn are the fraction of a grid point given to

the atoms of the inn shell and the maximum number
of atoms, which can be found in this shell in a per-
fect structure, respectively (g0

1nn = 0.5, N0
1nn = 1; g0

2nn =
0.25, N0

2nn = 4; g0
3nn = 0.25, N0

3nn = 4). In this fashion the sum
of the charges assigned to the discrete atoms that belong to a
flat surface is equal to the charge distributed on this surface
according to Eq. (2).

Note also that the distortion of the field on sharp features on
the surface can lead in this algorithm to the presence of a field
component parallel to the metal surface, which contradicts
the Gauss law (Fig. 3). This is an undesired inherent feature of
the discrete grid of the Laplace solver. The finer the grid, the
smaller the probability for this artifact to appear. Presently we
ignore the parallel component of �Fi and take into consideration
only that which is perpendicular to the metal surface.

The charge obtained in this way is used in our
MD simulations to calculate the force exerted on the surface
atom by the electric field and owing to the Coulombic
interactions. Then, the total force on an atom in MD algorithm
becomes

�fi,tot = �fEAM + �fi,L + �fi,C. (3)

Here, �fEAM is the force obtained from the interatomic potential
and �fi,L = qi

�Fi isthe Lorentz force exerted on the atom i by
the electric field �Fi , which is the field obtained as a vector sum

of all the grid points surrounding the atom i. The Coulombic
force �fi,C is calculated as follows:

�fi,C = 1

(4πε0)

Nneig∑
j=1

qiqj

r2
ij

e−rij ξ ˆrij .

Here, the screening factor e−rij ξ describes the screening of
a bare charge by conduction electrons in a metal [29]. The
value of ξ can be determined by comparing the classical
electrodynamics result of the energy of a flat surface with
the summation of the screened Coulomb potential for the
atomic arrangement of a particular surface. The calculation
is described in detail in Appendix A, and gave a value of
ξ = 0.6809 Å−1 for the Cu (100) surface. However, we note
that for the high electric fields employed here, the Lorentz force
generally dominates, and hence the results are not sensitive to
the value of ξ as long as it remains in a reasonable range
∼0.1–1.0 Å−1.

The value of ξ is not easy to determine for a charged metal
surface, however, we found that for large electric fields and
reasonable choices of ξ ∼ 1/(1 Å)–1/(10 Å), the electric forces
dominates over the Coulomb force and hence the choice of ξ

does not affect the results significantly.
The sharp features assume the highest partial charge, which

is, for soft metals, still a fraction of an electron, but for the hard
melting metals (with s high cohesive energy of the surface
atoms) the value of the partial charge on the surface atoms can
exceed significantly a value of 1e before the surface breaks.

III. RESULTS AND DISCUSSIONS

A. Laplace solution for protrusions on a metal surface

Prior to collecting results from the proposed model we
tested the Laplace solver exploited in our approach. As it
was mentioned in Sec. II A, to solve the Laplace equation we
employ the finite-difference method with the mixed boundary
condition. The accuracy of the numerical integration depends
on the level of the grating of the basic grid of the solver, which
in turn is restricted by the computational efficiency of the
technique employed for the dynamic simulations. Although
the finite-difference method is well established and widely
used for the integration of the differential equations, the level
of the grating of the basic grid for the solver can play a crucial
role for the reliability of the results. Because within the present
model we are dealing with a perfectly conductive material,
some known solutions for the field distortion on hemisphere-
capped cylindrical protrusions can be tested for verification
purposes. The solver can be verified easily by the testing the
dependence of field enhancement | �Fmax|/| �Fex| on the aspect
ratio of a surface protrusion. Here we use β to denote the
field enhancement factor (in line with the common practice of
using this parameter in the Fowler-Nordheim equation for the
field-emission current density) and γ will denote the aspect
ratio as in Refs. [30–32].

The generally accepted concept of the electric field linearly
enhancing with the aspect ratio of a metal protrusion on a
metal surface [33] was verified in many articles [30–32,34].
Although the different calculations give slightly different fit-
ting functions to describe the dependence, the main conclusion
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FIG. 4. Cross-section image (perpendicular to the y axis) of the
3D distribution of the field �Fex = 1 V/nm around the protrusion
with an aspect ratio of 10. The highest enhancement is reached on
the apex of the protrusion. The contours show equipotential lines,
corresponding to field values from the outmost line inwards of 1.25,
1.5, 2.0, 3.0, 4.0, and 5.0 V/nm. Here, x and z axes show the
dimensions along and from the surface, respectively.

of a significant growth of the field on a protrusion seems to
be a strong tendency in all models. Although the slope of the
linear dependence is high, it is less than the unity as given
in Ref. [33]: The analytical model by Kokkorakis et al. [34]
gives the simplified formula| �Fmax|/| �Fex| = a0 + 0.72rtip/htip,
and those based on finite-element calculations Edgcombe and
Valdrè [30] derive a similar but sublinear dependence. These
formulas give approximately the same slope of 0.72, which
can be a good probe testing for our Laplace solver. For this
purpose we used the same solver as implemented in our model,
but without an atomic system, to be able to check the effect of
the level of the grating on the results. The cubic-shaped grid
used in this series of calculations was 384 × 384 × 384. The
Dirichlet boundaries were applied to the bottom of the cube,
where in the middle the hemisphere-capped cylinders with the
aspect ratios between 1 and 10 were placed to imitate an atomic
protrusion. The shape of the field distribution calculated for a
protrusion with an aspect ratio of 10 is demonstrated in Fig. 4.
Here the contour lines show the equipotential lines of the field
distorted around a sharp protrusion.

The protrusion with an aspect ratio of 1 (a hemisphere)
was included in the calculations as a reference to the value
of a conductive sphere, which can be found analytically. The
comparison of the solutions for a conductive sphere in an
external electric field obtained analytically and by the Laplace
finite-difference solver can be found in Appendix B.

In Fig. 5, the result of the dependence| �Fmax|/| �Fex| on the
aspect ratio (the radius of 12 grid points for the hemispheres
was the same for all the protrusions) is shown. As one can
see, the data can be fit well with the linear dependence with
a slope of ∼0.73, which is in good agreement with the slopes
from Refs. [34] and [30], taking into account the discreteness
of our Laplace solver. Here also the enhancement factor of the
hemisphere (an aspect ratio of 1) is close to 3 (the result for a
conductive sphere). The ratio of the level of grid grating and
the calculation efficiency has been checked for a hemisphere
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finite differences method
y = 2.0+0.73x

2.0

2.5

3.0

20 30 40
radius of hemisphere (Ngrid points)

1098765432

FIG. 5. Linear dependence of field enhancement β on the aspect
ratio γ obtained by solving the Laplace equation in a 384 × 384 ×
384 grid by the finite-difference method. The Neumann boundary
condition is applied to the top and the Dirichlet boundary condition
is applied to the bottom, which contains a hemisphere-capped
cylindrical protrusion. The line is the linear fit to the calculated
data, with the slope close to the one reported in Refs. [30] and [34].
The convergence of the value obtained for βhemisphere toward 3, the
analytical solution for a conductive sphere in the external field, with
an increase of the grating level, is shown in the inset. The upper limit
was defined by the computer capacity limitations.

and for a protrusion with an aspect ratio of 10. In both cases, the
tendency to underestimate the field enhancement was observed
with the grid growing more crude (see the inset of Fig. 5).
However, the finer the grid, the better the agreement obtained
with the analytical estimations of the field enhancement can be
found, which confirms the adequacy of the chosen technique
for the solution of the Laplace equation, considering the
simplicity and efficiency required for the dynamic simulations.

B. Charge induced by an electric field on surface atoms

Because there is no well-established recipe for the calcula-
tion of charge distribution on a metal surface, we intend at first
to verify the proposed technique for a single, static snapshot
of the surface morphology evolution.

The direct comparison of the charge induced on a surface
atom or adatom is not possible, as there is no information in
the literature giving the precise value from the experiment
or other calculations. Moreover, the atomic charge is not
a uniquely defined concept, and quantum-mechanical codes
employ a wide variety of charge calculation methods [35].
One possibility of verifying the accuracy of the estimation of
a charge is to use the Gauss law for the continuous flat surface
Eq. (2)], and calculate precisely the charge per surface atom.
However, this knowledge is very limited and fails to predict
the value of a charge on a single atom for nonflat surfaces
because of the field distortion on the surface features.

Nevertheless, the indirect verification of a charge induced
by an electric field on an adatom is possible if the value of
the critical electric field for field evaporation �Fc

ev for a certain
metal surface is known. For instance, a DFT study of the field

026704-6



ATOMISTIC MODELING OF METAL SURFACES UNDER . . . PHYSICAL REVIEW E 83, 026704 (2011)

FIG. 6. (Color online) W {011} surface with an adatom in the
most stable position, used to calculate the modification of potential
energy owing to the external electric field. The purple (medium gray)
corresponds to the highest value of the partial charge (unit charge) on
the protruded surface atom according to the present ED-MD model.

evaporation of a tungsten surface [22] reported a value of �Fc
ev

close to the ones observed in the experiment [16]. This gives
us a plausible opportunity to compare the results obtained
with the present model with the results from Ref. [22], which
were calculated independently by a different simulation tech-
nique, which employs a deeper description of the electronic
structure.

To fulfill the aimed comparison, we constructed a tungsten
(011) surface with an adatom added to the next layer in the
energetically most favorable position, as shown in Fig. 6. This
adatom was also considered in Ref. [22] as the most stable
one. The MD code PARCAS was used to relax the surface
with the adatom at 0 K during 10 ps. In these calculations
we used three different empirical interatomic potentials: the
Finnis-Sinclair EAM (embedded atom method) potential [36]
referred to as “FS” hereafter, the Tersoff-like potential [37],
hereafter referred to as “JUS,” and the Dudarev-Björkas EAM
potential [38], hereafter referred to as “DB.” Three different
interatomic potentials were used only for ensuring that a
common trend exists, irrespective of the choice of the potential.
Applying a drag method [39], we produced a series of static
calculations by using the proposed ED-MD model to estimate
the resulting forces acting on the charged adatom from the
internal interatomic interactions and the external field given
by Eq. (3). These forces then were integrated over the distance
along the dragging path and compared to the potential energy
values from Ref. [22]. The result of this comparison can be
found in Fig. 7.

An analysis of Fig. 7 reveals the following. The interatomic
interactions given by the FS potential are described very
closely by the DFT calculations, which is seen from the
comparison of the potential energy curves in Fig. 7(a)
calculated for the adatom in the absence of an external electric
field. When the curves pass the potential well, their behavior on
the positive side of the z coordinates slightly diverge, showing
that the interactions in the DFT approach are stronger and
of shorter range compared to the empirical FS potential. The
same conclusion is deduced from the comparison of the surface
binding energies given by both the DFT and our simulation,
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FIG. 7. Comparison of the potential energy gained by an adatom
as in Fig. 6 along the line perpendicular to the W (011) surface. The
distance from the surface (z coordinate) is measured in arbitrary units
(arb. units) with the zero position at the point where the potential
energy has its minimum in the absence of an external electric field.
The value of the potential energy is shown by subtracting the value
E0

pot, which the charged adatom has at z = 0. (a) Comparison of
the simulation results obtained with the proposed ED-MD model
with the Finnis-Sinclair EAM [36] (FS) potential and the results of
DFT calculations from Ref. [22] (DFT). One curve obtained with the
Dudarev-Björkas EAM potential [38] (DB) at 65 V/nm is shown for
the comparison. (b) Potential energy of a charged adatom according
to the DB potential and the Tersoff-like potential [37] (JUS). The
same curve for the case of no external electric field from Ref. [22] is
also added.

which are 7.88 eV from Ref. [22] and 6.47 eV given by the
FS potential. This explains the main result of our simulation,
which gives the value of the critical field for W (011) surface
at ∼40 V/nm, while the DFT calculation obtains no barrier
if the applied field exceeds 60 V/nm. This result seems
fascinatingly close to the experimental data, however, it was
shown previously [37] that DFT calculations can overestimate
the cohesive energy of W by ∼1.5 eV; this is why the agreement
should not be overestimated. Applying another potential, for
instance, the DB EAM potential [38], the critical field can be
even higher, as seen in Fig. 7(b). This indicates the sensitivity
of the results to the choice of the model potential.
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FIG. 8. Dynamics of a surface tip evolution under a sufficiently
high electric field. The example is given for the Cu tip 1 nm × 1 nm
(height × diameter) placed on a {100} Cu surface (T = 600 K,
�Fex = 8 V/nm). (a) Snapshots of the evolution process taken at

different MD steps (see the main text). The shades of gray show
the charge of surface atoms ranging between −0.029e (the surface
atoms) and −0.34e (the top atom) in the first snapshot. The charges
are dynamically changing following the change of the local field.
(b) Cross-section images of 3D distributions of the electric field in
the presence of a surface asperity: The left-hand image shows the
distributions at the beginning of the simulation, and the right-hand
image shows distributions after a significant change of the shape
has occurred. The contour lines correspond to the equipotential lines
of the field with the values given in the boxes with an accuracy of
0.1 V/nm. The axes are similar to those in Fig. 4.

However, here we do not discuss the advantages of
different models to describe the cohesive interactions between
metal atoms, but rather verify the suggested technique. The
reasonable agreement between our results and the results from
the calculation by the DFT methods confirms the adequacy
of the present approach, which was developed independently
with no data calibrated against each other. The main advantage
of the ED-MD model is that it allows for the simulation of
dynamic change of the charging of surface atoms depending
on their position regarding the neighbor positions under an
electric field. Combined with the model of electronic effects
described in Ref. [23], the present ED-MD model is an efficient
and fairly accurate tool for the dynamic simulation of extensive
metal surfaces exposed to high electric fields. The results do
somewhat depend on the model potential [cf. Fig. 7(b)], thus
the latter must be tested well prior to employing it within the
present model.

Applying the proposed technique, we simulated the evo-
lution of the shape of an asperity on the Cu {100} surface.

The initial shape of a tip was a simple cylinder (∼1 nm ×
1 nm in height and diameter). The tip was placed on
the Cu {100} surface 11.71 × 11.71 nm and ∼3 nm thick
(32 × 32 × 8 unit cells). Three bottom layers were fixed to
prevent a possible shift of the original cell position under the
electric field. The tip was allowed to relax during 20 ps at
the given temperature (T = 600 K) before the external field
was applied. The Berendsen control of temperature [40] with a
time constant of 20 fs was applied to prevent artificial heating
of the system. The time step for the simulation was chosen as
4.06 fs for Cu and 6.9 fs for W, previously found to give good
energy conservation in near-equilibrium simulations [25]. The
field �Fex = 8 V/nm was exerted in a ramping mode (linearly
increasing) over 5 ps. A combination of values of the field and
the temperature were chosen ( �Fex < �Fb = 11 V/nm, where �Fb

is the field at which the flat surface starts to break, and Troom <

T < Tm, where Troom and Tm are the room temperature and
the melting point of Cu, respectively) to achieve the efficient
field-enhanced evaporation of atoms, but at a reasonable
evaporation rate. The snapshots of the simulation can be found
in Fig. 8(a). Here the first image (upper right-hand side) shows
the snapshot when the applied field has already been ramped to
the desired magnitude ( �Fex = 8 V/nm) and the last one (lower
right-hand side) shows the snapshot after a dramatic change
of the shape of the surface tip. Two intermediate snapshots
are shown to complete the imaging of the dynamics of the
process. It is clear that the thermal fluctuations of the atoms
elevated at 600 K enhance the atom detachment, which can
be understood as field-enhanced atom evaporation. Because in
the present approach we do not consider the atom ionization,
the detachment is a purely thermal process, where the effect of
an electric field can be considered as a permanent tensile stress
applied to the surface, but following the shape of the surface
morphology. If an atom has changed its position owing to the
thermal fluctuations and hopped higher than the position of its
neighboring atoms, it attains a higher partial charge, increasing
the probability of its detachment.

The solution of the Laplace equation that is obtained at
every MD step, when the surface has been changed, is shown
in Fig. 8(b). The images correspond to the initial and final
snapshots shown in Fig. 8(a).

IV. CONCLUSIONS

In conclusion, an atomistic model of a metal surface
held under an applied electric field has been developed. The
model accounts concurrently for both electrodynamic effects
and interatomic interactions between the atoms. The Laplace
equation with the dynamically changing Neumann boundary
condition on the surface is solved at every MD step, and
the following charge redistribution is allowed to depend on
the position of surface atoms. The Laplace solution has been
shown to give the electric-field enhancement around a hemi-
spherically capped cylinder that is in very good agreement with
previous analytical and finite-element calculations. The model
allows for the dynamic simulation of surface modification
under the electric-field effect, including the lattice expansion
under the field and the migration of charged adatoms.
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APPENDIX A: DETERMINATION OF SCREENING
FACTOR FOR COULOMB INTERACTIONS

According to classical electrodynamics [24] the continuum
self-energy per volume of a charged infinite conducting
surface is

uc = 1

2
ε0E

2 = 1

2ε0
σ 2, (A1)

where σ is the charge per areaof the surface owing to Gauss
law.

On the other hand, consider a charged fcc (100) surface
with all charge on the top atom layer. The surface atoms form
a 2D square lattice with two atoms per conventional unit cell
of lattice constant a. By considering a 45◦ rotation, this is
equivalent to another square lattice of lattice constant a/

√
(2).

If these atoms were considered to interact by a pure Coulomb
interaction, the atomic electrostatic potential energy Ua could
be obtained by summing up the Coulomb potential from an
atom to all its neighbors,

Ua =
∞∑
i=1

1

4πε0

qiqj

rij

, (A2)

where qi is the charge on each atom given by the external
electric field �Fex as described in the main text.

From the geometry of the atomic arrangement, the area per
atom is [a/

√
(2)]2 = a2/2 and hence σ = qi/A = qi/(a2/2).

The thickness of a single atom layer is a/2. Hence the energy
density from the atomic interactions,

ua = Ua

a3/4
. (A3)

As the surface is considered flat, all charges qi,qj are equal
(=q) and constant with respect to rij , and hence

ua = 1

a3/4

1

4πε0
q2

∞∑
i=1

1

rij

. (A4)

However, this sum clearly diverges, because the number of
atoms for a circular shell of thickness dr is proportional to
its area 2πr dr . To solve this dilemma, one can consider that
bare charges in a conducting material are screened by rear-
rangement of the conduction electrons in a metal [29], which
can, in the Debye-Hückel or Fermi-Thomas approximations,
be described by the screened Coulomb potential

Vi,Cs = 1

(4πε0)

Nneig∑
j=1

qiqj

rij

e−rij ξ , (A5)

FIG. 9. Solution of the Laplace equation for a conducting sphere
in an external field �Fex with the finite-difference numerical method,
compared to the exact analytical solution, for the field at the surface.
The field was determined along the azimuthal angle θ off the
z direction. The number of grid points in each direction was 200,
and the radius of the sphere was 1/12 of the total size of the solution
region.

and hence

ua = 1

a3/4

1

4πε0
q2

∞∑
i=1

1

rij

e−rij ξ . (A6)

By requiring that ua = uc, one can fix the value of ξ to give a
ua that matches uc.

FIG. 10. (Color online) Solution of the Laplace equation for a
conducting sphere in an external field �Fex with the finite-difference
numerical method, compared to the exact analytical solution. The
inset shows the numerical solution in the xz plane and the directions
along which the magnitude of the field |E| is compared to the exact
solution. The number of grid points in each direction was 200, and
the radius of the sphere was 1/12 of the total size of the solution
region.
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For instance, for a surface charge of q = 0.01 e/atom and
the Cu lattice constant of ≈3.62 Å, σ = 0.0122 C/m2 and
Eq. (A1) gives

uc = 5.26 × 10−5eV/Å3. (A7)

Using numerical calculation of Eq. (A6) with increasing
distance from the central atom until convergence, we deter-
mined that ξ = 0.6809 1/Å fulfills uc = ua to four digits
of accuracy. Because both ua and uc are ∝q2, this result is
independent of the choice of q. This value is very close to
a simpler estimate obtained from Thomas-Fermi theory of
0.55 1/Å [Eq. (17.55) and Table 2.1 in Ref. [29]] and hence
can be considered to be of quite reasonable magnitude.

APPENDIX B: TEST OF ACCURACY OF
LAPLACE SOLVER

The finite-difference method for solving the Laplace equa-
tion is exact in the limit of the grid point size going to
zero [28]. However, computer capacity limitations prevent the
use of a very large number of grid points, and hence it is
important to determine the relation between grid point size
and accuracy of the solution. We tested the accuracy of the
finite-different Laplace solver by simulating the electric field
around an uncharged conducting sphere in vacuum subject to

an external electric field �F = Fexẑ. This case is a suitable test
for our solver because it has an exact analytical solution [24]
that is valid everywhere in space. Moreover, the solution at
the top of a tip capped with a hemisphere (considered in the
main text) is approximately the same as for the sphere in the
direction of the field.

Our Laplace solver was applied to solve the electric field
in three dimensions around a conducting sphere region. The
sphere was implemented by setting a number of grid points in
the center of the solution region to be conducting boundary grid
points. Similar to the use of the solver described in the main
text, the potential at the surface of the conducting sphere was
fixed to zero, while at the bottom and top of the cubic solution
region, the gradient was set fixed to −∇φ = Fexẑ (gradient
boundary condition). Periodic boundary conditions were used
at the side x and y boundaries. We tested the accuracy of the
method systematically as a function of total number of grid
points in each dimension N = Nx = Ny = Nz and the fraction
of the sphere radius r compared to the cell size fr = r/N . The
results are illustrated for the maximum field at the surface of
the sphere in Fig. 9 and for cross sections of the solution region
along the x and z axes in Fig. 10. In general, we found that
for fr � 0.2 and N � 100 the solution is accurate to ∼5% or
better everywhere in the solution region. The multigrid and
single grid (Jacobi) solution methods were found to give the
same results.
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