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We develop a fast and accurate machine-learned interatomic potential for the Mo–Nb–Ta–V–W
quinary system and use it to study segregation and defects in the body-centred cubic refractory
high-entropy alloy MoNbTaVW. In the bulk alloy, we observe clear ordering of mainly Mo–Ta and
V–W binaries at low temperatures. In damaged crystals, our simulations reveal clear segregation
of vanadium, the smallest atom in the alloy, to compressed interstitial-rich regions like radiation-
induced dislocation loops. Vanadium also dominates the population of single self-interstitial atoms.
In contrast, due to its larger size and low surface energy, niobium segregates to spacious regions like
the inner surfaces of voids. When annealing samples with supersaturated concentrations of defects,
we find that in complete contrast to W, interstitial atoms in MoNbTaVW cluster to create only
small (∼ 1 nm) experimentally invisible dislocation loops enriched by vanadium. By comparison to
W, we explain this by the reduced but three-dimensional migration of interstitials, the immobility of
dislocation loops, and the increased mobility of vacancies in the high-entropy alloy, which together
promote defect recombination over clustering.

I. INTRODUCTION

High-entropy alloys are a new class of materials that
is now being explored with increasing interest due to
their many unique or enhanced properties, such as high
mechanical and high-temperature strength, good resis-
tance to corrosion, and enhanced radiation tolerance [1–
5]. The majority of previous studies have focused on Fe-
and Ni-based face-centred-cubic alloys [6]. Considerably
less is known about refractory alloys based on the body-
centred-cubic group V and VI transition metals [7].
With high melting points and mechanical strength, re-
fractory metals and alloys are attractive for a variety
of applications. For example, bcc metals are generally
more tolerant to ion and neutron irradiation than fcc
metals [8]. This makes W-based high-entropy alloys par-
ticularly interesting for nuclear applications, such as the
shielding material in fusion reactors [9]. Exceptional ra-
diation tolerance was indeed recently demonstrated for
a W-based high-entropy alloy, showing very little radia-
tion hardening and no signs of radiation-induced dislo-
cation loops even at high doses [10].

The vast amount of possible alloy compositions makes
the search for promising high-entropy alloys for a given
application difficult. Computational modeling is there-
fore essential, both for guiding experimental manufac-
turing towards alloy compositions with the desirable
properties and for understanding the atom-level mech-
anisms that give high-entropy alloys their unique prop-
erties. However, the chemical complexity also makes
most modeling techniques challenging. Density func-
tional theory (DFT) is an invaluable tool for quanti-
fying fundamental material and defect properties, but
is computationally too demanding for large-scale atom-
istic simulations. Beyond DFT, most modeling tech-
niques rely on a parametrised model for the interatomic
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interactions, which for a high-entropy alloy with many
elements involves exceedingly many cross-species inter-
actions. Developing interaction models, like interatomic
potentials or on-lattice cluster expansion models, for in-
creasingly complex alloys is now a key step towards a
more fundamental understanding of high-entropy alloys
and their exotic properties.

For W-based high-entropy alloys, recent studies along
these directions have led to important insights. Cluster-
expansion models and on-lattice machine-learning po-
tentials have revealed strong preferential ordering and
segregation at low temperatures in bulk W-based al-
loys [11–14]. Beyond on-lattice models, Li et al. recently
developed a machine-learning potential for Mo–Nb–Ta–
W alloys [15]. They used it to study the fundamental
properties of screw and edge dislocations and found that
Nb segregates to grain boundaries. However, not much
effort has been focused on the quinary MoNbTaVW al-
loy. Here, we develop an accurate machine-learned inter-
atomic potential for all Mo–Nb–Ta–V–W alloys. We use
the potential to study the preferential ordering and seg-
regation in bulk MoNbTaVW and around defects. Fur-
thermore, we show how the mobility of vacancy and in-
terstitial defects controls the defect evolution and leads
to a vastly different defect structure compared to pure
W.

II. METHODS

A. Machine-learning potential

We first use the Gaussian approximation potential
(GAP) framework [16, 17] to train an interatomic po-
tential for the complete Mo–Nb–Ta–V–W system. With
five elements and the aim to get a fairly general po-
tential that is at least reasonably transferable to any
alloy composition, constructing the training database
is a challenge. We also require that the potential can

mailto:jesper.byggmastar@helsinki.fi


2

describe not only bulk crystals, but also any form of
defects that may be present or form due to irradiation.
We found that with a reasonably sized training data
set, using the many-body SOAP descriptor [18] that is
typically used in GAPs leads to overfitting issues (show-
ing significantly larger test errors than training errors).
Converging a SOAP-GAP towards DFT accuracy for in-
dependent test data would likely require a prohibitively
large training set due to the vast descriptor space with
five elements. Our solution is therefore to rely on low-
dimensional two- and three-body descriptors, which re-
quire less data but as we demonstrate can still achieve
remarkably good accuracy for multicomponent alloys.
In fact, it outperforms a SOAP-GAP trained to the
same training data. Additionally, the use of only low-
dimensional descriptors allows for a tabulation scheme
that provides a significant computational speedup, as
discussed in Sec. II B.

We use the following expression for the total energy
of a system of N atoms

EGAP
tot. =

N∑
i<j

Erep.
ij (rij) + δ2

2b

N∑
i<j

M2b∑
p

αij,pK2b(rij , rp)

+ δ2
3b

N∑
i,j<k

M3b∑
t

αijk,tK3b(qijk, qt).

(1)

Here, the first term is a purely repulsive screened
Coulomb potential fitted to each element pair using all-
electron DFT data [19]. Our methods for fitting and in-
cluding the repulsive pair potentials are described in de-
tail in Ref. [20]. The second term is a machine-learning
pair potential, carried out as Gaussian process regres-
sion with the interatomic distance of each pair ij as the
descriptor. The final term is the three-body machine-
learning term as a sum over all atom triplets ijk. α
are the optimised regression coefficients, and K2b, K3b

are the kernel functions, for which we use the squared-
exponential kernel with 1 Å as the length-scale hyper-
parameter. M2b and M3b are the number of represen-
tative pairs p and triplets t from the training structures
used to carry out the regression. We use M2b = 20 and
M3b = 300 for all element combinations. Values higher
than M3b = 300 provided similar accuracy, but showed
an increasing (although small) tendency of overfitting.
The machine-learning energy predictions are scaled by
the parameters δ2

2b = 10 eV and δ2
3b = 1 eV. The GAP

framework and its parameters are described in more de-
tail in e.g. Refs. [17, 21].

The three-body descriptor calculated for each triplet
of atoms ijk is the vector [17]

qijk =

 rij + rik
(rij − rik)2

rjk

 fcut(rij)fcut(rik), (2)

which is invariant to permutations of jk. Smooth cutoff
functions fcut(r) are imposed on the bonds to the cen-
tral atom i. We use 5 Å cutoff radii for both the two-
body and three-body descriptors and all element pairs

and triplets. Initially, we experimented with longer cut-
offs for the pairwise potentials (to capture possible long-
range interactions) and shorter three-body cutoffs, but
found that 5 Å cutoffs for both descriptors lead to better
accuracy.

The potential is trained to total energies, forces, and
virial stresses obtained from DFT calculations using
vasp [22–25] for a variety of Mo–Nb–Ta–V–W struc-
tures. The training set includes bulk Mo–Nb–Ta–V–
W bcc crystals sampled at all compositions, including
the pure elements. The majority of the alloys are ran-
domly ordered, but we also found it necessary to in-
clude ordered alloys. Defected structures (up to 5 vacan-
cies and self-interstitial atoms) are only included in the
pure elements and in equiatomic random MoNbTaVW
alloys. Liquid structures are included for pure ele-
ments and all equiatomic binary, ternary, quaternary,
and quinary alloys of Mo–Nb–Ta–V–W, but with most
structures for the equiatomic MoNbTaVW high-entropy
alloy (HEA). The training set additionally includes HEA
crystals with one randomly added interstitial atom that
is relatively close (but not too close) to its neighbour
atom. These structures ensure that the repulsion be-
tween all elements in crystals is captured. Surface
structures are included for the pure elements along
with a few HEA surfaces to ensure some transferabil-
ity to alloy surfaces, although we do not specifically
target surface properties. Our strategy for construct-
ing the training structures and the training process is
described in more detail in the Supplemental material
online. The potential is trained using the quip code
(https://github.com/libAtoms/QUIP).

B. Tabulated machine-learning potential

Carrying out the Gaussian process regression terms of
Eq. 1 is computationally expensive due to the loop over
the (sparsified) training points M2b, M3b. Because our
GAP only contains pure two- and three-body-dependent
terms, it is possible to create a tabulated version of the
potential, which we will call tabGAP. Creating com-
putationally efficient tabulated machine-learning poten-
tials was initially demonstrated by Glielmo et al. [26]
and recently further developed in the flare frame-
work [27, 28], although details vary from our approach.
The pairwise terms can be evaluated as 1D interpola-
tions between tabulated pair energies and the three-
body terms as 3D interpolations between tabulated
triplet energies. We use a grid of (rij , rik, cos θijk) points
for the three-body interpolation. With S1D and S3D

representing 1D and 3D cubic spline interpolations, the
total energy of the tabGAP becomes

EtabGAP
tot. =

N∑
i<j

S1D
ij (rij) +

N∑
i,j<k

S3D
ijk(rij , rik, cos θijk),

(3)
where the repulsive pair potential and the GAP pair po-
tential in Eq. 1 are merged into one 1D spline per ele-
ment pair. With five elements, there are 15 unique pairs
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and 75 triplets (with symmetry on the jk elements),
each requiring a tabulated grid of energies. With suf-
ficiently dense grids, the tabGAP is virtually identical
to the original GAP. The convergence of the interpo-
lation error with increasing numbers of grid points is
demonstrated in the Supplemental material online.

We have implemented this cubic-spline-interpolated
potential as a pair style for lammps [29] (based
on the implementation from the open-source flare
code [27, 28]). The speed-up compared to the orig-
inal GAP evaluated as in Eq. 1 is around two or-
ders of magnitude with the current implementation,
making it comparable in speed to traditional angular-
dependent potentials like Tersoff and MEAM poten-
tials [30–32]. The potential file is available from [33]
and the tabulation and lammps implementation from
https://gitlab.com/jezper/tabgap.

C. Simulation methods

All DFT calculations are carried out with vasp [22–
25] with PAW potentials [34, 35] ( pv for Ta and sv for
all other elements), the PBE GGA exchange-correlation
functional [36], a 500 eV cutoff energy, 0.15 Å−1 max-
imum k-point spacing on Γ-centred Monkhorst-Pack
grids [37], and 0.1 eV Methfessel-Paxton smearing [38].
All molecular statics and dynamics simulations are done
with lammps [29] with a custom implementation of the
tabulated machine-learned potential (tabGAP) as dis-
cussed above.

The average lattice constant and mixing energy of
bulk equiatomic HEA properties are obtained by relax-
ing 50 different randomly ordered 2000-atom bcc sys-
tems. The simulation cells were cubic during the en-
ergy and pressure minimization. Allowing for noncu-
bic relaxation produced cubic systems within the sta-
tistical uncertainty of the cubic bcc lattice constant.
The elastic constants are computed for the same relaxed
50 HEA systems. The bulk modulus is obtained from
volume-energy fits to the Birch-Murnaghan equation of
state [39]. The remaining elastic constants are solved
from parabolic fits to strain-energy curves of the tetrag-
onal and trigonal deformation modes (see e.g. Ref. [40]),
using ±2% strain intervals and optimising the atom po-
sitions at every strain.

Nudged elastic band calculations for vacancy migra-
tion barriers are performed in boxes of 128 atoms using
lammps. The migration energy is obtained from the
saddle point of the converged barrier. For relaxing sin-
gle self-interstitials we use boxes of 251 atoms. For the
formation energies of single vacancies we use 54-atom
boxes in both vasp and lammps. We optimise both the
positions and relax the box size to zero pressure for the
vacancy and self-interstitial calculations. The formation
energy for an A vacancy (where A is Mo, Nb, Ta, V, or
W) is calculated as

EAvac
f = Evac − Ebulk + µA, (4)

where Evac is the total energy of the relaxed vacancy
system and Ebulk is the total energy of the relaxed HEA

bulk with the vacancy filled by an atom of element A.
The chemical potential µA is approximated simply as
the energy per atom of A in its ground state (bcc bulk),
which is close to the real chemical potential estimated
using other methods [41]. The vacancy relaxation vol-
ume is calculated as

ΩAvac
rel. =

Vvac − Vbulk

ΩA
, (5)

where Vvac and Vbulk are the total volumes of the relaxed
vacancy and bulk HEA systems and ΩA is the volume
per atom of pure bcc A.

Relaxing self-interstitial atoms in the HEA often re-
sults in stable interstitial configurations far from the
initial configuration, as many local atomic environments
provide no local minima. This, combined with the fact
that many interstitial configurations are mixed dumb-
bells, makes the choice or construction of the corre-
sponding reference bulk system somewhat ambiguous.
Hence, we define and compute the formation energy
of an A–B interstitial dumbbell configuration as the
formation energy of the entire interstitial system with
N = 251 atoms (ESIA

f ), and then compare it to an av-
erage defect-free HEA bulk reference to get only the
formation energy associated with the interstitial as

EA-B
f = ESIA

f −NEHEA
mix . (6)

The formation energy and mixing energy (per atom) of
a HEA system of N atoms with total energy E is Ef =

E −
∑N

i Ei and Emix = Ef/N , where Ei is the energy
per atom of the pure ground state of atom i. EHEA

mix

is computed as the average mixing energy of randomly
ordered HEA systems and is −41.85 meV/atom in the
tabGAP (as listed in Tab. II and discussed later).

Hybrid Monte Carlo–Molecular dynamics (MC+MD)
simulations are carried out as implemented in lammps.
MD is done in the NPT ensemble at different constant
temperatures and zero pressure. For the single-crystal
simulations we use 100 trial MC atom swaps every 10
MD steps using boxes of 6750 atoms. The simulations
are continued until the potential energy and short-range
order parameters have sufficiently converged, although
for at least 1 million MC steps and about 8 million MC
steps for the lower temperatures. The short-range order
parameter for element pairs AB with interatomic bonds
in the interval ∆rij is computed using the definition

SAB
∆rij = 1−

pAB
∆rij

cB
, (7)

where pAB
∆rij

is the probability of finding a B atom

around A in the neighbour shell ∆rij and cB is the con-
centration of B in the alloy. For first-nearest-neighbour
pairs, we used the interval ∆rij = [0, 3] Å and for the

second-nearest neighbours ∆rij = [3, 3.9] Å.
For the void and dislocation loop MC+MD simula-

tions, we allow for more MD relaxation with 10 MC
trial swaps every 10 MD steps in boxes of around 20 000
atoms. Here, we run the simulations until the concen-
trations around the defects have stabilised (disregarding
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TABLE I: Root-mean-square energy (E) and force
component (F ) errors of the tabGAP compared to
DFT for independent test sets of different classes of

structures. Ns is the number of structures in the test
sets (although the number of atoms in different

structure classes vary).

Structure type Ns E (meV/atom) F (eV/Å)

Bulk pure elements 220 3.17 0.15
Bulk random alloys 100 2.99 0.11
Bulk ordered alloys 165 3.31 0.04
Bulk HEA 40 3.03 0.09
Vacancies in HEA 10 3.59 0.09
Interstitials in HEA 10 3.39 0.22
Liquid pure elements 225 28.61 0.71
Liquid HEA 11 40.03 0.78

the surrounding bulk), which only required a few hun-
dred thousand MC steps.

The defect annealing simulations are done using boxes
of 250 000 atoms with 10 000 randomly created Frenkel
pairs, corresponding to a supersaturated (4%) defect
concentration. The atomic positions are first optimised,
which already annihilates many Frenkel pairs and causes
some initial clustering of interstitials and vacancies.
This is followed by a 1 ns NPT annealing run at 2000 K
and zero pressure. The final frames are then again opti-
mised to allow a more reliable analysis of the final defect
structure. The dislocations are identified using the dis-
location extraction algorithm (DXA) [42] in ovito [43].
Interstitials and vacancies are found using the Wigner-
Seitz method and grouped into clusters with the cutoff
radius between the second and third nearest neighbour
for vacancies and between the third and fourth for in-
terstitials.

III. RESULTS

A. Validating the machine-learned potential

Before using the tabGAP to study segregation and the
defect structure of the equiatomic MoNbTaVW high-
entropy alloy, we here briefly demonstrate the accuracy
of the potential. Table I lists root-mean-square errors
(RMSE) of the tabGAP compared to DFT for a range of
structures used as test sets. All atoms in the bulk crys-
tals have been randomly displaced from the perfect lat-
tice positions to produce significant interatomic forces.
The accuracy of the tabGAP is around 3 meV/atom and
0.05–0.2 eV/Å for any given composition of Mo–Nb–Ta–
V–W as well as for HEA lattices containing vacancies or
self-interstitial atoms. Some further test results are pro-
vided in the Supplemental material, where we show that
the tabGAP also reproduces the W–Mo alloy training
dataset from Ref. [44] with similar accuracy as in Tab. I,
verifying that the potential is accurate also for the bi-
nary alloys.

To further verify that the tabGAP can describe the
phase stability and elastic response of arbitrary alloy

TABLE II: Bulk properties of MoNbTaVW at 0 K
obtained with the tabGAP. The values are the

averages and standard deviations of 50 randomly
ordered and relaxed 2000-atom systems.

MoNbTaVW

a (Å) 3.195 ± 0.001 Å
Emix (meV/atom) −41.85 ± 0.71
B (GPa) 210.4 ± 0.3
C11 (GPa) 382.2 ± 0.6
C12 (GPa) 124.5 ± 0.3
C44 (GPa) 47.5 ± 0.3

compositions, we compare the 0 K equation of state for
a variety of alloys between DFT and the tabGAP in
Fig. 1. From the energy-volume data, we obtain the
bulk moduli and equilibrium mixing energies from fits
to the Birch-Murnaghan equation of state [39]. Fig 1(a)
shows the energy-volume data for randomly ordered al-
loys at all equiatomic alloy compositions (one system
per composition) and Fig. 1(c) shows data for 20 differ-
ent quinary alloys randomly ordered and at randomly
sampled compositions. The corresponding bulk moduli
and mixing energies are shown in Figs. 1(b) and (d),
compared between DFT and the tabGAP. The tabGAP
reproduces the DFT data within only a few meV/atom
for mixing energies and a few GPa for the bulk moduli.
Also noteworthy is that the agreement between DFT
and the tabGAP is good for the entire wide range of
volumes for all alloys in Figs. 1(a) and (c), where each
curve spans an energy difference around 1–2 eV/atom.

In table II, we list average properties of MoNbTaVW
predicted by the tabGAP and computed from 50 re-
laxed 2000-atom systems. The lattice constant in the
tabGAP (3.195 Å) is close to the experimental value
3.1832 Å [45].

Reproducing liquid properties for arbitrary composi-
tions, densities, and temperatures with very high ac-
curacy cannot be expected with a simple three-body-
dependent potential. As seen in Tab. I, the RMSEs
for liquids are up to 10 times higher than for any crys-
talline structures. Nevertheless, we confirmed that the
tabGAP still provides a reasonable descripton of the
liquid phase and melting. The melting point of the
HEA predicted by the tabGAP is 2760± 20 K as deter-
mined by NPT molecular dynamics (MD) simulations
of a solid-liquid interface. A rough estimate of the ex-
perimental melting point can be taken as the average of
the pure-element melting temperatures, yielding 2961
K [46]. However, previously we found that even highly
accurate many-body GAPs tend to underestimate the
melting point slightly [47]. The corresponding average
of the pure-element many-body GAPs from Ref. [47] is
2796 K [47], which is very close to the HEA melting
point predicted by the tabGAP.
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FIG. 1: Comparison between DFT and the tabGAP for bulk moduli and mixing energies for a test set of
Mo–Nb–Ta–V–W alloys. Energy per atom as a function of volume for random alloys for (a) all equiatomic

compositions and (c) 20 different randomly sampled Mo-Nb-Ta-V-W alloy compositions. (b), (d): Bulk moduli
and mixing energies at equilibrium volumes obtained from the energy–volume data and compared between DFT

and the tabGAP.

B. Order and disorder in bulk MoNbTaVW

We first apply the tabGAP in a study of ordering
and segregation in the single-crystal equiatomic HEA
using hybrid MC+MD simulations. Previous studies us-
ing cluster expansion models and DFT calculations have
established that there is a strong preference for local or-
dering of Mo–Ta binary crystals due to their relatively
low mixing energy [11, 48, 49]. Additionally, it has been
previously shown that including lattice relaxation is cru-
cial in order to reproduce the correct phase stabilities at
finite temperatures [13]. Relaxation effects and realis-
tic thermal vibrations are here naturally included in the
NPT MC+MD simulations with the tabGAP. Since the
tabGAP is trained to both random and ordered alloys,

including all the binary alloys and MC+MD-optimised
ordered systems obtained in an active-learning fashion
(see the Supplemental material), we are confident that
it can accurately model order and disorder in the HEA.

Fig. 2 shows the results from the MC+MD simula-
tions. The 1NN and 2NN short-range order parame-
ters as functions of temperature in Fig. 2(a) show, con-
sistent with previous studies, that Mo and Ta are lo-
cally ordered at low temperatures. A strongly nega-
tive 1NN Mo–Ta short-range order (SRO) value and a
positive 2NN SRO value indicate the presence of MoTa
in the CsCl (B2) order, which is confirmed by visually
analysing the lattice. Fig. 2(b) shows snapshots of the
systems at two temperatures. In addition to Mo–Ta or-
dering, Mo–Nb and W–V 1NN pairs are also favoured.
W–V pairs stand out by also having negative 2NN SRO
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FIG. 2: Short-range order in MoNbTaVW. (a): Short-range order parameters as a function of temperature from
the MC+MD simulations for both first-nearest-neighbour (1NN) and 2NN pairs. (b): Snapshots of the final
lattices at two temperatures, showing clear local ordering at 300 K. (c): Mixing energy curves for randomly

ordered binary alloys. The large solid points are the ordered CsCl (B2) phase.

value, indicating a more complex structure than the
CsCl order, as was also observed in Ref. [11]. All SRO
values start approaching zero after 300 K, initiating the
transition from the ordered phases to a random solid so-
lution. Still, a relatively strong local ordering of mainly
Mo–Ta is retained up to temperatures beyond 1000 K.

The preferential ordering and segregation can largely
be understood by the mixing energies of the binary
alloys. Fig. 2(c) shows mixing curves at 0 K for all
binaries as given by the tabGAP (which are identical
within 2.9 meV/atom to DFT data, see figure S2 in the
Supplemental material). The connected data points in
Fig. 2(c) are mixing energies for randomly ordered alloys
(using 1024-atom boxes) and the large solid points are
the ordered CsCl phase. The mixing curves show that
Mo–Ta alloys have the lowest mixing energies and that
the ordered MoTa phase is by far the most preferred bi-
nary alloy. The mixing energies also suggest that Nb–V
alloys are the least favoured, with clearly positive mixing
energies for both random and the ordered CsCl phase.
This is reflected in the MC+MD simulations by the fact
that Nb and V are strongly segregated from each other,
showing positive SRO values for both 1NN and 2NN
pairs.

C. Vacancies and self-interstitial atoms in
MoNbTaVW

The presence of defects introduce local lattice relax-
ation and long-range strain fields that may influence the
preferential ordering and segregation of the different-
sized atoms in the HEA. We use the tabGAP to in-
vestigate the energetics of single vacancies and self-
interstitials in the HEA. The chemical complexity pro-
vides exceedingly many possible configurations for even
these simple defects, which calls for a statistical treat-
ment. Here, we only consider randomly ordered HEAs
with randomly added single vacancies and interstitials,
followed by relaxation. Fig. 3(a)–(b) shows distributions
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FIG. 3: Formation energies and relaxation volumes of
single vacancies MoNbTaVW. (a) Distribution of

formation energies and (b) distribution of relaxation
volumes compared between DFT and the tabGAP.
Dashed lines are the averages. (c) The same data
separated by element (of the filled vacancy in the

reference bulk). Solid points are averages.

of formation energies and relaxation volumes of single
vacancies in the HEA. The vacancies are created in 10
different HEA systems. For each vacancy system, ref-
erence bulk systems are created by filling the vacancy
with each element separately, so that we in total obtain
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data for 50 different vacancies. Fig. 3 also shows results
from DFT calculations to further validate the predictive
accuracy of the tabGAP. The tabGAP slightly underes-
timates the average formation energy and the relaxation
volume compared to DFT, but overall provides similar
distributions. The average vacancy formation energy is
3.3 eV according to DFT and 3.1 eV according to the
tabGAP. The average relaxation volume is −0.35 at.
vol. in DFT and −0.40 at. vol. in the tabGAP.

The single-vacancy data are separated by element in
Fig. 3(c), revealing additional insight. First, there is
no correlation in the formation energy of vacancies be-
tween the elements, with energies in the range 2.5–4 eV
for all elements. There is, however, a clear separation
between the elements for relaxation volumes. Filling a
vacancy with a V atom, the smallest atom, cause the
least relaxation around the vacancy with most relax-
ation volumes around −0.2 to −0.3 at. vol. Vice versa,
being the largest atoms, Nb and Ta vacancies produce
significantly stronger relaxation with relaxation volumes
around −0.4 to −0.5 at. vol.

Fig. 4 shows distributions of migration energies for
single vacancies in the HEA. In total, we calculated
over 1100 migration barriers in different randomly or-
dered HEAs with the tabGAP to obtain reliable statis-
tics. Fig. 4 reveals that the migration energies for each
element are roughly normally distributed and span a
wide energy range of around 1 eV. There is again a clear
separation between the elements of the migrating atom.
The group 6 elements W and Mo have the highest mi-
gration energies. The average migration energy for W is
1.56 eV and for Mo 1.48 eV. The group 5 elements show
significantly lower migration energies, with the averages
1.06 eV for Nb, 1.12 eV for Ta, and 1.11 eV for V. The
trend is consistent with the vacancy migration energies
in the pure elements, where W and Mo have by far the
highest migration energies (around 1.7 and 1.3 eV [50])
while the group 5 elements all have migration energies
around 0.6–0.7 eV [50]. The result of alloying on the
vacancy migration is thus a wide distribution of migra-
tion energies where the averages are reduced for W and
Mo and increased for Nb, Ta, and V.

To explore the preferential chemical and geometrical
configurations of self-interstitial atoms, we relaxed 1000
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FIG. 5: Distribution of stable self-interstitial dumbbell
atoms in MoNbTaVW obtained with the tabGAP. (a)
Elements making up the stable interstitial dumbbells,

(b) violin plot showing distributions and average
formation energies of all observed dumbbell pairs, and

(c) the stable dumbbell directions.

HEA systems each containing one randomly inserted in-
terstitial atom. Relaxation produces mainly dumbbell
configurations of atom pairs. Distributions of the re-
laxed dumbbell configurations and formation energies
are shown in Fig. 5. Fig. 5(a)-(b) reveal that there is a
clear preference for V-containing interstitial dumbbells,
and in particular pure V–V dumbbells which make up
the majority of stable interstitials. V–V dumbbells also
have on average the lowest formation energy, as shown
in Fig. 5(b). Note that there are not enough non-V
dumbbells to provide reliable distributions and average
formation energies, but the trend of V-containing dumb-
bells having the lowest formation energies is clear. This
can again be understood by the fact that V is the small-
est atom and therefore prefers shorter interatomic bonds
than the other elements.

Fig. 5(c) shows the relaxed dumbbell directions.
Based on the pure elements, one would expect mainly
〈1 1 1〉 directions, which are the lowest-energy configu-
rations in Nb, V, and Ta, and directions between 〈1 1 1〉



8

and 〈2 2 1〉, which are preferred in pure Mo and W
(i.e. the 〈1 1 ξ〉 interstitial revealed in Ref. [51]). Al-
though these directions make up a large fraction of
the relaxed interstitial dumbbells, Fig. 5(b) shows that
〈1 1 0〉 dumbbells are observed in almost equal numbers
to 〈2 2 1〉 dumbbells. By looking at the relaxed sys-
tems, we find that the preferred direction is strongly
influenced by the chemical environment. Stable config-
urations are found by a competition between low-energy
dumbbell directions and the possibility to form V–V or
other V-containing pairs. We found no statistically sig-
nificant correlation between element pair and dumbbell
direction, and hence only show the total distribution of
directions in Fig. 5(c).

We also find that the preferential formation of V-
containing dumbbell interstitials guides the mobility
and migration mechanisms of single interstitials. In
contrast to the pure metals, where single interstitials
migrate one-dimensionally along the 〈1 1 1〉 direction
in all elements [51], interstitial migration in the HEA
is three-dimensional. From constant-temperature MD
simulations, we observe that the interstitials migrate
mainly through connections of V atoms, so that the V-
containing dumbbells is most likely to migrate to other
neighbouring V atoms. If no V atoms are present in the
local environment, the V interstitial remains stationary
for significantly longer times.

Many of the above-discussed observations are consis-
tent with the results by Zhao in a recent DFT study
of point defects in a similar bcc alloy (VTaCrW) [41].
Namely, (1) there is no clear difference in the vacancy
formation energies between the different elements, (2)
the relaxation volume of vacancies directly correlates
with the size of the removed atom, (3) vacancy migra-
tion energies vary significantly between the elements,
(4) self-interstitial atoms are most stable when contain-
ing smaller atoms, like V–V dumbbells, and (5) self-
interstitial dumbbells adopt different directions depend-
ing on the chemical environment, with 〈1 1 0〉 as one of
the most probable low-index directions, in clear contrast
to the pure elements.

D. Segregation around voids and dislocation loops

Going beyond single vacancies and interstitials, we
now investigate how clusters of defects influence their
local chemical ordering. The most stable vacancy- and
interstitial-type defect clusters formed during irradia-
tion in bcc materials are small voids and dislocation
loops. We carry out MC+MD simulations for HEAs
containing (separately) voids of two sizes (15 vacancies
and 65 vacancies) and interstitial dislocation loops with
the Burgers vectors 1/2〈1 1 1〉 and 〈1 0 0〉 and diameter
2 nm.

The simulations show that elemental segregation
around the defect clusters is clearly energetically
favoured. Fig. 6 shows the concentration profiles as
functions of the distance from the void centre for both
void sizes. Snapshots of the inner surface atoms of the
voids are shown as insets. The equilibrated inner void
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FIG. 6: Segregation around voids. Concentration of
each element as a function of the distance from the

void centre for two different void sizes (containing 15
and 65 vacancies, corresponding to diameters of 0.8
and 1.3 nm). The snapshots show the inner surface

atoms of the voids.
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FIG. 7: Segregation to interstitial dislocation loops.
Concentration of each element as a function of the
distance from the loop centre for a 1/2〈1 1 1〉 loop
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and 43 interstitial atoms corresponding to a diameter

of 2 nm.
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surface is almost completely covered by Nb. This is
understandable as Nb is (along with Ta) the largest
atom and also has the lowest surface energy (lower than
Ta) [47]. Fig. 6 also shows that there is an excess of V
at the interface of the Nb-covered inner surface and the
bulk. The snapshots reveal that this is because V atoms
tend to decorate the edges of the void surface. The pres-
ence of the large Nb atoms and the polyhedral shape of
the voids make these sub-surface regions compressed,
which explains why they are preferentially occupied by
V, the smallest atom.

Interstitial dislocation loops produce strong strain
fields with a locally compressed lattice, which our pre-
vious observations suggest should be favoured by V. In-
deed, Fig. 7 shows that essentially 100% of the atoms
within the strain field of the dislocation loops are V af-
ter the MC+MD simulations reach a steady state. This
is also in line with the previous observation that the sin-
gle V–V interstitial dumbbell is the most favoured in-
terstitial configuration. The results for both voids and
interstitial loops are almost identical in MC+MD sim-
ulations at both 300 K and 1000 K, showing that the
preferential segregation, driven mainly by the atom size,
is strong and occurs also at high temperatures.

E. High-concentration defect structure

In the previous sections, we have described the ener-
getics of point defects as well as segregation and order-
ing in the bulk and around possible radiation-induced
defect clusters in the HEA. It is not straightforward to
combine all these results into an understanding of how
the HEA behaves during irradiation and the subsequent
defect annealing and recovery. To this end, we carry out
annealing MD simulations of a supersaturated concen-
tration of defects and observe how the defect structure
evolves over time. We prepare three 250,000-atom HEA
samples with randomly inserted interstitial atoms and
vacancies corresponding to a defect concentration of 4%.
After an initial minimisation of positions, the samples
are annealed at zero pressure and 2000 K for 1 ns. For
comparison, we also anneal a pure W sample in the same
way. The results are summarised in Fig. 8. Animations
of the defect evolution are provided in the Supplemental
material online.

Fig. 8 shows striking differences between W and the
HEA during annealing. In W, interstitial atoms are ex-
tremely mobile and join to form 1/2〈1 1 1〉 dislocation
loops already during the first few picoseconds. This
is clear from Fig. 8(a), which shows that the fraction
of interstitials in clusters reaches 100% very rapidly.
Over time, the initially small dislocation loops grow by
migrating and coalescing with other nearby dislocation
loops, eventually resulting in only a few large loops as
seen in Fig. 8(b). The coalescence of loops is in Fig. 8(a)
reflected by the rapid decrease in the dislocation den-
sity. Compared to interstitials, vacancies in W migrate
slowly (migration energy 1.7 eV [50]). Additionally, the
binding energies of small vacancy clusters in W is close
to zero or even repulsive [20], which further limits the

formation of vacancy clusters. Only around 20% of the
vacancies in W are in clusters of two or more, as shown
in Fig. 8(a).

The defect evolution in the HEA is in many ways
different. Fig. 8(a) shows that the recombination of de-
fects is more efficient, especially during the early stage
of the annealing simulations. Fig. 8(b) shows that the
final defect structure in the HEA only contains small
dislocation loops. These dislocation loops form already
in the early part of the simulations but, unlike in W,
then remain stationary and similar in size throughout
the rest of the simulation. This is evidenced by the
constant dislocation density over time in Fig. 8(a).

Contrary to W, vacancies in the HEA are more mo-
bile (Fig. 4) and about 40% of them are in clusters of
two or more. As observed in Sec. III C, single inter-
stitials are most stable as V–V dumbbells and migrate
three-dimensionally, preferentially through connections
of V–V bonds. This is fundamentally different from
W, where interstitials mainly migrate one-dimensionally
along close-packed 〈1 1 1〉 directions with a very low mi-
gration energy. The consequence of this difference is the
much more efficient defect recombination in the HEA
seen in Fig. 8(a), as both interstitials and vacancies are
mobile and can explore their surrounding through 3D
migration. Furthermore, because the dislocation loops
are unable to move and interstitials are more likely to re-
combine with nearby vacancies, the overall defect struc-
ture does not significantly change over time. In par-
ticular, the dislocation loops remain very small. All
loops are around 1–1.5 nm in diameter with the Burg-
ers vector 1/2〈1 1 1〉, with most of the loops around 1 nm
and consisting of 20–30 interstitials. Smaller interstitial
clusters are also mostly parallel 〈1 1 1〉 interstitials, but
cannot be classified as dislocation loops and are thus not
identified by the dislocation extraction algorithm. Ad-
ditionally and in line with our observations in Secs. III C
and III D, all interstitial clusters are enriched by V.

IV. DISCUSSION

We have studied segregation and the stability and
evolution of radiation-induced defects in MoNbTaVW
using a new machine-learned interatomic potential. The
potential relies on low-dimensional two- and three-body
descriptors, which allows for good accuracy with a mod-
erately sized training data set. It also allows for creating
tabulated potentials, which can be efficiently evaluated
using cubic spline interpolations without carrying out
the underlying machine-learning regression. The result-
ing machine-learned spline potential (the tabGAP) thus
retains the flexibility of the machine learning framework,
but runs at a speed comparable to conventional analyti-
cal three-body potentials. Given the accuracy achieved,
our work demonstrates that developing low-dimensional
tabulated machine-learned potentials is a promising al-
ternative or complement to more expensive many-body
machine-learning potentials [16, 52–54], especially for
multicomponent alloys where data efficiency becomes
increasingly important.
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FIG. 8: Defect evolution during annealing. (a) Defect statistics (defect concentration, dislocation density, and
fractions of vacancies and interstitials in clusters) during annealing at 2000 K. (b) Snapshots of the final defect
structure in W and the MoNbTaVW HEA, showing 1/2〈1 1 1〉 dislocation loops (green lines), interstitial atoms,

and vacancies.

Through MD simulations with the machine-learned
potential, we have shown that there is a clear preferen-
tial chemical ordering in the bulk MoNbTaVW HEA,
with mainly Mo–Ta, V–W, and Mo–Nb binaries, in
agreement with previous studies [11, 13, 14]. Our simu-
lations also revealed that the presence of defects intro-
duces strong traps for elemental segregation. We ob-
serve strong segregation of Nb to spacious regions like
voids. The inner surfaces of voids are preferentially al-
most completely covered by Nb, due to Nb being the
largest atom with the lowest surface energy. We also
found that V as the smallest atom prefers compressed
regions such as the strain field of interstitial dislocation
loops or even single interstitial dumbbell configurations.

It is worth noting that for the observed segregation
and ordering of elements to take place, there must oc-
cur a mass transport of the given elements through
favourable migration mechanisms. In our MC+MD sim-
ulations, the kinetics of the segregation and ordering
is not explicitly modelled. However, the observations
in Section III C bring additional insight. Our results
showed that the vacancy migration energies are lowest
for Nb, Ta, and V, which offers a possible pathway for
the observed segregation of Nb and V to defect clus-
ters. Additionally, we found that single interstitials oc-
cur mostly as V-containing dumbbells that migrate pref-
erentially by connecting with a neighbouring V atom,
resulting in mass transport of V through interstitial dif-
fusion. In the annealing simulations in Section III E we
observe this directly as the final dislocation loops and
small interstitial clusters are all enriched by V.

Perhaps the most striking result is the observation
in Sec. III E that dislocation loops never grow to sub-
stantial sizes when annealing MoNbTaVW containing a
large concentration of defects. This results in a radically
different response to irradiation than pure bcc metals
like W. Although it still remains unclear how energetic

radiation-induced collision cascades would affect the de-
fect evolution (i.e. whether larger clusters could be di-
rectly produced in cascades), our results offer an expla-
nation for recent experimental observations. El-Atwani
et al. [10] recently irradiated a W-based Cr–Ta–V–W
alloy up to a high dose of 8 dpa and yet did not resolve
any dislocation loops from the transmission electron mi-
croscopy (TEM) images, observing only black spots. In
comparison, TEM-visible dislocation loops form in pure
W already at extremely low dose (≤ 0.01 dpa) as a re-
sult of individual high-energy collision cascades [55, 56].
Using atom probe tomography and cluster-expansion
modeling, it was concluded that the black spots were
precipitates of Cr and V [10]. Our results suggest that
even without such a second-phase precipitation (which
we do not observe in MoNbTaVW) radiation-induced
dislocation loops still remain very small (around 1 nm).
Considering the strain that comes from different atom
sizes of the constituent elements, such very small dis-
locations are not fully ordered, and hence likely to be
invisible or seen only as black spots in TEM images.

V. SUMMARY

In summary, we have developed a computation-
ally fast machine-learned potential for Mo–Nb–Ta–V–
W alloys and used it to advance the understanding
of segregation and defect structure in the equiatomic
MoNbTaVW high-entropy alloy. We observed clear seg-
regation of Nb to vacancy-rich spacious regions and
V to interstitial-rich compressed regions. Further-
more, our results indicate that dislocation loops re-
main very small in irradiated MoNbTaVW and most
likely experimentally invisible or seen as structureless
’black spot’ damage. We explain this by the compa-
rable and three-dimensional migration of interstitials
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and vacancies combined with the immobility of the
small dislocation loops, which leads to more efficient
defect recombination at the expense of clustering. Our
work opens up possibilities for further studies on the
radiation-induced chemical ordering and defect struc-
ture and paves the way for a computational search of
promising high-entropy Mo–Nb–Ta–V–W compositions
beyond the equiatomic alloy.
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S1. TRAINING AND TESTING DATA

The Mo–Nb–Ta–V–W training data set is available from Ref. [1] and consists of the following structures:

• Single isolated atoms to get the correct cohesive energy.

• Dimers, mainly to guide the repulsive potential fit as described in Ref [2].

• Pure elements. The pure-element structures are small subsets of the training data used in Ref [3]. To sample
representative subsets of the different pure-element structure types (bulk, vacancy, liquids, etc.) we used
farthest-point sampling of the average SOAP vectors [4], as described in Ref. [5].

• Binary bcc alloys. For each element pair A–B we sampled 10 different concentrations from A0.05B0.95 to
A0.95B0.05 and 3 different lattice constants for every composition. Atoms are randomly ordered and shifted
slightly from their lattice positions.

• Ternary, quaternary, and quinary bcc alloys. For every alloy combination we sampled 3 linearly spaced
compositions and 3 different lattice constants. Atoms are randomly ordered and shifted slightly from their
lattice positions.

• Bulk equiatomic quinary HEAs. Atoms are randomly ordered and shifted slightly from their lattice positions.
The lattice constant is randomised in the range 3–3.4 Å.

• Various ordered binary, ternary, and quaternary alloys (always as a bcc lattice, but with different crystal
symmetries of the elemental sublattices). Some equiatomic quinary alloys were subsequently added in an
active-learning fashion by running MC+MD simulations with the previously trained tabGAP version. The
energies and forces of the resulting partially ordered alloys were then computed with DFT and added to
the training set. After retraining the potential with the new and extended training data set, the process was
repeated until the accuracy for the next batch of MC+MD-predicted alloys was similar to the other test errors
(a few meV/atom). Only two iterations were needed to reach this convergence.

• Liquid equiatomic binary, ternary, quaternary, and quinary alloys at different densities, with most data for
the quinary equiatomic HEA. The structures were prepared by running MD with different generations of the
tabGAP, initially trained to only crystal structures, and then iteratively trained to more and more liquids
similar to the description above.

• Vacancies in HEAs. 1–5 vacancies were randomly inserted in HEA lattices and then optimised or relaxed in
constant-temperature MD simulations with the (at the time) current version of the tabGAP. Structures were
iteratively added in the active-learning approach described above.

• Interstitial atoms in HEAs. 1–5 interstitial atoms were randomly inserted in HEA lattices and then optimised
with the (at the time) current tabGAP version. Structures were iteratively added in the active-learning
approach described above.

• Disordered HEA surfaces. Some of the damaged/molten surface structures from the pure W training data [2]
turned into HEAs.

• Short-range interstitial atoms. Randomly placed unrelaxed interstitial atom in HEAs to fit repulsion inside
crystals, making sure that the closest interatomic distance is not too short for DFT to be unreliable (> 1.35
Å).
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Most of the bcc structures described above contain 54 atoms (3 × 3 × 3 unit cells). Liquid, vacancy, interstitial,
and the MC+MD-ordered structures contain 128 atoms. Smaller test sets were prepared for the most relevant
classes of structures.

S2. ADDITIONAL TEST-SET ERRORS

Fig. S1 shows the comparison between the tabGAP and sets of W–Mo structures from the DFT training data of
Ref. [6]. The data set contains W–Mo alloys across the entire composition range as liquids, bcc lattices with single
interstitial atoms or single vacancies, and bulk bcc lattices. The root-mean-square errors (RMSE) are similar to
the test errors shown in the main article, indicating that the potential is accurate also for binary alloys.

Fig. S2 shows the mixing energies of all binary alloys ordered in the CsCl (B2) symmetry. The lattices are
fully relaxed in both VASP and with the tabGAP. The agreement between the two is good, with an RMSE of 2.9
meV/atom for the mixing energy.

FIG. S1: Accuracy of the tabGAP for binary W–Mo alloys, using parts of the training data from Ref. [6] as test
sets.
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S3. THREE-BODY GRID SIZE CONVERGENCE

Fig. S3 shows the convergence of the error of the tabGAP compared to the original GAP as a function of the
size of the 3D grid for the three-body interpolation. Convergence curves are shown for structures from the training
data, containing liquid and crystalline structures and both pure elements and all alloy compositions. The (rij , rik,

cos θijk) grid is sampled from rij = rik = 0.1 Å to 5 Å (the cutoff distance) and cos θijk from −1 to 1. For the
final tabGAP we used an 80 × 80 × 80 grid, for which the interpolation errors are negligible (∼ 0.1 meV/atom,
∼ 0.01 eV/Å) and around ten times lower than the accuracy of the tabGAP/GAP when compared to DFT (≥ 1
meV/atom, ≥ 0.1 eV/Å). For the tabGAP pair potential parts we used 5000 points between 0.02 and 5 Å, for which
the interpolation error is vanishingly small.
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FIG. S3: Convergence of the three-body (rij , rik, cos θijk) grid tested for two data sets of crystalline and liquid
structures containing both alloys and pure elements. The tabGAP used in all simulations is tabulated using

N = 80.
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S4. MACHINE-LEARNED PAIR POTENTIALS

Fig. S4 shows the machine-learned pair potentials for every element combination, verifying that all potentials
are smooth and well-behaved. Note that we did not require the near-equilibrium parts of the potentials to follow
the realistic dimer dissociation curves, even though the training data does contains all dimers. Dimers were mainly
included to guide the repulsive parts and the near-equilibrium pair potentials were allowed to be adjusted to best
reproduce the bulk structures. This is evident in Fig. S4 by the fact that most pair potentials show two minima,
one close to the nearest-neighbour distance of the bulk and the other close to the dimer bond length. However,
we stress that this does not result in any spurious behaviour in the bulk where many bonds and the three-body
potentials make up the total energy.

1 2 3 4 5
Interatomic distance (Å)

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

En
er

gy
 (e

V)

0.0 0.5 1.0 1.5 2.0
Interatomic distance (Å)

100

101

102

103

104

105

En
er

gy
 (e

V)

VW
VNb
VTa
NbMo
MoTa
MoW
WW
NbTa

MoMo
NbW
TaTa
VMo
VV
TaW
NbNb

FIG. S4: The machine-learned pair potentials, showing the near-equilibrium parts (left) and the short-range
repulsive parts (right).



5

S5. MACHINE-LEARNED THREE-BODY POTENTIALS

Fig. S5 shows a few examples of the machine-learned three-body potentials. The energy landscape is illustrated
as the energy contribution to atom i in a triplet ijk, where rij is fixed to the nearest-neighbour distance in the

bcc crystal (∼ 2.77 Å). Fig. S5 verifies that the three-body potentials produce a smooth energy landscape. They
also show that the majority of the energy is contributed by the first- and second-nearest neighbour atoms as the
regions where rik >∼ 3.2 Å and θijk >∼ 100 degrees are relatively flat. Since the shapes of the three-body potentials
are fully machine-learned without restrictions, this can be taken as a justification for the fact that analytical many-
body potentials for bcc metals are often restricted to the second-nearest-neighbour interactions. Nevertheless, we
found that a 5 Å three-body cutoff (which includes the third-nearest neighbours) still provides a significant enough
improvement in the overall accuracy.

FIG. S5: Examples of the machine-learned three-body potentials, visualised with rij fixed to the nearest-neighbour

distance in bcc (∼ 2.77 Å). The vertical axis is the three-body energy of atom i in the triplet ijk.
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