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We introduce a machine-learning interatomic potential for tungsten using the Gaussian approximation
potential framework. We specifically focus on properties relevant for simulations of radiation-induced collision
cascades and the damage they produce, including a realistic repulsive potential for the short-range many-body
cascade dynamics and a good description of the liquid phase. Furthermore, the potential accurately reproduces
surface properties and the energetics of vacancy and self-interstitial clusters, which have been longstanding
deficiencies of existing potentials. The potential enables molecular dynamics simulations of radiation damage in
tungsten with unprecedented accuracy.
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I. INTRODUCTION

Tungsten is considered to be the only viable material
for the highest heat load parts of an energy-producing fu-
sion reactor. High-energy neutrons emitted from the fusion
plasma initiate collision cascades in the wall material, leading
to permanent damage. Understanding the radiation-induced
microstructural changes and evolution is therefore a topic
of active research [1–3]. Achieving a comprehensive un-
derstanding of the radiation damage requires a combined
effort of experimental measurements and theoretical mod-
eling. Atomistic simulations using classical molecular dy-
namics (MD) have been a fruitful tool for understanding
the atom-level damage production that is beyond reach of
experimental time and length scales, such as the formation and
morphology of radiation-induced defects [4,5]. The accuracy
of MD relies, however, completely on the accuracy of the
interatomic potential, which is typically a relatively simple an-
alytical function fitted to reproduce a selected set of material
properties.

Simulating collision cascades and the damage they produce
is a particularly challenging task for the interatomic potential.
The material experiences a number of atom-level changes dur-
ing the evolution of a cascade, including many-body atom col-
lisions, localized melting, rapid recrystallization with extreme
temperature and pressure gradients, and defect clustering. De-
scribing all these aspects pushes the interatomic potential to
(and often beyond) its limits, and different potentials can give
widely different results [6–9]. For radiation damage in tung-
sten and other metals, the embedded atom method potentials
[10], and to a lesser extent Tersoff-like bond-order potentials
[11], have been particularly successful [12–18]. Nevertheless,
several key properties of tungsten have remained challenging
to capture. For example, many potentials fail to reproduce the
relative stability of dislocation loops [5,16,19], which leads to
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large differences especially in the damage produced by over-
lapping cascades [5,20]. Most existing potentials suitable for
radiation damage in tungsten also fail to reproduce the binding
of small vacancy clusters, such as the peculiar repulsion of
the divacancy [21,22]. Furthermore, the majority of tungsten
potentials consistently underestimate the surface energy by up
to 30–40%, and struggle to reproduce the order of stability
of different surfaces [15,23]. All of these deficiencies can
be attributed to the limited flexibility of the fixed functional
form of the potentials, whereby some properties often can be
impossible to reproduce without sacrificing more important
properties.

In the past decade, various forms of machine-learning
interatomic potentials have become increasingly popular
[24–30]. The main advantage of using machine learning to
construct potentials is that a fixed analytical form is not
assumed, which results in flexible potentials that can de-
scribe virtually any material and their properties. Additionally,
machine-learning potentials can be systematically improved
towards the accuracy of the training data by increasing the de-
grees of freedom of the model. The main practical limitation
of machine-learning potentials is the computational speed,
which is typically several orders of magnitude lower than
analytical potentials [31]. However, more efficient implemen-
tations and optimizations will likely reduce the computational
cost of machine-learning potentials significantly, as recently
demonstrated in Ref. [32]. In this work, we employ the Gaus-
sian approximation potential (GAP) framework [25,33,34] to
develop a potential for tungsten, with particular focus on
radiation damage. The rest of the article is structured as
follows. In Sec. II we introduce the mathematical structure
of the potential. Computational details are summarized in
Sec. III. In Sec. IV we describe in detail the training strategy
along with the contents of the training database. We subject
the trained potential to extensive benchmarking for validation
in Sec. V, followed by an outlook and concluding remarks in
Sec. VI.
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II. POTENTIAL DETAILS

The total energy of an atom i in the GAP formalism is
evaluated using Gaussian process regression [25,35] and can
be written as a sum over basis (kernel) functions

Ei = δ2
M∑
s

αsK (qi, qs), (1)

where s loops over a set of M representative atoms from the
training database. δ sets the scale and range of energies to be
trained. K is the kernel function, which acts as a measure of
similarity between the atomic environment of the known atom
s and the desired atom i. The local atomic environments are
quantified by the descriptor q. The keys to achieving good
accuracy lie in the choices of kernel functions and descriptors,
as well as in a clever construction of the training database.
The energies (along with forces and possibly virial stresses)
from the training database are learned by optimizing the
coefficients αs given by the solution of a regularized least-
squares problem [36]. Regularization is applied by supplying
weights in proportion to the expected errors of the training
data, σν (which should include both the uncertainties of the
training data and errors due to assuming a finite range of the
GAP). For a more detailed description of the mathematical
framework of GAP, we refer to Refs. [34,36].

When training the GAP, we use a combination of two
descriptors with associated kernels. A simple two-body de-
scriptor (i.e., the interatomic distance) with the Gaussian-like
squared exponential kernel is used to capture the majority
of the interatomic bond energies. As is typical for GAP
models, the many-body interactions are described by the
smooth overlap of atomic positions (SOAP) kernel [33]. We
tried including a three-body descriptor but found that the
accuracy was only marginally increased and therefore rely
on SOAP for capturing all many-body effects. The mathe-
matical background of SOAP has been extensively described
in Ref. [33] and will not be repeated in detail here. Shortly,
SOAP compares two atomic environments by integrating the
overlap of their smeared atomic densities, as obtained by
placing Gaussian functions centered on each atom position
within the cutoff radius. In addition to the GAP, we use an
external pair potential to take care of the extreme repulsion at
short interatomic distances, as discussed in detail below. The
total energy of a system of N atoms then reads

Etot =
N∑

i< j

Vpair (ri j ) +
N∑
i

EGAP

=
N∑

i< j

Vpair (ri j ) + δ2
2b

N∑
i

M2b∑
s

αs,2bK2b(qi,2b, qs,2b)

+ δ2
mb

N∑
i

Mmb∑
s

αs,mbKmb(qi,mb, qs,mb), (2)

where the 2b and mb subscripts are used to separate the two-
body and many-body (SOAP) terms. The hyperparameters
associated with the two descriptor terms used when training
the GAP are listed in Table I, along with short descriptions
for each parameter. The interaction range of both descriptor
terms is limited by a 5 Å cutoff radius. We tested several cutoff

TABLE I. Input parameters used when training the GAP. Rcut,
cutoff radius; R�cut, width of cutoff region; δ, energy scale; Nsparse,
number of sparse points (representative environments picked from
the training structures); nmax and lmax, limits of spherical harmonics
used in SOAP; σatom, width of atomic Gaussians in SOAP; ζ ,
exponent of SOAP kernel. For more details, see Ref. [34].

SOAP Two-body

Rcut 5 Å 5 Å
R�cut 1 Å 1 Å
δ 2 eV 10 eV
Nsparse 4000 20
Sparse method CUR Uniform
nmax 8 –
lmax 8 –
σatom 0.5 Å –
ζ 4 –

values in the 3–7 Å range, and found 5 Å to be a reasonable
choice. The values for Nsparse, nmax, lmax and δ were chosen
following systematic convergence tests. Nevertheless, we note
that the accuracy of the GAP is not particularly sensitive to the
exact hyperparameter values listed in Table I.

The internuclear repulsion at extremely short distances is
accounted for by the external pair potential in the form of a
screened Coulomb potential

Vpair (ri j ) = 1

4πε0

ZiZ je2

ri j
φ(ri j/a) fcut (ri j ), (3)

where

a = 0.46848

Z0.23
i + Z0.23

j

. (4)

The function is identical to the universal Ziegler-Biersack-
Littmarck (ZBL) potential [37], but the screening function
φ(x) is refitted specifically for W-W repulsion using the
all-electron DFT-DMol data from Ref. [38]. The DFT-DMol
calculations were optimized for the high-energy repulsive
part and recently found to show excellent agreement with
experiments [39]. We refit the screening function for two
reasons. First, we found that the ZBL potential for W-W
is noticeably different than both the all-electron DFT-DMol
data and our VASP data. Second, it is useful to have some
freedom for tuning the pair potential, to ensure a smooth
connection with the near-equilibrium energies and forces
to be learned by the GAP. We accomplish this by making
sure that the screened Coulomb potential smoothly joins and
closely matches the repulsive energy and forces corresponding
to the closest interatomic distances present in the training
structures (see Fig. 1). Only the differences in energies and
forces between the external pair potential and the training
data need to be reproduced by the GAP. Hence, the GAP is
taught to predict energies and forces close to zero for short
interatomic distances, so that the screened Coulomb potential
fully dictates the short-range dynamics, as desired. The fitted
screening function is

φ(x) = 0.32825 exp(−2.54931x) + 0.09219 exp(−0.29182x)

+ 0.58110 exp(−0.59231x). (5)
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FIG. 1. Top: short-range repulsion of a W–W dimer given by our
DFT, the all-electron DFT-DMol data [38], the screened Coulomb
potential Vpair , and the trained GAP. The inset highlights the diver-
gence of DFT compared to DFT-DMol at around 1 Å, which is used
when sampling structures for the training database. Bottom: The
near-equilibrium part of the dimer curve.

The screened Coulomb potential is forced to zero by the cutoff
function

fcut (r) =
⎧⎨
⎩

1, r � r1

1 − χ3(6χ2 − 15χ + 10), r1 < r < r2

0, r � r2,

(6)

where χ = (r − r1)/(r2 − r1). The cutoff range is chosen as
r1 = 1 Å and r2 = 2.2 Å, leaving the near-equilibrium bond
energies to be fully machine-learned. The cutoff function is
the same as in Ref. [40] and is continuous at the end-points
up to the second derivative. In practice, Vpair is tabulated and
provided as input when training the GAP.

III. COMPUTATIONAL DETAILS

The DFT training structures were calculated using VASP

[41–44] and the PBE GGA exchange-correlation functional
[45]. The 14 5s25p65d46s2 electrons were treated as va-
lence electrons with the core electrons accounted for by the
projector-augmented wave (PAW) method [46,47] (the W_sv
PAW potential in VASP 5.4.4). The plane-wave cutoff energy

was 500 eV and the Brillouin zone was integrated using
Monkhorst-Pack grids [48] with a consistent spacing be-

tween k-points for all cell sizes (using KSPACING=0.15 Å
−1

in VASP, resulting in, e.g., a 5 × 5 × 5 grid for a
54-atom conventional bcc cell). A smearing of 0.1 eV by the
first-order Methfessel-Paxton method [49] was applied to help
the convergence. The same settings were used for both the
training and validation data.

The GAP was trained using QUIP [50]. All molecular
dynamics simulations were performed using LAMMPS [51]
compiled with QUIP for GAP support [50]. Phonon dispersion,
nudged elastic band (NEB), and molecular statics calculations
were performed within the atomic simulation environment
(ASE) framework [52]. For calculations within the quasihar-
monic approximation, we used the PHONOPY code [53].

IV. TRAINING

Fitting an interatomic potential suitable for all aspects of
radiation damage is a challenging task. The potential must
be able to reproduce a wealth of properties and atomic ge-
ometries that might be encountered during the evolution of a
collision cascade and the subsequent recrystallization of the
molten cascade core. Among the most important properties
are the energy landscape and relative stability of various de-
fects, from single vacancies and self-interstitial atoms (SIAs)
to defect clusters. The potential must also reproduce realistic
short-range dynamics defined by the repulsive part of the po-
tential. Additionally, melting and recrystallization as well as
the structure of the liquid phase at various densities should be
well described, to reproduce a realistic atomic mixing during
the heat spike of a collision cascade. Furthermore, if surface
irradiation is of interest, the energetics of perfect and damaged
surfaces must be considered. No single existing potential is
able to capture all of these aspects, and it is our goal to
construct a training database of structures that captures all
of the above-mentioned properties. Previously, Szlachta et al.
trained a GAP for tungsten [54] that excellently reproduces
the properties of screw dislocations and vacancies. It was
not, however, trained to self-interstitial atoms or the liquid
phase and did not include a realistic repulsive potential, and
is therefore not applicable to radiation damage simulations.

Table II lists the types of structures included in the training
database. The isolated atom is included to reproduce the
correct cohesion. The elastic response of body-centered cubic
(bcc) tungsten was trained using randomly distorted unit cells.
Part of these structures were taken from the training data of
the previous W GAP [54]. As we are interested in physics far
from equilibrium, we included unit cells with large elastic dis-
tortions (with volumes up to about ±30% of the equilibrium
volume). Similar elastically and randomly distorted unit cells
were prepared for the face-centered cubic (fcc), hexagonal
close packed (hcp), A15, C15, diamond cubic, and simple
cubic crystal structures. These serve to expose the GAP to
additional high-symmetry atomic environments.

Finite-temperature lattice vibrations were accounted for by
including snapshots from MD simulations at 1000 K with
three different volumes. The MD simulations were performed
using an early version of our GAP, trained only to a small
initial part of the training database. The structures containing
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TABLE II. Structures included in the training database. Ns is the
number of each structure type, Natoms is the number of atoms in each
structure, N tot

atoms is the total number of atoms of a given structure type,
and Nrep. the number of representative atoms picked for the SOAP
descriptor.

Structure type Ns Natoms N tot
atoms Nrep.

Isolated atom 1 1 1 1
Dimer 13 2 26 13
Distorted bcc unit cells 2496 1–2 2996 69
Distorted other crystals:

fcc 100 1 100 35
hcp 100 2 200 24
A15 100 8 800 141
C15 100 6 600 142
dia 100 2 200 66
sc 100 1 100 59

High-T bcc 20 54 1080 23
Vacancies:

single vacancy 200 53 10600 201
divacancies 10 118 1180 25
trivacancies 15 117 1755 46

Self-interstitials (SIAs):
single SIAs 32 121 3872 113
di-SIAs 15 122, 252 2350 93

bcc surfaces
(100) 45 12 540 27
(110) 45 12 540 9
(111) 43 12 516 50
(112) 45 12 540 34

Liquids 46 128 5760 1937
Disordered surfaces 24 128, 144 3264 461
Short-range 100 53–55 5390 431

All 3749 42410 4000

a single vacancy were taken from [54] (although only half of
them were used in training while the other half were left for
validation). We also added various divacancy and trivacancy
structures to provide better transferability to clusters of multi-
ple vacancies. Furthermore, we prepared SIAs in the common
high-symmetry configurations in bcc: 〈111〉, 〈110〉, and 〈100〉
dumbbells, and atoms in the octahedral and tetrahedral sites.

We checked how well a GAP trained only to single SIAs is
able to predict the formation energies of clusters of multiple
SIAs. While parallel dumbbell clusters were sufficiently well
reproduced, it was not able to predict the relative stability of
nonparallel SIA clusters. For example, the formation energies
of the triangular 〈110〉 di-SIA and SIA clusters in the C15
Laves phase (both of which are ground-state SIA configura-
tions in Fe but not in W [55]), were underestimated and there-
fore too stable. To correct this, we added structures containing
two SIAs to the training database, including parallel and non-
parallel dumbbells, and in the form of the smallest possible
C15 cluster [55,56]. After adding di-SIAs to the training
database, we found that the GAP is able to predict the energies
of larger clusters in excellent agreement with DFT, as will be
discussed later. All of the above-mentioned vacancy and SIA
structures were sampled from MD simulations at 500–1000 K
using an early version of the GAP. We note that several of the

SIA structures did not remain stable during the MD prepara-
tion simulations (for example, the 〈110〉 and 〈100〉 SIAs rotate
towards the 〈111〉 configuration). We included several of these
unstable, rotating SIA configurations in the training database
to capture various migration and rotation paths.

Liquid structures were added iteratively until the pre-
dicted errors of newly prepared structures were below around
10 meV/atom. The first few liquid structures were prepared
in MD simulations using the existing W GAP [54]. An initial
GAP version trained to these structures was then used to run
MD and sample additional liquid structures. We considered a
range of different densities around the experimental density of
liquid tungsten 17.6 g/cm3 [57], including clearly unphysical
low-density liquids to ensure that the GAP does not stabilize
any spurious low-density structures. We also included half-
molten structures to capture the melting process.

Low-index bcc surface structures were taken from
Ref. [54] ((111) surfaces from Ref. [58]). Additionally, to
make our GAP applicable to surface irradiation and improve
the transferability to arbitrary surface structures, we also
included damaged and half-molten (110) and (100) surfaces.
These structures were prepared by high-temperature MD sim-
ulations using an early version of the GAP that was trained to
most of the remaining database, including all liquid structures
and the clean surfaces.

To ensure a physically reasonable and smooth dissocia-
tion of atoms as well as to guide the repulsive potential fit,
we include energies and forces from the dimer dissociation
curve. Figure 1 shows the dimer curve as given by our DFT
calculations, compared with all-electron DFT data obtained
by the DMol code [38]. Our DFT results, which treats the
core-electrons as frozen with the PAW formalism, are in
good agreement with the all-electron DFT-DMol data down
to about 1 Å, below which there is a clear divergence from
DFT-DMol. Hence, we only include dimer distances larger
than 1.1 Å in the training database, for which the DFT data
closely overlaps with DFT-DMol and the fitted Vpair. This
ensures a smooth connection between the trained GAP and
Vpair, as the GAP is trained to predict negligible energies and
forces for interatomic distances below 1.1 Å. The behavior of
the GAP at short interatomic distances is further investigated
in the Appendix.

For capturing the short-range many-body dynamics in
bcc tungsten encountered in collision cascades, we prepared
various bcc crystals with a randomly added interstitial atom
(called “short-range” in Table II). The shortest allowed dis-
tance between the added atoms and its neighbors was 1.1 Å,
corresponding to the lower limit of the range where DFT with
frozen core-electrons is accurate, as discussed above. A rich
variety of short-range environments was captured by adding
the randomly placed atom to both perfect crystalline struc-
tures, and systems containing one or two vacancies. In part
of the vacancy structures, the atom was inserted in a random
position around the vacancy. Hence, in addition to sampling
the nonequilibrium geometries similar to the early stages of an
energetic recoil event, these structures also capture arbitrary
vacancy migration paths.

The entire training database contains around 40,000 local
atomic environments, which is considerably fewer than many
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previous single-element GAPs [36,54,58]. Indeed, we aimed
to keep the training database relatively small in anticipation
of re-using the same structures for other nonmagnetic bcc
metals and as a basis for alloy potentials. For this reason,
we decided to omit structures related to screw dislocations
and gamma surfaces, which made up a large fraction of the
training database for the previous tungsten GAP [54] and the
iron GAP [58].

When training the GAP, different weights are assigned to
different structure types through the regularization param-
eters σν . For liquids, short-range, and the dimer structures
we used σ

energy
ν = 10 meV/atom, σ force

ν = 0.4 eV/Å. For dis-
ordered surfaces σ

energy
ν = 10 meV/atom, σ force

ν = 0.2 eV/Å,
and for all other structures σ

energy
ν = 1 meV/atom, σ force

ν =
0.04 eV/Å. Virial stresses were only trained for the distorted
crystal unit cells, using σ virial

ν = 0.04 eV. The resulting root-
mean-square errors (RMSE) of the training data are con-
sistent with the assumed uncertainties, being well below 1
meV/atom and 0.1 eV/Å for most crystalline structures, and
a few meV/atom and around 0.3–0.4 eV/Å for the liquid and
short-range structures.

V. VALIDATION

In the following sections we present results from bench-
marking of the GAP, including properties that by design are
well-represented by the training database, as well as properties
that were not specifically targeted in the construction of the
training data. We attempt to highlight both the strengths and
shortcomings of the GAP, to demonstrate the applications for
which the GAP is well-suited, but also applications where an
extension of the training database would be necessary. The
results are compared with experimental data when possible,
with DFT data from the literature when indicated as such, and
with our own DFT results otherwise.

A. Bulk properties

Basic properties of bcc tungsten are compiled in Table III.
All listed properties are well-represented by the training
database, and therefore in close agreement with DFT. We note
that the vacancy formation energy is surprisingly sensitive to
the size of the box in DFT, even though elastic interactions
across the periodic boundaries are negligible [63] and the
k-point density is the same. With a box of 53 atoms we obtain
a formation energy of 3.36 eV, while a box of 120 atoms
gives 3.22 eV. Almost identical values have been reported
previously [62,63] (3.35 for a 53-atom box and 3.22 for a
127-atom box). Since our training database contains structures
of different sizes, the GAP reproduces a value in-between
these two values (regardless of box size).

Figure 2 shows energy-volume curves of various crystal
structures. All of these crystals were included in the training
database (although only as randomly distorted cells) and the
GAP therefore accurately reproduce the DFT data. The only
visible discrepancies are for strongly expanded fcc and hcp

lattices (>20 Å
3
/atom).

To further explore the transferability of the GAP to crystal
symmetries not included in the training database, we consid-
ered four different volume-conserving deformation paths of

TABLE III. Basic properties of bcc tungsten: energy per atom
Ebcc, cohesive energy Ecoh, lattice constant a, bulk modulus B and
elastic constants Ci j , (110) surface energy Esurf , vacancy forma-
tion energy E vac

f , vacancy relaxation volume �vac
rel., vacancy mi-

gration energy E vac
mig., lowest SIA formation energy ESIA

f , SIA mi-
gration energy (main path) ESIA

mig., and melting temperature Tmelt .

Exp. DFT GAP

Ebcc (eV/atom) −12.956 −12.956
Ecoh (eV/atom) −8.81a −8.39 −8.39
a (Å) 3.165a 3.1854 3.1852
B (GPa) 310a 304 309
C11 (GPa) 522a 522 526
C12 (GPa) 204a 195 200
C44 (GPa) 161a 148 149

Esurf (meV/Å
2
) 187b, 203b 204 204

E vac
f (eV) 3.67 ± 0.2c 3.36d, 3.22e 3.32

�vac
rel. −0.36d, −0.33e −0.31

E vac
mig. (eV) 1.7–1.9c,f 1.73g 1.71

ESIA
f (eV) 10.25h 10.34

ESIA
mig. (eV) <0.1f 0.040i 0.038

Tmelt (K) 3687a 3450 ± 100j 3540 ± 10

aRef. [57],
bRef. [59],
cRef. [60],
d53 atoms,
e120 atoms,
fRef. [61],
gRef. [62],
hRef. [63],
iRef. [64],
jRef. [65].

the bcc crystal. The tetragonal path (also called the Bain path)
is perhaps the most well-known path, in which a bcc crystal
is stretched along the [100] direction and simultaneously
compressed in [010] and [001], leading to the fcc symmetry
and eventually the body-centred tetragonal (bct) crystal. For
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FIG. 2. Energy-volume curves of the various crystal structures
included in the training database. The data points are DFT data and
the solid lines are the GAP predictions.
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the trigonal path, the bcc crystal is stretched along the [111]
direction and compressed in [11̄0] and [112̄], reaching the
simple-cubic symmetry and eventually fcc again. The or-
thorhombic deformation path involves stretching in the [001]
direction while compressing in [110]. Finally, twinning and
antitwinning involves shearing a primitive bcc lattice in [1̄1̄1]
(positive strains for twinning and negative strains for antitwin-
ning) and can be used to measure the theoretical shear strength
of single crystals [66]. The energy difference for each of these
deformation paths are shown in Fig. 3, where the GAP results
are compared with our DFT data. The values of c/a and p cor-
respond to the magnitude of the strains. For more details about
the various deformation paths, we refer to Refs. [67–69]. For
the most part, GAP is indistinguishable from DFT, with the
only notable exceptions being underestimating the antitwin-
ning energy and the high-strain tail of the trigonal path. Note
that all deformation paths correspond to strains far beyond the
maximum strains of the training structures.

Figure 4 shows the phonon dispersion of bcc tungsten
compared with experimental data and previous DFT studies
[54,70,71]. The dispersion relation is overall well-reproduced
by the GAP, although subtle discrepancies exist, in particular
between the H and P points and at the N point. It remains
unclear what causes these differences between GAP and DFT,
which were also observed in the previous tungsten GAP [54]
(the phonon dispersions in both GAPs are virtually identical).

The linear thermal expansion and the associated expansion
coefficient (αL) of bcc tungsten as predicted by the GAP is
shown in Fig. 5, and compared with experimental measure-
ments from Ref. [72] and our DFT results. The expansion
is calculated with the reference temperature set to room
temperature (300 K), as in the experimental data. GAP data
is obtained by two different methods; MD simulations in the
NPT ensemble, and calculations within the quasiharmonic
approximation (QHA) using the PHONOPY code [53]. The
latter includes zero-point energies and is accurate at low
temperatures, but eventually fails when anharmonic effects
beyond the QHA become nonnegligible. However, MD fails
at low temperatures but is reliable at temperatures when zero-
point energies are negligible. Figure 5 shows that the experi-
mentally measured low-temperature trend is well-captured by
both GAP and DFT when combined with the QHA. Figure 5
also suggests that the QHA is valid up to around 1000 K,
while MD with the GAP is consistent with the experimental
trend at temperatures above 300 K. The thermal expansion
coefficients at room temperature are listed in Table IV, along
with heat capacities and the Grüneisen parameter. The exper-
imental heat capacity is well-reproduced by both GAP and
DFT. DFT overestimates the experimental room-temperature
thermal expansion coefficient and Grüneisen parameter by
about 10%, and GAP by about 15%.

Figure 6 shows the elastic constants of bcc W at finite tem-
peratures as predicted by the GAP. The results are compared
to the experimental least-squares fits from Ref. [74], measured
for single crystals up to around 2000 K. The uncertainties of
the experimental curves are shown as shaded areas. The GAP
elastic constants are extracted from the average stress tensor
of constant-temperature MD simulations of distorted bcc
systems containing 1024 atoms. The error bars are given by
the standard deviation of the values obtained for equivalent
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FIG. 3. Volume-conserving deformation paths of bulk W com-
puted with GAP and DFT.

elastic constants (e.g., C11, C22, and C33). The experimental
trends are qualitatively well reproduced by the GAP, al-
though quantitative differences are apparent. Both C11 and C44

decrease at increasing temperatures, while C12 remains almost
constant at low temperatures and increases slightly at higher
temperatures. The weak temperature dependence of C12 is
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FIG. 4. Phonon dispersion of bcc W as given by the GAP and
compared with DFT [54,70] and experimental data [71].

reproduced by the GAP, although the uncertainties in both
experiments and MD are larger than for the other elastic
constants. The softening of the bulk modulus in DFT can be
estimated from finite-temperature free energy-volume curves
calculated in the quasiharmonic approximation. Results for
both DFT and the GAP coupled with the QHA are shown for
the bulk modulus in Fig. 6. Note that as previously mentioned,
the QHA is only reliable up to around 1000 K. The good
agreement between GAP and DFT for the bulk modulus indi-
cate that the quantitative discrepancies between experiments
and GAP are mainly inherited from DFT, as both GAP and
DFT predict a slightly stronger temperature dependence of the
bulk modulus than experiments.
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FIG. 5. Linear thermal expansion (top) and the expansion co-
efficient (bottom) of bcc W predicted by the GAP and compared
with experimental results [72]. GAP data is obtained from both MD
simulations and by using the quasiharmonic approximation (QHA).

TABLE IV. Heat capacities (CP, CV ), linear thermal expansion
coefficient (αL), and Grüneisen parameter (γ ) at 300 K, calculated
within the quasiharmonic approximation with GAP and DFT, and
compared with experimental data.

Exp. DFT GAP

CP (J mol−1K−1) 24.35a 23.95 23.98
CV (J mol−1K−1) 24.20a 23.77 23.77
αL (10−6 K−1) 4.43b 4.87 5.10
γ 1.6a 1.80 1.87

aRef. [73],
bRef. [72].

For validating that we sampled enough liquid structures,
we performed a form of k-fold cross validation (with k = 5).
That is, we split the 45 liquid structures into five subsamples,
with each part containing liquids with different densities. Five
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FIG. 6. Elastic constants and bulk modulus of bcc W as functions
of temperature. Experimental data are from Ref. [74]. GAP data for
the bulk modulus is obtained from both MD simulations and by using
the quasiharmonic approximation (QHA). DFT data are shown at 0 K
for the elastic constants and as obtained by the QHA for the bulk
modulus. The solid lines connecting the GAP points are polynomial
fits to guide the eye.
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/Å
2 )

GAP
DFT
Exp.

FIG. 7. Surface energies predicted by the GAP and compared
with DFT. Only the first four surfaces were included in the training
database. The experimental values are from Ref. [59].

different GAP models were then trained using four of the
subsamples together with the rest of the training database,
while for each model leaving out a different liquid subsample
for validation. The mean root-mean-square errors for the en-
ergy and forces of the validation subsamples for the five GAP
models are 7.76 meV/atom and 0.434 eV/Å. These values are
close to the assumed uncertainties, σν , used when training the
GAP (10 meV/atom and 0.4 eV/Å). This provides confidence
that the GAP reproduces the energies and forces of any liquid
structure with sufficient accuracy.

We simulated the melting temperature predicted by the
GAP using the solid-liquid interface method. At 3540 K, the
solid and liquid phases remains roughly in equilibrium, while
at 3550 K the entire system melts and at lower temperature it
recrystallizes. The estimated melting temperature of 3540 K
is slightly lower, but very close to the experimental value of
3687 K [57]. Wang et al. [65] used VASP with comparable
settings to our training data (PBE functional and hard PAW
potential), and estimated a melting point of 3450 ± 100 K
using two different methods. This is in line with the GAP pre-
diction of 3540 K, which confirms that the GAP reproduces
melting with DFT accuracy. Hence, the slight underestimation
compared to experiments can be attributed to the accuracy of
DFT with the PBE functional.

B. Surface properties

We calculated surface energies of 10 surfaces with DFT to
test how transferable the GAP is to surfaces not included in
the training database. A comparison between GAP and DFT
is shown in Fig. 7, where only the first four low-index surfaces
were included in the training database. The GAP successfully
predicts surface energies in close agreement with DFT, with

the largest discrepancies within 5 meV/Å
2

of the DFT values.
The order of stability is also for the most part reproduced
by the GAP, although, e.g., the (321) surface is incorrectly
lower in energy than the (111) surface. The ability to repro-
duce accurate surface energies is a clear improvement over

FIG. 8. Reconstruction of the (100) surface. Top left: initial
unrelaxed surface, top right: reconstructed surface. Only the top two
surface layers are shown and atoms are coloured according to height,
so that atoms in the top layer are green and atoms in the second layer
purple. Red arrows show the direction of the displacement vectors
with respect to the unrelaxed surface. The bottom figure shows a
side-view of the zigzag surface layer.

traditional analytical potentials, which consistently underesti-
mate surface energies and fail to reproduce the correct order
of stability [23].

We also confirmed that the GAP reproduces the DFT-
observed displacements along the surface normal during
relaxation of the most common surfaces. Relaxation of the
most stable (110) surface involves a small shift (−0.07 Å)
of the topmost layer down toward the bulk. For the (111)
surface in both the GAP and DFT, the topmost atomic layer
is relaxed by −0.27 Å, the second layer by −0.08 Å and
the third layer by 0.14 Å compared to the initial bulk lattice
spacing. The (112) surface undergoes a subtle spontaneous
reconstruction. In both DFT and the GAP, the topmost layer
is laterally displaced by 0.1 Å in the [111] direction during
relaxation (0.06 Å with respect to the second surface layer
and 0.11 Å with respect to the third). This is in excellent
agreement with the experimentally observed lateral [111] shift
of 0.1 Å [75].

For the (100) surface, there is an experimentally and
theoretically observed reconstruction, in which the atoms in
the surface layer are shifted laterally by a small distance,
resulting in zigzag rows of atoms [76,77]. This reconstruction
does not occur spontaneously in either DFT or the GAP when
optimizing the atom positions, and is not explicitly included in
the training database. Nevertheless, since our GAP is trained
to various disordered or half-molten surface structures (the
purpose of which is to at least qualitatively capture arbitrary
surface properties), it is a good test to investigate whether it
is able to reproduce the (100) reconstruction. Indeed, upon
heating and quenching a (100) surface in MD simulations
with the GAP, the (100) surface reconstructs in the way
described above. Figure 8 shows snapshots of the initial and
reconstructed surfaces. The lateral displacement of the surface
atoms in the reconstructed layer is about 0.2 Å in the 〈11〉
direction in the surface plane, which is slightly below the
DFT-obtained 0.28 Å [78] but coincidentally in better agree-
ment with the experimental value 0.24 Å [77]. The surface
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/Å
)

FIG. 9. Total energy difference (left) and force components (right) for stepwise movement of one atom along various crystal directions in
bcc W. None of the structures along these specific paths were included in the training database. Results using a previous GAP [54], not trained
to any repulsive data, are shown for a few crystal directions for comparison.

energy of the relaxed reconstructed surface is about 3 meV/Å
2

lower than for the perfect (100) surface.
To further test the GAP for surface properties, we car-

ried out NEB calculations for the main migration paths of
adatoms on the (110) and (100) surfaces (adatom-hopping
between adjacent ground state adsorption sites, and the ex-
change migration as discussed in, e.g., Ref. [79]). The tests
revealed that while the GAP reproduces the correct stable
adsorption sites, the migration paths are systematically un-
derestimated by about 20–30% compared to the DFT values
from Ref. [79]. For example, the main migration mechanism
of adatoms on the (110) (hopping between adjacent long-
bridge sites) has a barrier of 0.87 eV according to DFT [79],
while GAP predicts a barrier of 0.6 eV. For the exchange
mechanism, the comparison is 3.09 eV by DFT and 2.5 eV
by GAP. Hence, the GAP does reproduce the correct adatom
behavior in terms of stable sites and migration mechanisms,
but would require an extension of the training database to
achieve quantitative agreement with DFT (by, e.g., adding
various stable and unstable adatom structures to the training
data). Nevertheless, we conclude that including the disordered
surface structures in the training database achieved our goal
of qualitatively capturing the correct behavior of damaged
surfaces.

C. Repulsive potential

The short-range many-body behavior relevant for cascade
simulations was tested by statically moving an atom along
various crystal directions in the bcc lattice. The difference in
total energy and the force components of the moving atom
were calculated in both GAP and DFT. Only the interatomic
range for which DFT is still accurate, as discussed previously,

was sampled (down to about 1.1 Å or 100–200 eV energy
differences). Figure 9 shows the obtained curves for six dif-
ferent crystal directions. Several more directions were sam-
pled with similar results, and therefore not shown here. The
agreement between GAP and DFT is excellent. Considering
that none of the points shown in Fig. 9 were included in the
training database, we are confident that the GAP reproduces
any short-range forces and energies encountered in cascade
simulations with DFT accuracy. Figure 9 also includes results
using the previous tungsten GAP [54], demonstrating the
poor extrapolation of GAP when repulsive interactions are not
considered during training.

To test the short-range part of the GAP in dynamic simula-
tions, we simulated the threshold displacement energy (TDE)
surface according to the methods described in Ref. [81]. The
simulations were performed at 0 K. We also simulated a few
directions in a sample equilibrated at 40 K for comparison, but
found that the minimum values for a given direction remained
the same as for 0 K. Hence, we report the results obtained
at 0 K, for which we can exploit the full symmetry of the
lattice when sampling directions. The crystal directions were
sampled uniformly over the symmetry-reduced sphere at 5◦
intervals. We used a noncubic simulation box of 4368 atoms.
The increment in kinetic energy was 4 eV. After obtaining the
full angular map of TDEs, we sampled additional directions
close to the low-index directions with a lower increment of
1 eV to obtain more exact TDE values for comparison with
experiments.

Figure 10 shows the angular map of the threshold dis-
placement energies obtained at 0 K with the GAP. The global
average of the uniformly sampled directions is 93.6 ± 5.5 eV.
As expected based on experimental results [80], the min-
imum TDE values are found around the 〈100〉 and 〈111〉
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FIG. 10. Threshold displacement energies obtained with the
GAP at 0 K. The colours are linearly interpolated between the (light
gray) data points. The average value of the uniformly sampled points
is 93.6 ± 5.5 eV and the minimum values 45.5 eV for the 〈100〉
direction, 51.5 eV for 〈111〉 and 78 eV for 〈110〉, compared with
the experimental values 42 ± 1 eV for 〈100〉 and 44 ± 1 eV for 〈111〉
[80].

directions. Experimental values are 42 ± 1 eV for 〈100〉 and
44 ± 1 eV for 〈111〉, obtained at a temperature �7 K [80]. In
simulations, it is not obvious how to report the values for a
given crystal direction due to the possibility of small angular
deviations leading to large differences in the TDEs, either due
the randomness of thermal and zero-point displacements or
simply due to the anisotropy of the TDE surface [8,81]. In
experiments, the electron beam is spreading in the sample,
so the measurement always actually probes some angular
interval around the principal direction. Without knowledge of
the precise details of the experimental setup, it is very difficult
to know what the magnitude of this spread is. In simulations,
one has to choose a tolerance around the exact desired crystal
direction (at 0 K with the GAP, the TDE at, e.g., exactly 〈100〉
is significantly higher than a few degrees away from 〈100〉).
Using a 10◦ tolerance, the minimum TDE values obtained
with the GAP are 45.5 ± 0.5 eV for the 〈100〉 direction and
51.5 ± 0.5 eV for 〈111〉, slightly higher than the experimental
values. However, allowing for a 15◦ tolerance, the minimum
around the 〈111〉 direction becomes 47.5 ± 0.5 eV, but re-
mains the same for the 〈100〉 direction. For the 〈110〉 direc-
tion, GAP predicts a TDE of 78 ± 2 eV. The 〈110〉 direction
was not accessible from the experimental measurements, but
good fits to the measured data were obtained by assuming
values in the 70–80 eV range [80].

D. Self-interstitial atoms and clusters

Defects in the form of vacancies and self-interstitial atoms
and their clusters have been extensively studied by density
functional theory calculations in the literature. In particular,
the recent papers by Ma and Dudarev [62–64] provides a
comprehensive database of the energetics of single vacancies
and SIAs in bcc metals, while Alexander et al. [82] in detail
studied the energetics of SIA clusters. Most conveniently, they
also used VASP with very similar input as we used when con-
structing the training database (the only noteworthy difference
being a 12-electron PAW potential compared to 14 valence
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FIG. 11. Formation energies of self-interstitial atoms in bcc W.
The formation energy of the ground-state 〈11ξ〉 is 10.34 eV in the
GAP compared to 10.25 eV in DFT [63].

electrons in our DFT). Hence, we can rely on their results to
be consistent with our training data and therefore use them to
benchmark our GAP against defect properties.

Single SIAs have historically been thought to stabilize
as straight 〈111〉 dumbbells or crowdions, and migrate one-
dimensionally through sequences of subtle 〈111〉 dumbbell-
to-crowdion motion. However, it has been speculated [21]
and recently thoroughly demonstrated [64], using DFT, that
the most stable single SIA configuration in tungsten in fact
is a tilted 〈11ξ 〉 configuration, where ξ is close to 0.5. The
difference in energy between the 〈11ξ 〉 and the straight 〈111〉
configuration is only 0.04 eV [64]. We did not explicitly
include the 〈11ξ 〉 configuration in the training structures.
Nevertheless, as we did sample various rotating dumbbells
when constructing the training database, the GAP successfully
reproduces the 〈11ξ 〉 configuration as the most stable single
SIA. The difference in energy to the straight 〈111〉 dumbbell is
0.04 eV, consistent with DFT. Figure 11 shows the formation
energies of the common high-symmetry SIAs in bcc tungsten.
The formation energies were calculated after minimizing the
positions and stress of a noncubic box of 421 atoms, for
which the elastic interactions across the periodic borders
are minimal. The GAP formation energies are systematically
around 0.1 eV higher than the DFT values from [63], ex-
cept for the 〈110〉 dumbbell. Consequently, the difference in
energy between the 〈111〉 and 〈110〉 configurations is only
0.21 eV, compared to 0.29 eV by DFT. This is also visible
in Fig. 12, and might have consequences in high-temperature
simulations, as the frequency 〈111〉-to-〈110〉 rotations will
be overestimated. Despite efforts, we were not successful
in eliminating this anomaly, which might be a consequence
of the relatively small systems (121 atoms) included in the
training database.

Figure 12 shows the main migration barriers of single SIAs
calculated with the NEB method. The minimum along the
〈110〉-to-〈111〉 rotation corresponds to the 〈11ξ 〉 configura-
tion, with ξ just above 0.5 in both GAP and DFT. Figure 12(b)
shows the expected zigzag migration path of a [11ξ ] SIA
toward an adjacent [1ξ1] position [64]. The GAP reproduces
this migration barrier in excellent agreement with DFT. In
addition to the static NEB calculations, we used the GAP to
observe the migration of single SIAs in molecular dynamics
simulations at low temperatures. We confirmed that it adopts

144105-10



MACHINE-LEARNING INTERATOMIC POTENTIAL FOR … PHYSICAL REVIEW B 100, 144105 (2019)

0.0 0.2 0.4 0.6 0.8 1.0
Reaction coordinate

−0.3

−0.2

−0.1

0.0

ΔE
(e
V
)

110 111

GAP
DFT Ma and Dudarev

0.0 0.2 0.4 0.6 0.8 1.0
Reaction coordinate

0.00

0.01

0.02

0.03

0.04

ΔE
(e
V
)

[11ξ [] 1ξ1]

GAP
DFT Ma and Dudarev

FIG. 12. Top: Energy difference for a 〈110〉 dumbbell SIA ro-
tating to the 〈111〉 direction, passing through the global minimum
〈11ξ〉. Bottom: migration path between adjacent 〈11ξ〉 configura-
tions along the 〈111〉 direction. DFT data are from Ref. [64].

the 〈11ξ 〉 symmetry and migrates in a one-dimensional zigza-
glike manner along the path shown in Fig. 12(b), consistent
with the DFT-based predictions discussed in Ref. [64].

Most existing interatomic potentials for radiation damage
are fitted so that single SIAs are described well. However,
it should also be transferable to larger clusters that readily
form in, e.g., collision cascade simulations. We found that
fitting only single SIAs does not guarantee transferability to
larger clusters, and that di-SIAs (both parallel and nonparallel
dumbbell configurations) must be included in the training
database. For tungsten, the majority of existing potentials
struggle to reproduce the correct trend of the relative stability
of clusters of multiple SIAs. For example, several widely used
EAM potentials predict dislocation loops with the Burgers
vector 〈100〉 to be lower in energy than the 1/2〈111〉 loops [5],
which is in clear contradiction to DFT [82] and experimental
observations [83,84]. We therefore put particular focus on
ensuring that our GAP reproduces the expected trend obtained
by DFT.

Figure 13 shows formation energies of parallel 〈111〉 and
〈100〉 SIA clusters (i.e., dislocation loops) compared between
the GAP and DFT data from Ref. [82]. 1/2〈111〉 clusters are
created by inserting parallel dumbbells with a (110) habit
plane and 〈100〉 with a (100) plane, as in Ref. [82]. We also
include the C15 clusters, which for small sizes have energies
between the two dislocation loops. Overall, the GAP data
closely overlaps with the DFT data across the entire DFT size
range.
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FIG. 13. Formation energies of self-interstitial clusters in W
compared between GAP and DFT data from Ref. [82]. Note that only
sizes 1 and 2 were fit, so all the other data points serve as tests of the
potential.

E. Vacancies and vacancy clusters

The vacancy formation energy and the vacancy migration
barrier given by the GAP are consistent with DFT, as seen
in Table III. This is expected as both of these properties are
well-represented by the training structures. The binding of
divacancies is a peculiar feature of tungsten and some other
bcc transition metals. DFT predicts that the binding energy
of the second-nearest neighbor (2NN) divacancy is strongly
repulsive, while other NN separations provide either weakly
binding or weakly repulsive configurations, as shown in
Fig. 14. Reproducing this behavior has presented a challenge
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FIG. 14. Binding energies of a divacancy in bcc W at different
nearest-neighbor separations compared with DFT from Refs. [22,85]
and our own. Only the 1NN and 2NN configurations were included
in the training database. The EAM results are obtained using the
potential from Ref. [13] but is representative of the trend reproduced
by most other EAM potentials as well.
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FIG. 15. Formation energies of vacancy clusters in W obtained
with the GAP.

for the vast majority of traditional interatomic potentials, but
can be captured by the GAP as seen in Fig. 14. Note that only
the 1NN and 2NN divacancy configurations were included
in the training database. Overall, the GAP reproduces the
divacancy binding trend in good agreement with DFT, with
only the 5NN configuration being slightly more stable than
DFT predictions.

Larger clusters of vacancies form three-dimensional voids
or planar dislocation loops. These include spherical voids,
1/2〈111〉 and 〈100〉 dislocation loops. Calculations with ex-
isting potentials have shown that small vacancy dislocation
loops are unstable and “open up” in the direction normal to the
loop plane during relaxation [19,86], forming what we refer to
as planar voids. The critical sizes at which dislocation loops
become more stable than their corresponding planar voids are,
however, vastly different in different interatomic potentials.
Some potentials predict the crossovers to occur already at a
few tens of vacancies (1–2 nm diameters), while other predict
crossovers at sizes well above 100 vacancies [19]. Since the
size of the simulation cell needs to be relatively large for
clusters of this size, obtaining reliable DFT results to resolve
this discrepancy is difficult, although efforts are currently
ongoing [87]. We used the GAP to investigate the relative
stability of the different types of vacancy clusters. As the GAP
is trained to di- and trivacancies and accurately reproduces
surface energies, we expect it to be reasonably transferable to
larger vacancy clusters.

We created 〈100〉 and 1/2〈111〉 vacancy clusters by re-
moving atoms in two or three consecutive 〈100〉 or 〈111〉
planes, respectively. To create dislocation loops, the sur-
rounding atomic layers were compressed to create an initial
strain field. For a cluster of size N vacancies, the N nearest
atoms were removed in the corresponding planes for planar
clusters, and in 3D for voids, resulting in clusters as close
to circular and spherical shapes as possible. The simulation
cells contained around 5500 atoms for clusters below 40
vacancies, and 16 000 atoms for clusters in the 40–100 size
range. Figure 15 shows the formation energies per vacancy
for the different clusters, calculated after a minimization of
the atomic positions and pressure.

The GAP predicts spherical voids to be the most stable
vacancy cluster. The sharp local minima and maxima of the
voids in Fig. 15 correspond to symmetric configurations. The
1/2〈111〉 loop is the most stable planar configuration for
sizes above around 40 vacancies, consistent with experimental
observations of (both interstitial and vacancy) dislocations
loops [84]. For dislocation loops, only energies of stable sizes
are shown in Fig. 15. Loops smaller than 20 vacancies for
1/2〈111〉 and smaller than 30 vacancies for 〈100〉 sponta-
neously open up into planar voids during relaxation. The
almost constant or slightly increasing formation energy per
vacancy at small clusters seen in Fig. 15 is indicative of the
weak or sometimes repulsive binding energies of small va-
cancy clusters in tungsten. The crossovers in stability between
dislocation loops and planar voids occurs at 25 vacancies
for 1/2〈111〉 (but they remain very close in energy up to
40 vacancies) and at 55–60 vacancies for 〈100〉 clusters.
This is roughly consistent with recent DFT results, which
predicted a crossover at around 45 vacancies for 1/2〈111〉
clusters [87].

VI. CONCLUSIONS AND OUTLOOK

We have shown that a machine-learning potential (GAP)
with a moderately sized training database can capture a variety
of properties of tungsten with essentially DFT accuracy. Even
though the potential is fairly general, we particularly focused
on reproducing properties relevant for radiation damage. The
flexibility of the machine-learning framework allows the po-
tential to describe properties that have been persistent chal-
lenges for analytical potentials, such as the relative stability
of defect clusters and various surface properties. Hence, the
potential will be useful for extracting more accurate data from
classical molecular dynamics simulations of radiation damage
in fusion-relevant tungsten, and settle previously unclear dis-
crepancies in results with different existing potentials [5,20].
We should, however, emphasize that the computational cost of
the GAP with the current implementation is about 2–3 orders
of magnitude higher than traditional analytical potentials.
The high computational cost makes it challenging to obtain
extensive statistics of radiation damage, but recent work on
optimization of the SOAP kernel has shown promising speed-
ups without loss of accuracy [32].

The GAP also provides a good basis for further extension
or development of potentials tailored to specific applications
that are not reflected by our training structures. Addition-
ally, the potential can be useful as a basis for extension
to multicomponent potentials, such as tungsten-based alloys
or potentials for plasma-wall interactions in fusion reactor
conditions. In the latter case, the accurate description of var-
ious surface reconstructions and surface energies provides an
attractive basis for more accurate modeling of fusion-relevant
W–H and W–He surface interactions (by adding analytical or
machine-learned potentials for the light elements). Addition-
ally, the training structures and fitting strategy can be easily
repeated to develop similar potentials for other bcc metals.
Efforts in these directions are ongoing and will be published
elsewhere.

The potential files and the training database are available
as Supplemental Material [88] and from Ref. [89].
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APPENDIX: GAP PREDICTIONS AT EXTREMELY SHORT
INTERATOMIC DISTANCES

The short-range part of the potential is dominated by
the external screened Coulomb potential, as discussed in the
main text. Nevertheless, it is crucial to make sure that the
machine-learning extrapolations of the energies and forces
at short interatomic distances do not interfere with the pair
potential (i.e., remain smooth and negligible in magnitude).
Figure 16 shows the energies and forces predicted by the
GAP with and without the added pair potential for the dimer
curve. Following the strategy described in the main text, the
energies and forces given by GAP without the pair potential
are negligible in comparison to the contributions from the
pair potential, as desired. However, we found that the GAP
becomes unstable at some distance close to zero, due to
numerical limitations of the spherical harmonics expansion
used in the SOAP descriptor. This is visible as kinks in the
energy curve, leading to diverging forces as illustrated in the
zoomed-in insets in Fig. 16. For previous GAPs for W, Fe,
and Si [36,54,58], this instability occurs at distances in the
0.15–0.4 Å range, which might very well be reached in, e.g.,
collision cascade simulations. Although none of the previous
GAPs included a realistic repulsive part and are not suitable
for cascade simulations, they can be made so by adding a
repulsive pair potential.

A simple approach to eliminate the instability is to employ
a smooth switching scheme between the GAP and a repulsive
pair potential, similar to what is typically done with EAM
and Tersoff-like potentials [90] (although it becomes slightly
less straight-forward due to the pure many-body nature of
the SOAP descriptor). We tested such a scheme, in which
the contributions of the GAP term is smoothly forced to
zero, while the full screened Coulomb potential, Vpair, remains
present. The total energy of atom i is then evaluated as

Ei = S(i)

⎡
⎣∑

j

Vpair + EGAP(i)

⎤
⎦ + [1 − S(i)]

∑
j

Vpair

= S(i)EGAP(i) +
∑

j

Vpair, (A1)
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FIG. 16. The energies and forces given by the GAP at short
interatomic distances with and without the external pair potential.
The zoomed-in insets show the numerical instability of GAP at
extremely short interatomic distances.

where j loops over all atoms within the cutoff range of
atom i and S(i) is a switching function that depends on the
environment of atom i and goes smoothly to zero when the
environment contains very short distances. In our test, we sim-
ply let S(i) = S(rmin), where rmin is the shortest interatomic
distance from atom i. For the switching function we chose
the cutoff function in Eq. (6) (but inverted to approach zero
as r decreases). An almost identical approach was recently
proposed for making deep learning neural network potentials
applicable to irradiation simulations [91].

We found that our GAP becomes numerically unstable only
below around 0.03 Å, as seen in Fig. 16. These distances
will never be reached even in high-energy cascade simula-
tions, since the pair potential contributes with energies in the
MeV range. Hence the numerical instability is of no practical
concern, and there is no need to employ the above switching
scheme for our GAP. Nevertheless, we emphasize that when
developing a GAP for radiation damage, it is crucial to ensure
that the numerical limit of the SOAP implementation is be-
yond reach for any practical MD simulation, or eliminated by
a switching scheme.
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