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Molecular dynamics simulations of thermally activated edge dislocation
unpinning from voids in α-Fe
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In this study, thermal unpinning of edge dislocations from voids in α-Fe is investigated by means of molecular
dynamics simulations. The activation energy as a function of shear stress and temperature is systematically
determined. Simulations with a constant applied stress are compared with dynamic simulations with a constant
strain rate. We found that a constant applied stress results in a temperature-dependent activation energy. The
temperature dependence is attributed to the elastic softening of iron. If the stress is normalized with the softening
of the specific shear modulus, the activation energy is shown to be temperature-independent. From the dynamic
simulations, the activation energy as a function of critical shear stress was determined using previously developed
methods. The results from the dynamic simulations are in good agreement with the constant stress simulations,
after the normalization. This indicates that the computationally more efficient dynamic method can be used
to obtain the activation energy as a function of stress and temperature. The obtained relation between stress,
temperature, and activation energy can be used to introduce a stochastic unpinning event in larger-scale simulation
methods, such as discrete dislocation dynamics.
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I. INTRODUCTION

Iron and iron-based alloys are the main choices for
structural material due to their good mechanical properties.
The mechanical properties can be enhanced by inserting
alloying elements, precipitates, or in some other way changing
the nanostructure of the material. The key mechanism behind
the mechanical properties of materials is the motion of dislo-
cations. Nanostructures are known to affect the movement of
dislocations [1,2]. Hence, nanosized inclusions will ultimately
affect the macroscopic behavior of the materials. Computer
simulations provide a good tool for studying the interactions
of dislocations with different nanosized obstacles at the atomic
level [3–11]. Atomistic simulations are capable of simulating
both the matrix material as well as the effect of alloying
elements [3,4], coherent obstacles [5,6], and noncoherent
obstacles [7–9].

Different types of steel are used as structural materials and
for the reactor vessel in nuclear power plants, where they are
exposed to continuous irradiation. It is known that irradiation
will introduce point defects, dislocations, precipitates, and
voids in the materials [12]. The structure and formation
of the different defect clusters produced by irradiation can
be studied in detail in atomistic simulations and compared
with experiments [13,14]. Voids and other defect clusters
can hinder the movement of dislocations in the material.
Molecular dynamics (MD) simulations have previously been
carried out extensively to study the interactions of both screw
and edge dislocations with different sizes of voids in iron
[3,5,10,11]. Typically, the dislocation-obstacle interactions
are studied by applying a constant shear strain rate on the
simulation system. From these dynamic simulations, the stress
required for a dislocation to unpin from an obstacle can be
determined. The unpinning stresses have been determined for
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a wide range of temperatures, strain rates, and void sizes.
Even though dynamic simulations in MD are a valuable way
of investigating the atomistic interactions of dislocations with
obstacles, the strain rates employed are (for computational
reasons) usually extremely high compared to experiments.
The stochastic behavior of a dislocation unpinning from an
obstacle, due to thermal activation, is therefore underestimated
or completely neglected.

Larger-scale simulation methods, like (discrete) dislocation
dynamics, can be used to simulate lower strain rates, and to
model systems larger than those computationally accessible
in MD [15]. These methods rely on parameters from MD
and experiments, such as the elastic moduli and the strengths
of different obstacles. Dislocation dynamics simulations are
able to describe the interactions between dislocations [15] as
well as the interactions of dislocations with other defects and
precipitates [16]. Even though MD simulations will give the
critical unpinning stress for a certain sized obstacle at a certain
temperature, the stochasticity of the unpinning event is usually
not captured. The stochastic element of dislocation-obstacle
interactions can be implemented in dislocation dynamics
simulations as a probability of unpinning based on the
activation energy associated with the obstacle, as a function
of stress and temperature [17]. Monnet et al. proposed a
method for determining the activation energy as a function of a
derived critical stress from dynamic MD simulations [18]. To
calculate the activation energy and critical stresses, the attempt
frequency and activation volume for the dislocation pinned to
the obstacle must be known. The former is usually taken as
an order of magnitude parameter, and the latter is estimated
based on the geometry of the pinned dislocation and obstacle.

In this article, we study in detail the thermal activation
of an edge dislocation unpinning from a void in bcc Fe.
The simulations are performed in a static (constant applied
stress) situation at elevated temperatures to eliminate the
strain rate dependence and capture the stochastic unpinning
event. From the obtained results, we can estimate both the
attempt frequency and the activation volume for the 2 nm void.
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FIG. 1. Illustration of the simulation system with an edge dislo-
cation moving toward a void as a result of an applied shear force F

or shear strain rate γ̇ .

Simulations are performed at different temperatures and differ-
ent constant stresses to obtain the dependence of both temper-
ature and stress on the activation energy. Additionally, in order
to extend the investigated stress and temperature range, the
method by Monnet et al. was utilized in dynamic simulations
[18] and compared with the results from static simulations.

II. METHODS

A. Molecular dynamics simulations

All simulations were carried out using the classical MD
code PARCAS [19,20] with the embedded-atom method (EAM)
potential by Ackland et al. [21]. The size of the simulation
box containing the 1/2[111] edge dislocation and a 2 nm void
was about 21 × 25 × 12 nm3. The system was scaled to the
correct lattice constant at each temperature. The x axis of
the simulation system was oriented along the [112̄] direction,
the y axis along the [111] direction, and the z axis along the
[11̄0] direction. Periodic boundary conditions were used in
the x and y directions. A few of the top and bottom layers
were kept fixed. The shear force was applied on the top layers
of atoms. The simulation system is illustrated in Fig. 1 and
the methods correspond to the model by Osetsky et al. for
dislocation-obstacle simulations [22].

In the constant stress simulations (also referred to as the
static simulations), the simulation scheme was as follows.
The distance traveled as a function of time, separated into
different stages of the simulation in a typical case, is shown in
Fig. 2. During the first 10 ps (region A), the entire system was
heated up and equilibrated at the desired temperature using
the Berendsen temperature control [23]. During the next 20 ps
(region B), a linearly increasing shear force was applied on a
few of the top layers. The temperature control was then also
turned off to avoid unphysical velocity scaling of the atoms
and to allow for a natural thermal activation of the unpinning
event. In region B the dislocation started moving in the y

direction, but it did not reach the void to affect the measured
activation time. At 30 ps, the shear force reached the value
corresponding to the desired shear stress, and from thereon
(region C) it was kept constant. At the point P in Fig. 2,
the dislocation was pinned by the void. After the pinning
point (region D), the probability of unpinning is determined
purely by thermal activation at the given constant applied
stress and temperature. The dislocation unpinned from the
void at point U . After the unpinning (region E), the dislocation
continued to move through the lattice past the void, and the
simulation was stopped. The energy added to the system
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FIG. 2. The different stages during a constant stress simulation,
illustrated as the distance traveled by the dislocation as a function
of time in a typical case. Points P and U represent the pinning and
unpinning of the dislocation. For a description of regions A–E, see
the text.

through the applied shear force did not significantly raise the
temperature. The requirement of relatively short unpinning
times, due to computational efficiency, limited the studied
applied stress interval to 180–205 MPa with temperatures in
the range 650–1000 K. The mean activation time was obtained
by averaging the activation times of 50 individual simulations
at each stress-temperature pair.

Dynamic simulations were carried out in an extended
temperature range (10–1000 K) with two different strain
rates, 107 s−1 and 5 × 106 s−1. The strain rates correspond
to dislocation velocities v of around 5 and 10 m/s through the
Orowan equation γ̇ = bρv, where ρ is the dislocation density
and b is the length of the Burgers vector. Border cooling was
applied on a few layers of atoms above the fixed atoms at the
bottom to keep the temperature constant. At each temperature,
three simulations were carried out in order to assess the
statistical variations. Additionally, we investigated the effect
of the height of the dislocation glide plane with respect to the
void using dynamic simulations. Three intersection heights
were simulated, one that results in the dislocation gliding along
the uppermost hollow plane of the void, and two intermediate
heights between the top and center of the void.

B. Analysis and theoretical background

In the constant stress simulations, the time elapsed between
the pinning and thermally activated unpinning of the disloca-
tion, i.e., the activation time, was extracted by monitoring the
dislocation velocity. The dislocation was defined as pinned
to the void when its velocity dropped to below a certain
threshold (0.1 nm/ps), and unpinned when the velocity reached
0.2 nm/ps (see Fig. 2). The validity of the chosen critical
threshold velocities was confirmed by visual inspection. The
position of the dislocation as a function of time was calculated
by isolating the dislocation using the common neighbor
analysis method implemented in OVITO [24].

Assuming the thermally activated unpinning of the dislo-
cation follows an Arrhenius behavior, the rate of unpinning is
given by

1

〈ta〉 = ν exp

(
Ea

kBT

)
, (1)
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where 〈ta〉 is the mean activation time extracted from simu-
lations at a given applied stress and temperature. kB is the
Boltzmann constant, T is the temperature, Ea is the activation
energy, and ν is an attempt frequency associated with the event.
The activation energy and attempt frequency can be estimated
by fitting Eq. (1) to measured rates of activation at different
temperatures in an Arrhenius plot. With a known estimate
of the attempt frequency, the activation energy is given by
rearranging Eq. (1) as

Ea = kBT ln(ν〈ta〉). (2)

The dislocation moves as a result of an externally applied
shear stress. The stress is more appropriately given in terms of
an effective stress on the obstacle due to the pinned dislocation
[18], given by

τeff =
(

1 + L − D

D

)
τappl − L − D

D
τf . (3)

Here, L is the obstacle spacing in the row of obstacles, and D is
an activation length given by the missing segment of the pinned
dislocation. Here, we use D = 20 Å, i.e., the approximate
diameter of the void. τf is the stress required for the dislocation
to move through the lattice (friction stress), which in this case
is negligible.

For dynamic simulations, the activation time is directly
dependent on the chosen strain rate. The concept of critical
stress was introduced by Monnet et al. [18,25] as the effective
stress averaged over a given stress history in the activation
period, according to

τC = kBT

Va
ln

〈
exp

(
Vaτeff

kBT

)〉
ta

, (4)

where Va is an activation volume. The activation energy
corresponding to the activation time can therefore be evaluated
as a function of the critical stress at a given temperature. In the
case of constant applied stress, τC is simply equal to τeff .

For stresses relatively close to the critical unpinning stress,
the stress dependence of the activation energy of dislocation
unpinning typically follows an equation in the form [26]

Ea = E0

[
1 −

(
τ

τ0

)q]p

. (5)

E0 is a limiting energy parameter at τ = 0, which is not
necessarily equal to the total mechanical energy barrier, as
the model is not accurate at very low stresses. τ0 is the critical
stress at 0 K, and the parameters p and q depend on the
stress profile of the obstacle close to the critical stress. In the
original derivation by Mott and Nabarro, q = 1 and p = 3/2
[27]. However, other choices for the functional form of the
stress profile lead to other values of q and p [28]. In this work,
instead of relying on a choice of shape of the stress profile, we
keep q = 1 fixed and use p as a fitting parameter.

III. RESULTS

Assuming that the total energy barrier associated with a
dislocation pinned to an obstacle is independent of temper-
ature, given constant mechanical work on the dislocation,
the remaining energy required by thermal activation is also
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FIG. 3. Activation energy as a function of temperature from
simulations with constant τC (constant applied stress) and constant
τ ∗. The error bars correspond to the standard errors of the mean
activation times.

temperature-independent. However, as the mechanical work is
provided in the form of an applied shear stress, the temperature
dependence of the elasticity of the material will result in a
temperature-dependent amount of work done on the system.
We found that the softening of iron at higher temperatures
results in an increase in the supplied mechanical work that
cannot be neglected. As a good approximation, the shear
softening can be accounted for by normalizing the critical
stress as

τ ∗ = G0

G(T )
τC, (6)

where G(T ) is the specific shear modulus of the system
at temperature T , and G0 = G(T = 0). The values of G at
different temperatures are given in Appendix A.

Figure 3 shows the activation energy in the temperature
interval studied with a constant applied stress. The figure
illustrates the need to account for the elastic softening of
iron as the temperature is increased. With a constant applied
stress at different temperatures, the measured activation
energy is clearly temperature-dependent. Accounting for the
temperature dependence of the shear modulus of the system
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FIG. 4. Arrhenius plot to determine an average activation energy
and attempt frequency from the simulations with constant τ ∗.
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FIG. 5. Activation energy as a function of stress at constant
temperature (800 K).

according to Eq. (6), and carrying out simulations with a
constant τ ∗, results in a (within the statistical uncertainty)
temperature-independent barrier. Using the obtained average
activation times, the activation energy and attempt frequency
at a constant τ ∗ can be determined in an Arrhenius plot, shown
in Fig. 4. The fitted Arrhenius line is also plotted in Fig. 3. The
obtained value of 0.93 ps−1 for the attempt frequency is used
in all calculations of the activation energy.

Figure 5 shows the stress dependence of the activation
energy in the measured stress interval at constant temperature
(800 K). The behavior is, to a good approximation, linear.
The discrepancy of the last two (high stress) points from the
linear relationship is due to the unpinning times becoming
too small to be described by an Arrhenius behavior. This can
be illustrated by the cumulative unpinning probability as a
function of time, as seen in Appendix B. Accounting for the
shear softening, all simulations with a constant applied stress
can be shown to follow a similar linear behavior as a function
of τ ∗ in the studied stress interval. Figure 6 shows all data
obtained from the constant stress simulations. An approximate
value for the activation volume can be obtained as the slope of
the linear fit according to Ea = E0 − Vaτ

∗ [18]. The obtained
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FIG. 6. Activation energy as a function of τ ∗ at different
temperatures.
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FIG. 7. Combined data for statically (τappl = const) and dynam-
ically calculated activation energies as a function of τ ∗. The data
follow Eq. (5) with τ ∗

0 = 4.4 GPa, E0 = 3.142 eV, and p = 2.566.

activation volume is Va = 70.1 Å
3

and is used in the calculation
of the critical stresses in the dynamic simulations.

Figure 7 shows the results of the dynamic simulations,
where the critical stresses τ ∗ were calculated according to
Eqs. (4) and (6). The results are combined with the data
obtained from the constant stress simulations (Fig. 6) and fitted
to Eq. (5). τ0 was kept fixed to 4.4 GPa, a value slightly above
the unpinning stress of the 10 K dynamic simulations. The
obtained fit follows Eq. (5) with E0 = 3.142 and p = 2.566.

The effect of the elastic softening on the activation energy
at different temperatures can be illustrated by the fitted Eq. (5)
as a function of the unnormalized critical stress τC. Figure 8
shows the activation energy as a function of τC, with Eq. (5)
plotted at different temperatures using Eq. (6). From the figure
it is clear that the temperature effect is significant and should
therefore be accounted for using the softening of the specific
shear modulus.
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FIG. 8. The stress dependence (in terms of τC) of the activation
energy at different temperatures, given by the fit to Eq. (5) in Fig. 7.
The circles are the results from static simulations, the triangles are
results from dynamic simulations at the lower investigated strain rate,
and the diamonds are from the simulations with the higher strain rate.
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FIG. 9. Unpinning stress as a function of temperature for different
void intersection heights (left) and illustrations of the void intersection
heights (right). Each stress value is the average of three simulations.

Figures 9 and 10 show the results from the simulations at
different void intersection heights. The critical applied stress
required for the dislocation to unpin at different intersection
heights, as a function of temperature, is given in Fig. 9. The
intersection heights relative to the void are also illustrated.
Figure 10 shows the calculated activation energies as a function
the normalized stress τ ∗. The activation volume, length, and
the attempt frequency obtained in the static simulations were
used when determining the critical stress and activation energy,
but scaled according to the new pinning geometry of the
void intersection. The new activation lengths were calculated
with the assumption that the void is a perfect sphere, and
they are 18.26 Å for z = 4.1 Å, 15.63 Å for z = 6.2 Å,
and 10.85 Å for z = 8.4 Å. The last height corresponds to
the dislocation passing through the uppermost hollow plane
of the void. The scaled attempt frequencies and activation
volumes for the different intersection heights are ν = 1.02,

1.19, and 1.71 ps−1, and Va = 64.0, 54.8, and 38.0 Å
3

for
the given heights, respectively. However, it is worth noting
that the frequency and volume dependencies in Eqs. (2) and
(4) are weak, and the data shown in Fig. 10 are therefore
not sensitive to the exact values of ν and Va. The parameters
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FIG. 10. Activation energies as functions of normalized stress
τ ∗ for the different void intersection heights given by the dynamic
simulations. The dashed lines are fits to Eq. (5).

for the fits to the Mott-Nabarro-like Eq. (5) are E0 = 4.0 eV,
p = 2.73 for z = 4.1 Å; E0 = 3.4 eV, p = 2.3 for z = 6.2 Å;
and E0 = 6.4 eV, p = 4.83 for z = 8.4 Å. The corresponding
0 K critical stresses, τ0, are 4.6, 4.7, and 8.0 GPa.

IV. DISCUSSION

The static MD simulations allowed us to directly obtain
values for the activation energy at independently chosen
temperatures and applied stress values. However, due to the
limited available time scale in MD, the temperature and
stress ranges computationally available are fairly limited.
Some important parameters can nonetheless be extracted
and compared with theoretical estimations, and further used
in dynamical MD simulations. We found that the attempt
frequency, ν, close to the interface of the void is approximately
0.93 ps−1. The attempt frequency is usually taken as an order
of magnitude estimate, typically based on the Debye frequency
scaled by the activation length l (i.e., the length of the missing
segment of the pinned dislocation), and the length of the
Burgers vector according to ν ≈ νDb/l. Monnet et al. took
the lower frequency at the interface of a void into account
and used an attempt frequency equal to νDb/2l [18]. For a
2 nm void in iron, this results in attempt frequencies in the
range 0.5–0.8 ps−1 (depending on the exact activation length),
in good agreement with the value obtained directly from the
static MD simulations in this study.

By assuming that the activation volume can be obtained
approximately as the slope of the linear region in the stress
dependence of the activation energy, we obtained a value of

70.1 Å
3
. As a simpler estimate, the activation can be assumed

to be roughly equal to the volume spanned by the activation
length at the void interface and the Burgers vector according
to Va = lb2 [18]. Depending on the activation length, this

results in volumes in the range 90–125 Å
3
, in reasonable

agreement with the value estimated from the static MD data.
The agreement between the attempt frequency and activation
volume obtained from MD and values estimated by simple
arguments, suggest that the latter can be used to obtain
sufficiently good approximations when measured data are not
available.

From the static MD simulations, we found that the increased
applied mechanical work due to the softening of the specific
shear modulus drastically change the activation energy at
different temperatures, with a given applied shear stress. By
accounting for the shear softening according to Eq. (6), the
activation energy becomes independent of temperature, as is
generally expected and often assumed. The effect of shear
softening on the activation energies is easily obscured in
dynamic simulations with high strain rates, and has therefore
been ignored or neglected in earlier studies. Our results show
the importance of accounting for the elastic softening when
determining activation energies at different temperatures.
Furthermore, as the EAM potential cannot reproduce the
temperature dependence of the elastic constants at high
temperatures (see Appendix A), the shear softening effect on
the activation energy is likely even more pronounced than
observed here.
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Dynamic simulations are necessary to extend the limited
stress and temperature ranges possible in static simulations,
and determine a general form of the stress dependence of
the activation energy. Using the information obtained from
the static simulations along with the methods derived by
Monnet et al. [18,25], the static results are found to be in
good agreement with the dynamic results and follow a trend
similar to earlier studies of dislocation-obstacle interactions
[17,18,29]. The good agreement between the dynamic and
static simulations, provided that the elastic softening is
accounted for, can be seen as a strong validation of the methods
introduced by Monnet et al. Hence, dynamic simulations in
combination with the concept of critical stress [Eqs. (4) and
(6)] can be used to obtain a relationship between the activation
energy and stress for a given obstacle, with a few parameters
obtained from static simulations or theoretical estimations.

The obtained Mott-Nabarro-like equation for the stress
dependence of activation energy can be used in larger
scale simulation methods, such as dislocation dynamics. As
illustrated in Fig. 8, however, accounting for the softening
effect requires including an explicit dependence of the shear
modulus at the desired temperature. Using the fitted Eq. (5)
together with Eq. (6), the appropriate temperature-dependent
form of the activation energy as a function of the critical stress
(as plotted in Fig. 8) obtained in this study for a dislocation
passing through the center of a void in iron is then

Ea(τC,T ) = E0

(
1 − G0τC

G(T )τ0

)p

,

E0 = 3.142 eV,

p = 2.566,

τ0 = 4.4 GPa,
(7)

where G is the appropriate shear modulus for the shear system
[see Appendix A for G(T ) of the system in this study]. The
probability or rate of unpinning can then be directly determined
and used in e.g. a dislocation dynamics simulation at any
desired temperature.

Equation (7) is valid for an edge dislocation gliding through
the center of a void. The effect of the intersection height
relative to the obstacle on the critical unpinning stress was
previously studied in detail for voids and Cu precipitates in
iron [30]. We carried out dynamic simulations to study this
effect on the activation energy function. The dependence on
intersection height is relatively weak for a large part of the
void cross section, but is significant when the dislocation
passes very close to the top of the void. The different
geometry for the dislocation pinned at the top of the void,
with crystalline atoms above the dislocation line and the void
below, are seen to affect the effective unpinning stresses, and
the corresponding activation energy curve deviates strongly
from the other intersection heights. Although we only studied
positive intersection heights, i.e. when a smaller portion of
the extra atomic plane passes through the void, earlier studies
found the effects to be also similar for negative intersection
heights [30].

V. CONCLUSIONS

We have carried out molecular dynamics simulations of
an edge dislocation unpinning from a 2 nm void in α-Fe
by thermal activation. The activation energy as a function of
applied stress and temperature was systematically determined

by applying a constant shear stress and measuring the activa-
tion time. We found that the increased supplied mechanical
work due to shear softening of iron at higher temperatures
results in a non-negligible temperature dependence of the
activation energy. The temperature dependence is found to
be largely due to the temperature dependence of the specific
shear modulus.

Dynamic simulations with a constant shear strain rate were
carried out over an extended stress and temperature range.
The activation energy as a function of the critical stress was
determined using earlier derived methods. The results from
dynamic simulations were found to be in good agreement
with the static simulations, provided that the shear softening
is accounted for. The obtained relation between activation
energy and critical stress can be used in larger-scale simulation
methods, such as dislocation dynamics. The methods used here
should be applicable to other types of obstacles, and provide a
framework for systematically obtaining the activation energy
as a function of stress and temperature for any given obstacle.
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APPENDIX A: TEMPERATURE DEPENDENCE
OF THE SPECIFIC SHEAR MODULUS G(T )

Figure 11 shows the temperature dependence of the specific
shear modulus of α-Fe in the EAM potential by Ackland et al.
[21]. The shearing direction is [111] (y axis in Fig. 1) and the
shear plane [11̄0] (z axis), with the [112̄] direction along the
x axis. Each point is an average of three separate simulations.
The data are well described by the linear equation G(T ) =
aT + G0, with a = −0.0203 GPa/K and G0 = 71.3 GPa.
The simulation results are compared with experimental data
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FIG. 11. Temperature dependence of the specific shear modulus
in the [111] direction calculated with the potential by Ackland et al.
[21] and compared with experimental data [33,34].
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FIG. 12. Cumulative probability of unpinning as a function of
time according to Eq. (B1) at 800 K.

calculated using the temperature dependence of the elastic
constants cij . The relation between the elastic constants and
the specific shear modulus for a 〈111〉 direction is G =
(c11 − c12 + c44)/3 [31,32]. The experimental data for the
temperature dependence of the elastic constants are taken from
Refs. [33] and [34]. The increased temperature dependence at
around 800 K and above is attributed to the loss of magnetic
order close to the Curie temperature [34], an effect the EAM
potential cannot reproduce.

APPENDIX B: CUMULATIVE PROBABILITY
OF UNPINNING

Given an Arrhenius behavior, the cumulative probability
of activation (unpinning) as a function of time is expected to
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FIG. 13. Cumulative probability of unpinning as a function of
time according to Eq. (B1) at 800 K and different critical stresses τ ∗.

follow the exponential cumulative distribution

P (t) = 1 − exp

(
t

〈ta〉
)

. (B1)

The simulated cumulative probability distribution at a constant
applied stress can be directly compared with the expected
distribution. Figure 12 shows an example of the measured
cumulative probability and the corresponding exponential
distribution using the calculated mean activation time in
Eq. (B1). The measured probability of unpinning follows the
expected distribution, except at very low times. Figure 13
shows the cumulative distributions for all critical stresses at
800 K using the corresponding mean activation times.
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