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Abstract
In this paper a new interatomic potential based on the Kieffer force field and designed to
perform molecular dynamics (MD) simulations of carbon deposition on silicon surfaces is
implemented. This potential is a third-order reactive force field that includes a dynamic charge
transfer and allows for the formation and breaking of bonds. The parameters for Si–C and
C–C interactions are optimized using a genetic algorithm. The quality of the potential is tested
on its ability to model silicon carbide and diamond physical properties as well as the
formation energies of point defects. Furthermore, MD simulations of carbon deposition on
reconstructed (100) silicon surfaces are carried out and compared to similar simulations using
a Tersoff-like bond order potential. Simulations with both potentials produce similar results
showing the ability to extend the use of the Kieffer potential to deposition studies.

The investigation reveals the presence of a channelling effect when depositing the carbon
at 45◦ incidence angle. This effect is due to channels running in directions symmetrically
equivalent to the (110) direction. The channelling is observed to a lesser extent for carbon
atoms with 30◦ and 60◦ incidence angles relative to the surface normal. On a pristine silicon
surface, sticking coefficients were found to vary between 100 and 73%, depending on
deposition conditions.

(Some figures may appear in colour only in the online journal)

1. Introduction

Interest in plasma surface treatments has become more
and more pressing due to their efficient and non-polluting
use in surface etching, thin layer deposition or surface
functionalization. In order to thoroughly master plasma
surface treatment techniques, the understanding of the
plasma–surface interactions as well as the understanding of
the early stage growth is of prime importance. In this context,
molecular dynamics (MD) simulations are currently proving
themselves to be a valuable tool for a qualitative description
on these two points [1].

Another area of interest including similar problems to the
ones encountered in plasma surface treatments, in particular

sticking mechanisms in the sub-monolayer regime, is the
storing matter technique recently developed at the Centre de
Recherche Public—Gabriel Lippmann [2, 3]. This is a new
analytical technique where the sample sputtering is decoupled
from the subsequent secondary ion mass spectrometry (SIMS)
analysis step. Although SIMS analyses are highly sensitive
to trace elements, the method is known to have rather poor
absolute quantification capabilities because the ionization
probability of sputtered particles is strongly dependent on
the sample’s chemical composition. This so called matrix
effect can somewhat be overcome by the use and analysis
of standards, i.e. trace elements at a known concentration
and in the same chemical matrix as the sample, but it is
not always an easy or even possible task, depending on the
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sample nature. Instead, by collecting the sputtered sample
in the sub-monolayer regime on a known material called a
collector, the storing matter technique offers a new strategy to
control the matrix effect: the ionization probability depends
only on the collector composition, which makes quantification
in SIMS much easier. It is also worth noting that the
storing matter technique can be used on both organic [4] and
inorganic materials [5].

Since the storing matter technique involves the sputtering
of an unknown sample followed by its deposition on a
collector, it is important, if one wants to preserve the
sensitivity of the SIMS analysis, to collect as much material
as possible on the collector. It is therefore obvious that, as for
plasma deposition techniques, high sticking coefficients are
desirable during the deposition of atoms and/or clusters on
a known material. The sticking coefficient issue is brought
to an entire upper level when using the storing matter
technique to analyse samples containing two species or
more, as the stoichiometry should be conserved during the
sputtering/deposition step as much as possible. The safest way
to keep a consistent stoichiometry on the unknown sample
and on the collector is to have full control of the sticking
coefficients for all species.

The sticking coefficient is highly dependent on the
incoming particle (nature, incidence angle, energy) and on
the collector (nature, surface relief, crystallinity). It is of
prime importance to deepen our knowledge of deposition of
atoms/clusters processes in order to identify, for a specific
deposition species on a specific collector material, the best
conditions to have sticking coefficients as high as possible.

As already stated in the first paragraph of this paper,
MD simulations represent a valuable tool for the study of
plasma–surface interactions as well as of ion deposition
processes [1]. When dealing with low-energy impacts, MD
methods are much more suitable simulation tools than binary
collision methods [6] as they provide a fully deterministic
description of the system of interest over short periods of
time [7, 8]. All the interactions between the atoms being
deposited and the neighbouring atoms during the cascade
collision are thoroughly taken into consideration, which is
crucial when the projectiles have a low enough velocity
to feel their surrounding chemical environment. The down
side of MD methods is the relatively short timescales being
handled, normally limited to the nanosecond scale for the
longest simulations. This limitation can be overcome by using
kinetic Monte Carlo methods, but at the expense of tedious
descriptions and hence parameterizations of all events that
might happen [9].

We therefore consider MD simulations to be very well
suited to understand the deposition process of sputtered
particles on a collector within the storing matter scheme.
Firstly, the deposition process on the collector is executed at
low energy (not exceeding 50 eV). This means the force field
potential does not have to deal with situations too far from
the equilibrium state and high-energy specialized force fields
such as the ZBL repulsive force field [10] are not needed [11,
12]. Secondly, the deposition is done at the sub-monolayer
level, with a very diluted deposit on the collector matrix. As a

consequence, the amorphization of the collector is limited and
single impacts on a pristine crystalline surface can be used as a
first approximation to model the first stages of the deposition.

This study presents the very first steps towards the
simulation of storing matter analyses of alloy materials such
as WC, TiC, or TiCN, using silicon wafers as collector. Within
this framework, the carbon–silicon interactions play a central
role and we use MD simulations with the reactive force field
developed by John Kieffer and co-workers [13–16] to gain a
better understanding of the interactions between carbon and
silicon surfaces. Kieffer’s force field is newly developed and
allows for the possibility to account for the breaking and
formation of bonds as well as for a dynamic charge transfer
between pairs of atoms. A Kieffer force field parameter set
is available in the literature for Si–Si interactions [16, 17],
but is missing for Si–C and C–C interactions. The first part
of this paper therefore presents a newly derived parameter
set for the C–C and C–Si interactions, suitable for Kieffer’s
force field. The new force field is tested on its abilities to
model several physical properties of diamond and silicon
carbide, as well as to compute the formation energy of several
point defects in these structures. In order to further check
the suitability of our potential for carbon interaction with
silicon surfaces, we present in the second part of this paper
a comparison of low-energy carbon deposition (from 1 to
50 eV) at various incidence angles on a Si(100) surface
using our new Kieffer potential sets and the well-established
Erhart–Albe potential [18]. In addition, a comparison with
carbon adsorption sites as computed using DFT methods is
also presented.

2. Computational details

2.1. Kieffer interatomic potential

The reactive force field developed by Kieffer and his
co-workers [13–16] has been used throughout this paper. This
force field has been specially built to allow the formation
and breaking of bonds in the system via an adaptable and
environment sensitive charge transfer routine and via an
angular term that dynamically adapts itself to the valence of
the atoms. The analytical form of the force field includes a
Coulomb term, a Born–Huggins–Mayer repulsive term and a
three-body term:

φi = qi

N∑
j=1

qj

4πε0rij
+

NC∑
j=1

Cije(σi+σj−rij)·ρij

+

NC−1∑
j=1

NC∑
k=j+1

(ϕij + ϕik)(m · e−γijk(θ−θijk)
n
− (m− 1)).

(1)

Within this framework, qi represents the charge of the particle,
ε0 is the dielectric constant of the vacuum, and rij is the
interatomic distance. The charge transfer term allows for the
atomic charge to be modified following qi = q0

i −
∑NC

j=1δijζij,

where q0
i is the charge of the isolated atom, δij is the

amount of charge that can be transferred between two atoms,
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and ζij =
1

1+eb(rij−a) is the charge transfer function (a and

b are empirical parameters). Covalent bonding is modelled
by (ϕij + ϕik)(m · e−γijk(θ−θijk)

n
− (m − 1)), where ϕij =

−Cij
κij
ηij
ζije(λij−rij)ηij , θ̄ is the equilibrium bond angle, θijk is

the angle formed by the bond vectors rij and rik, and m is a
parameter enabling repulsive forces at bond angles far from
equilibrium. Furthermore, Cij = Aij(1 +

zi
ni
+

zj
nj
), where zi is

the valence and ni is the number of electrons in the outer shell
of atom i. A more detailed discussion of the force field can be
found in [16] and references therein.

The parameter set describing the Si–Si interaction is
available in the literature [16, 17]. The parameter sets for C–C
and Si–C interactions will be presented in the next paragraphs.

2.2. Erhart–Albe interatomic potential

The interatomic potential by Erhart and Albe [18] is a
Tersoff-type analytical bond order potential [19] for Si–C
systems. The potential is short-ranged and accounts only
for nearest-neighbour interactions by employing a cutoff
function, which drops the atomic interaction to zero in
between the first and second nearest-neighbour distance. In
this paper, the potential has been utilized with the Si–I
parameter set for MD simulations of carbon deposition on a
(100) silicon surface to compare with the Kieffer potential
results.

2.3. Genetic algorithm for parameter sets generations

For the generation of C–C and C–Si parameter sets within
the Kieffer potential framework, a similar methodology
to the one used in [17] for the Si–Si parameter set
generation has been used. By combining MD simulations to
a genetic algorithm, a large number of parameters sets are
evaluated and optimized until a set with the desired accuracy
is found. For each individual (i.e. each trial parameter
set) in the genetic algorithm population, MD simulations
in the isothermal–isobaric (NPT) ensemble at 300 K on
the experimental bulk crystalline structure representing the
atomic pairs of interest are run and the simulated physical
parameters are compared to their experimental values.
According to their ability to match experimental data, each
individual is scored and a ranking table is built. Individuals in
the bottom half of the table (poorest ranking) are replaced by
new individuals. Parameters from the top half individuals are
mixed to create the new individuals, mimicking the evolution
of a population following Darwin’s law, where only the fittest
individuals get the chance to give part of their ‘genes’ to the
next generation. A pre-evaluation test is performed each time
a new individual is created. This pre-evaluation test consists
in ensuring that the parameter sets give a correct bond length
and bond energy for the bond corresponding to the atom
pair being fitted. For the evaluation process, performed after
the MD runs, the fitness of each individual is evaluated by
comparing the density, the radial distribution function, the
phonon vibration frequencies and the elastic constants of its
crystalline structure.

• The density is calculated by averaging the simulated
density over the last 10 ps of the MD simulation, which
allows us to avoid interference due to the initial relaxation
of the unit cell. The value is then simply matched against
the experimental density.
• The evaluation of the radial distribution is done by

localizing the position of the first peak, corresponding
to the bond length of interest. The score is defined as
the percentage of the difference between the bond length
derived from the experimental unit cell size and the
position of the first peak on the radial distribution function
graph.
• The phonon vibration frequencies are evaluated by

analysing the position of a number of peaks in the phonon
density of state spectrum. The position of the first peak has
to be within some range corresponding to the experimental
value of the vibration frequencies. A stability factor has
been added to the phonon density curve evaluation in order
to penalize very chaotic curves containing many small
peaks.
• To compute the elastic constants eight additional MD runs

are necessary. The three independent elastic constants, C11,
C12, C44, are evaluated by measuring the evolution of the
internal stress tensor versus strain on the lattice. For C11
and C12, the equilibrated lattice constants are incrementally
increased by 1% in the [100] direction. Four MD runs in
the NVT ensemble are performed and the outputted stress
components σ11 and σ22 are plotted against the strain ε11.
Linear regression evaluation by the least square method is
then performed to estimate the slope of the line, which is
C11 for σ11 and C12 for σ22. C44 is evaluated using the
same methodology but by following σ23 against the strain
ε23. The computed values for C11, C12, and C44 are then
compared to their experimental values.

2.4. DFT calculations

All first principles calculations are performed with the
SIESTA DFT package [20] using the Perdew–Burke–
Ernzerhof gradient approximation (GGA-PBE) [21]. A
Troullier–Martins pseudo-potential is used for the represen-
tation of carbon and silicon ionic cores [22]. The basis set is
DZP as described in [23]. A k-point mesh of 2 × 2 × 1 and
a mesh cutoff of 150 Ryd are used for the 2 × 2 × 4 surface
supercell. The slabs are separated by a 38 Å vacuum gap. The
self-consistent cycles are performed until an energy threshold
of 10−4 eV is met. Force and displacement thresholds for the
conjugate gradient geometry optimization procedure were set
to 0.04 eV Å

−1
and 0.026 Å, respectively.

3. Carbon–carbon parameter set

The parameter set for the C–C interactions within the
Kieffer force field framework is determined using the genetic
algorithm, as described in [17]. The pre-evaluation phase for
each generated parameter set checks that the bond energy is
within 5% of 7.37 eV [24] and that the bond length is within
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Table 1. Physical properties for diamond and silicon carbide as reported in the literature and as computed using the C–C and SiC parameter
sets for the Kieffer force field.

Diamond Literature This work

Density (g cm−3) 3.51a 3.51
C–C bond length (Å) 1.54b 1.54
C11 (GPa) 1075c 1082a 1151
C12 (GPa) 125c 127a 231
C44 (GPa) 577c 635a 481
Phonon frequencies (cm−1) 552d See figure 1

803d

1035d

1200–1300d

1331d

Silicon carbide
Density (g cm−3) 3.21e 3.21
C–C bond length (Å) 1.88f 1.88
C11 (GPa) 390f 382a 254g 357
C12 (GPa) 142f 145a 225g 100
C44 (GPa) 256f 240a 66g 143
Phonon frequencies (cm−1) 310h See figure 2

550h

750h

850h

a MD—Erhart [18].
b DFT + Exp: [25].
c Exp. [26].
d Exp. [27].
e Exp. [28].
f DFT + Exp. [29].
g MD—Gao [30].
h DFT [31].

5% of 1.54 Å [25]. MD simulations for each parameter set
are run using a 3.567 Å wide diamond unit cell as starting
point; the simulation time step is 1 fs and the total simulation
time length is 200 ps. The individual evaluation phase assesses
each parameter set according to its ability to reproduce the
diamond density, C–C bond length, elastic constants, and
phonon density of state, as reported in table 1. It should be
noted that the diamond phonon density of state presents a very
broad band from 400 to 1400 cm−1 [27], containing several
more or less marked peaks that are reported in table 1.

The generated Kieffer C–C parameter set, presented in
table 2, performs very well in modelling the density and
the C–C bond length as measured by the radial distribution
function. Other physical properties such as the elastic
constants and the phonon vibrations are on the other hand
more complex to reproduce as they involve the internal stress
of the crystal. Thus, in order to favour a greater transferability
of the potentials (SiC parameters, . . .), we have decided to
allow the simulated physical properties to diverge a little from
their experimental value at the condition of meeting a better
general agreement between all screened physical properties.
Although the C12 elastic constant is not perfectly reproduced,
C11 and C44 are well modelled. The simulated phonon density
of state spectrum computed on an 8 × 8 × 8 supercell
is presented in figure 1. In agreement with the literature,
the phonon spectrum is a broad band ranging from 400 to

Figure 1. Comparison between the computed phonon density of
states of diamond using Kieffer potential and the experimental
data [27].

1300 cm−1. The peak that was reported in the literature at
1035 cm−1 [27] appears in our calculation at 900 cm−1. The
vibration frequencies reported at 1200 and 1331 cm−1 [27]
are also underestimated in our simulation, as they appear at
1000 and 1100 cm−1. On the overall, the agreement with
the literature data is moderate, as the most intense bands are
shifted towards lower frequencies.
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Table 2. Parameters for the Si–Si and Si–C interactions.

Element σi (nm) ni zi q0
i

Si 0.101 8 +4 0
C 0.095 8 +4 0

Pair Aij (10−19 J) ρij (nm−1) λij (nm) ηij (nm−1) κij (nm−1)

Si–Si 1.80 91.00 −1.31 2.00 91.00
Si–C 0.38 39.22 −10.99 0.22 36.59
C–C 0.012 87.22 1.24 1.79 140.31

Charge transfer δij (e) a (nm) b (nm−1)

Si–Si 0.000 0.293 110.0
Si–C 0.095 0.243 47.89
C–C 0.000 0.199 85.61

Triplet γijk (rad−n) θ (rad) n m

Si–Si–Si 4.60 1.91 4 4
Si–C–Si 1.20 1.91 2 1
C–Si–C 0.55 1.91 2 1

As a further check for the Kieffer C–C interatomic
potential, the formation energies of several point defects
in the diamond structure are also computed and compared
to the literature data (table 3). A 5 × 5 × 5 unit cell is
used to compute the defect formation energies. Among the
possible defects reported, the vacancy (V) and three types
of interstitial defects (IT for the tetrahedrally coordinated, IS
for the 〈100〉 split, and IB for the bond-centred interstitial
atom) are chosen for this comparison. There is an excellent
agreement between our computed vacancy formation energy
(7.40 eV) and the ones reported in DFT investigations
(7.51 and 7.20 eV [32, 33]). It should also be noted that
the Erhart–Albe potential predicts a formation energy of
5.24 eV [18], lower than the DFT values. DFT investigations
predict that interstitial defects are significantly less favourable
than vacancies [32]: with 15.8 and 16.7 eV, IB and IS have
similar defect formation energies, while, with 23.6 eV, IT has
a much higher formation energy. The Erhart–Albe potential
predicts formation energies for IT and IB, in line with DFT
(23.90 eV and 16.06 eV, respectively), but, with 10.21 eV, IS
is predicted to be significantly favoured over other interstitial
defects [18]. Although computed formation energies using the
Kieffer potential are lower than the DFT values, we obtain a
better quantitative agreement than Erhart et al [18]. Formation
energies of IB (8.23 eV) and IT (8.60 eV) are predicted to
be similar and to be higher than the vacancy (7.40 eV). The
formation energy of IT (15.32 eV) is predicted to be much
higher than any other defects.

4. Silicon–carbon interactions

As for the C–C interactions, a genetic algorithm [17] is used
to determine the Si–C parameter set. The pre-evaluation phase
for each parameter set generated by the genetic algorithm
checks that the bond energy is within 5% of 6.4 eV [29]
and that the bond length is within 5% of 1.88 Å [29]. MD
simulations for each parameter set are run using a 4.359 Å
wide 3-C silicon carbide (zinc-blende structure) unit cell as

Table 3. Formation energies (eV) of point defects in diamond and
silicon carbide. Within diamond point defects, V stands for
vacancies; IT, for tetrahedral interstitial; IS for 〈100〉 split
interstitial; IB, for bond-centred interstitial. Within the silicon
carbide point defects, VX stands for a vacancy of specie X; XY, for
substitution of lattice specie Y by specie X; XTY, for tetrahedral
interstitial X surrounded by four species Y; XSY, for a specie X
〈100〉 split interstitial near a specie Y.

Defect Formation energies (eV)

C

DFT MD

[32] [33] [18] This work

V 7.2 7.51 5.24 7.40
IT 23.6 23.65 23.90 15.32
IS 16.7 10.21 8.60
IB 15.8 16.06 8.23

SiC

DFT MD

[34] [18] [18] [18] [30] This work

VC 5.48 5.11 4.5 1.90 2.76 6.36
VSi 6.64 8.01 8.2 4.55 3.30 8.47
CSi 1.32 4.06 3.8 2.42 1.69 18.51
SiC 7.20 4.46 4.6 2.48 7.79 11.08
CTC 6.41 7.78 12.4 12.63 4.65 7.71
CTSi 5.84 7.21 10.0 9.38 4.32 12.10
SiTC 6.17 4.80 13.3 17.55 3.97 8.71
SiTSi 8.71 7.34 13.6 17.30 6.77 8.81
CSC 3.16 4.53 4.78 3.04 10.62
CSSi 3.59 4.49 8.31 3.43 9.49
SiSC 10.05 8.68 14.14 7.54 7.22
SiSSi 9.32 7.95 20.90 5.53 12.20

starting point; the simulation time step is 0.5 fs and the total
simulation time length is 50 ps. The parameter controlling
the amount of charge transfer is determined to reflect the
Mulliken atomic charges computed in silicon carbide by
DFT (0.76e). The individual evaluation phase assesses each
parameter set according to its ability to reproduce the silicon
carbide density, Si–C bond length, elastic constants, and
phonon density of state as reported in table 1. It should be
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Figure 2. Comparison between the computed phonon density of
states of silicon carbide using the Kieffer potential and the DFT data
reported in [31].

noted that the silicon carbide phonon density of state presents
a couple of broad bands from 250 to 450 cm−1 and from 500
to 650 cm−1. In addition to these low frequency broad bands
two sharper bands are located at 750 and 850 cm−1 [31].

As for the C–C parameters, the Kieffer C–Si parameter
set, presented in table 2, performs very well in modelling the
density (3.21 g cm−3) and the C–Si bond length (1.88 Å)
as measured from the radial distribution function. Phonon
vibration frequencies and elastic constants are much more
difficult to reproduce exactly with a single transferable
potential. Therefore, as for the C–C parameters, we allow an
error margin for those physical properties instead of focusing
on modelling exactly one property regardless of the other
ones. The simulated elastic constants are 357 and 100 GPa,
for C11 and C12 in good agreement with experimental data.
With 143 GPa, the C44 elastic constant deviates more from
the experimental value. The simulated phonon vibrations
computed using an 8×8×8 supercell and presented in figure 2
show a main large band centred between 200 and 600 cm−1,
comprising several peaks matching the experimental vibration
frequencies 310 and 550 cm−1. At higher frequencies two
sharp peaks can be observed. The first peak at 900 cm−1

corresponds to the reported peak 750 cm−1, while the second
at 1000 cm−1 corresponds to the peak at 850 cm−1 in the
literature [31]. There are indeed some quantitative deviations
from our simulated vibration frequencies and elastic constants
compared to the experimental values. It is, however, known
that if one focuses the parameterization of a force field
parameter set to fit perfectly one physical property, large
deviations may be expected in the description of other
physical properties. For example the Gao Si–C parameter
set [30] was designed to reproduce defect energies from
plane wave DFT calculations [34], but, although this potential
reproduces nicely the DFT results (table 3), it has been shown
to perform poorly when computing silicon carbide elastic
constants [18] (table 1).

In order to verify further the transferability of our Kieffer
potential, the energies of several point defects in silicon

carbide have been computed and compared to literature data.
Among the possible defects in silicon carbide, the two types
of vacancies (Vc and VSi), the two antisite defects (CSi and
SiC) and eight interstitial defects where the interstitial atom
is tetrahedrally coordinated by four C or Si atoms (CTSi,
CTC, SiTC, and SiTSi) and where the interstitial atom is in a
〈100〉 split position (CSSi, CSC, SiSC, and SiSSi) have been
considered. Defect formation energies are computed using a
5 × 5 × 5 unit cell, following the methodology proposed by
Nord et al [35]. Results are presented in table 3. From the
literature, one can see that, unlike for diamond, there are rather
large discrepancies in the defect formation energies computed
with DFT methods [18, 34]. It should also be noted that as the
potential developed by Gao et al [30] focuses on modelling
point defects, there is a relatively good overall agreement with
DFT results in [34]. The Erhart–Albe interatomic potential,
on the other hand, seems to be less able to match DFT data
for interstitial defects, even though it performs very well for
other silicon carbide physical properties [18]. The Kieffer
potential performs very well for both types of vacancies
as they are better reproduced with our potential than with
others: carbon and silicon vacancies are predicted to be 6.36
and 8.47 eV, in very good agreement with the DFT values
reported in [18] (5.11 eV and 8.01 eV, for carbon and silicon
respectively), while Gao’s potential, which was specifically
designed to model point defects, gives lower formation
energies of 2.76 and 3.30 eV. Some discrepancies start to
appear when considering antisites and interstitial defects.
Based on the different trends obtained by DFT methods, it
is, however, difficult to precisely assess the quality of our
potential. The Kieffer potential overestimates the formation
energy of the CSi defect, as it predicts a formation energy of
18.51 eV, while all other methods report values ranging from
1.62 to 4.06 eV [34, 18]. This discrepancy probably originates
from an overestimation of the Si–C bond energies at distances
longer than the equilibrium bond length. On the other hand,
the Kieffer potential is in relatively good agreement with the
literature for the formation energies of silicon interstitial 〈100〉
split. It predicts energies of 7.22 eV and 12.20 eV for SiSC and
SiSSi, respectively, while DFT predicts 8.68 and 7.95 eV [18].
The performance of our potential on this type of point defect
is better than the Erhart–Albe potential, as the latter largely
overestimates 〈100〉 split interstitials (14.14 eV and 20.90 eV
for SiSC and SiSSi respectively). Despite these deviations,
when comparing the formation energies of interstitial defects,
the Kieffer interatomic potential generally stands within the
same range of performance as the ones computed with the
Erhart–Albe or the Gao potentials.

As we are dealing with impact processes, and although
the energies considered are low, it is expedient to check
how the repulsive part of the C–Si potential is reproduced as
compared to the Erhart–Albe potential [18] and to in-house
calculation using DFT methods (figure 3). Within the energy
range of interest for this study (i.e. lower than 50 eV) only
small energy differences can be seen between Erhart–Albe’s
and our potential. The differences in energy start to be more
noticeable at energies higher than 50 eV. When increasing
the energy, repulsive forces become in general steeper
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Figure 3. Comparison of evolutions of potential energies and
forces at short distances for Kieffer and Erhart–Albe potentials and
for DFT.

with the Erhart–Albe potential than Kieffer’s one. They,
however, remain within the same range at low energies. Both
interatomic potentials show a reasonable agreement with DFT
data, albeit with slightly lower energies and forces.

5. Carbon deposition

5.1. Computational settings

The new Si–C parameter set is used to investigate carbon
deposition processes on crystalline (100) silicon surfaces. In
order to double check the results generated with Kieffer’s
force field and to validate the Si–C potential for the specific
application of carbon deposition on silicon surfaces, MD
simulations of carbon deposition using the Erhart–Albe
potential [18] are also carried out for selected energies and
incidence angles.

Within the Kieffer force field framework, the simulation
cell is a fixed 8 × 8 × 8 supercell containing 4096 Si
atoms. Periodic boundary conditions are applied in the three
directions of space and a 17 nm vacuum gap in the z
direction is applied to separate the silicon surface from its
image. The surface is relaxed during 100 ps, resulting in the
formation of silicon dimers on the surface. There is some
randomness at the surface and the dimers are not all perfectly
aligned. A carbon atom is then added randomly at a fixed
distance above the surface with a defined downward velocity.
Velocities are determined as to correspond to energies of
1, 3, 5, 7, 9, 10, 20, 30, 40, or 50 eV at 0◦, 15◦, 30◦,
45◦ and 60◦ incidence angles (angles defined with respect to
the surface normal, also called elevation angles). The azimuth
angles, which, together with the incident angle, define the
initial directions of the carbon atom, are randomly set for
each simulation. For each impact energy and incidence angle,
100 independent simulations (i.e. each simulation corresponds
to one C impacting on a pristine surface) are performed in
order to have meaningful statistics. The incoming carbon
atom bears no charge, since adding a charged particle would
alter the neutrality of the simulation box, resulting, with
the periodic boundary conditions, in a system having an

unphysical infinite charge. The MD time step is set to 0.2 fs
for a total simulation length of 6 ps. This short timescale
is enough for the system to dissipate the impact energy,
considering that it does not exceed 50 eV. No energy control
was applied in the simulations.

Within the Erhart–Albe potential framework, the sim-
ulation supercell is 8 Si lattice constants thick with a
reconstructed (100) surface of 12 rows of 6 perfectly aligned
dimers, consisting of 4608 Si atoms in total. As with the
Kieffer potential, a carbon atom is placed randomly at a
fixed distance above the surface, and deposited with a definite
velocity and angle of incidence; in this case, velocities
corresponding to energies of 1, 3, 10, 30 and 50 eV and
incidence angles of 0◦, 30◦ and 60◦ are considered. For each
combination of energy and incidence angle, the simulation
is independently repeated 300 times, with different random
starting point and azimuth angle for the carbon atom. Before
deposition, the silicon lattice has been equilibrated at a
temperature of 300 K, using the Berendsen thermostat [36]
with a time constant of 20 fs. The thermostatting is only
performed at the boundaries. A relatively short value of 20 fs
has been found to be good for efficient damping of most
of the heat wave emanating from the collision cascades. On
the other hand, we have previously shown that the results of
cascade calculations are not sensitive to the boundary cooling
time constant [37]. The carbon depositions are simulated with
a maximum time step of 1.8 fs for a total time of 5 ps.
The difference in the time step between the Kieffer and
Erhart–Albe potentials is explained by the use of a constant
time step for the former and a variable time step [38] for the
latter set of simulations.

5.2. Results

5.2.1. Backscattering of carbon atoms. The proportions
of carbon being implanted, deposited and backscattered are
computed using both Kieffer and Erhart–Albe interatomic
potentials at selected impact energies and angles. A carbon
atom is considered as being implanted after impact with the
silicon surface if its position at the end of the MD simulation
is beneath a virtual plane located 0.5 Å below the topmost
silicon atom of the surface. Carbon atoms located above
that virtual plane at the end of the MD simulation and not
reflected by the surface are considered as being deposited.
Blue lines in figure 4 show the backscattering yields for
carbon deposition on a flat surface at different deposition
angles and energies. For incidence angles of 0◦, 15◦, and 30◦,
a backscattering yield lower than 11% is always observed.
Increasing the incidence angle to 45◦ and 60◦ will gradually
lead to a significant direct loss of matter at higher energies
via backscattering of the incoming particle upon impact with
the silicon surface. Using the Kieffer potentials and with an
incidence angle of 0◦, the backscattering yield stands between
0% and 8%, while it is in the range 0–5%, 0–7%, 0–14%,
and 0–27% for 15◦, 30◦, 45◦, and 60◦, respectively. The
backscattering yields for 0◦ and 30◦ are very close to the ones
computed with the Erhart–Albe potential, as the observed
range with this potential is 0–5% for 0◦ and 2–11% for 30◦. At
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Figure 4. Ratios between deposition (black), implantation (red) and
backscattering (blue). Deposition is defined as a carbon atom on top
of the silicon surface, while implantation means a carbon atom
beneath the silicon surface plane.

60◦, the agreement between the two potentials is not as good
since the Erhart–Albe potential predicts higher backscattering
yields at low deposition energies. This little discrepancy

between the potentials at 60◦ can also, albeit to a lesser
extent, be observed in the deposition and implantation yields.
Here it should be recalled that there is a small difference
in the reconstruction of the silicon surfaces with the Kieffer
potential (presence of randomness) and with the Erhart–Albe
potential (dimers aligned). Tests using a non-reconstructed
(100) surface and the randomly reconstructed (100) surface
with the Erhart–Albe potential at 60◦ incidence angle enables
us to rule out an effect of the surface relaxation on the
deposition and backscattering rates. We presume that the
slight discrepancy at 60◦ is due to the fact that the two force
fields use very different approaches and hence the forces
acting between atoms may be different. From figure 3, it
is seen that the Erhart–Albe potential allows Si–C bonds to
be shorter at low energies but with slightly steeper repulsive
forces, which increases the probability for backscattering at
grazing angles.

5.2.2. Implantation of the carbon. Next, we address the
issue of whether the carbon deposits above the surface,
or goes beneath the first silicon plane of the surface. To
answer this question, figure 4 presents for each impact
angle the proportion of carbon atoms that stay on the
surface (deposited—black lines) or go deeper into the
material (implanted—red lines). As could be expected,
the lower the energy, the more likely is deposition
compared to implantation. At 1 eV and for all angles, the
deposition/implantation ratios are within 83/17 and 95/5 for
both potentials, meaning a vast majority of the carbon atoms
stay on top of the surface. When increasing the energy of
the carbon, the ratio deposition/implantation rapidly drops.
Broadly speaking, and for all incidence angles tested with the
Kieffer potential, the implantation rate overcomes deposition
when the energy of the carbon atom is higher than 5 eV.
Increasing the energy to values higher than 20 eV does not
have an impact on the deposition/implantation ratios, as most
of the carbon atoms are implanted.

In figure 5 the dispersion of deposition depths for selected
energies and incidence angles are presented. Figure 6 shows
the average depth reached by the carbon projectile for each
impact and incidence angle. The depth is computed by
taking the difference in z coordinates of the impact point
on the substrate and of the final configuration of the carbon
atom. Backscattered atoms are ignored whenever averages
are computed. Both potentials are presented in figures 5 and
6 and no major methodological effects can be observed.
The higher backscattering yields that have been observed
in figure 4 for deposition at low energies coupled with a
60◦ incidence angle have no impact on the depth reached by
the carbon. Instead, the largest differences in the implantation
depths between the two potentials are observed for the higher
deposition energies at 30◦ and 60◦ incidence angles. These
divergences stay within the error bars and are not systematic,
since at 50 eV–60◦ the Erhart–Albe potential provides a
slightly deeper implantation and at 50 eV–30◦, it is the
Kieffer potential that provides the deepest implantation. From
figure 5, it can be seen that the shallower implantation for
the Kieffer potential at 50 eV–60◦ is due to a higher stopping
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Figure 5. Depth distributions computed with the Kieffer (red) and the Erhart–Albe (green) potentials for selected incidence angles and
energies.

power of the material at shallow depths. Similarly, the deeper
implantation at 50 eV–30◦ for the Kieffer potential is due
to a tail in the depth distribution extending deeper than for
the Erhart–Albe potential. The reasons for these discrepancies
will be discussed later in this paper.

At his point of the analysis it is already clear that the
limitation of the Kieffer potential to carbon sp3 hybridization
has no dramatic effect on the carbon deposition. Indeed a
large part of the carbon effectively goes beneath the surface
plane where carbon has the most possibilities to stay in
a sp3 configuration. The Erhart–Albe potential, being of a
bond order analytical form, naturally includes the different
carbon hybridizations. As seen above, the depth distributions
as computed with the two potentials are in fair agreement with
each other and the few discrepancies cannot be accounted for
the hybridization of the carbon atom.

Looking at figure 6, one can observe that the incidence
angle has no influence on the average depth of the deposited
carbon at energies up to 20 eV. The dispersion of depths for
the lower half of the deposition energies (figure 5) are also
very similar when comparing incidence angles at selected
energies, confirming the incidence angle does not influence
the depth reached by a carbon projectile having a kinetic
energy lower than 20 eV. At higher energies, this is no longer
true, since incidence angles of 30◦ and 45◦ lead to the deepest
mean deposition depth and incidence angles of 0◦ and 15◦ to
the shallowest. The average depths reached by deposition
performed at 60◦ incidence angle lie in between these two
extremes. The analysis of the depth dispersion on figure 5
brings some useful insights on the issue. The dispersions of
depths at 30 and 50 eV are very similar when comparing
simulations at 0◦ and 15◦ incidence angles. The most probable
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Figure 6. Evolution of the average depth versus the deposition
energy as computed using Kieffer and Erhart–Albe potentials. The
depths are computed as the differences in the z coordinates of the
impact location and the final location of the carbon atom.

depth reached by the carbon is 2.5 Å. The probability to find
the carbon atom at a selected depth then gradually decreases
when going deeper into the sample. For energies of 30 eV,
this probability virtually reaches 0 after a depth of 10 Å for
both incidence angles, while at 50 eV this point is reached at
17.5 Å for normal incidence and 20.0 Å for 15◦ incidence. At
incidence angles of 30◦ and 45◦, the situation is completely
different. The most probable depth at 30 eV is still located
within 2.5–5.0 Å for both incidence angles, but the absolute
probability to find a carbon at that depth is lower than the
absolute probability observed at normal and 15◦ incidence. In
addition, the tails of the distributions extend much deeper into
the sample (down to 15 Å at 30◦ incidence and to 20 Å at 45◦).
Looking at the depth distributions for simulations carried out
at 50 eV, the difference with the 0◦–15◦ incidence angles
is even more flagrant, as the depth distributions for 30◦ and
45◦ is nearly flat, with an almost constant probability to find
the carbon atom between depth 0 Å and depth 20 Å. In
addition, it should be noted that only few carbon atoms were
observed far deeper than 20 Å for the 30◦ and 45◦ incidences.
At the most grazing angle of 60◦, the shapes of the depth
dispersions computed with the Kieffer potential are between
the ones of 0◦–15◦ incidence angle and the ones of 30◦–60◦.
For both 30 and 50 eV energies, the most probable depth
is clearly at 2.5 Å but as for the 30◦–60◦ incidence angle
simulations, the tail extends very deep inside the silicon bulk
and few carbon atoms can be observed at depths much deeper
than 20 Å.

Raineri et al have reported that when implanting boron
and phosphorus in crystalline silicon at several directions,
the depth profiles present a single maximum intensity for
all directions except the (110), where a second intensity
maximum is observed at significantly deeper depths [39].
Similarly, as seen in the previous paragraph, when depositing
carbon at angles close to 45◦ incidence angles, part of the
flux is stopped at a shallow depth, while the rest of the flux
can reach a deeper part of the silicon sample. The reason
for these different behaviours in the dependence of the depth
distribution on the incidence angles is attributed to narrow

Figure 7. Accessible surface area for a 1.5 Å radius atom having a
trajectory at 45◦ from the (100) Si normal.

channels running through the bulk structure in the (110)
direction and its symmetry-equivalent directions. Part of these
channels indeed intersect the (100) surface plane with an angle
of 45◦ relative to the normal of the surface and are available to
the carbon projectile. Figure 7 shows the (101) projection of
the accessible surface area for an ion size 1.5 Å. The colouring
is set depending on the achievable depths and the channels
are clearly visible as black dots. As a consequence of this
orientation, only the carbons having an incidence angle close
to 45◦ are allowed to enter the channels. Carbon depositing
with an incidence angle of 0◦ and 15◦ are too far from this
45◦ optimum and are stopped at very shallow depths. Our
simulations also show that incidence angles of 30◦ and 60◦ are
still within the correct window, to allow the carbon to enter
the channels and reach a deeper part of the silicon sample.
One can argue that the probability for the carbon to enter the
channels depends on the cutoff distance for C–Si bonds within
the potentials, especially if they are too short as compared to
the channel size. It should however be noted that the cutoff
value for short range interactions is set to 3.0 Å for the Kieffer
potential and to 2.60 Å for the Erhart–Albe potential, i.e., in
all cases larger than the radius of the channels (∼2.25 Å).

As stated in the previous paragraph, there are four
equivalent directions to the (110) vector going through the
(100) plane, meaning that on an azimuth plane parallel to
the surface, four orthonormal channels meet the (100) plane
(figure 8). This explains why there is such a wide distribution
of achievable depths for 30◦, 45◦, and 60◦ incidence angles.
Carbon projectiles that do not possess the right azimuth
trajectory cannot enter the channel and are stopped at shallow
depths, while others will go deeper inside the silicon surface.
From the very flat depth distribution of simulations at 50 eV
and 45◦ incidence angle, we can conclude that the proportion
of atoms effectively entering the channels versus those not
entering is about 50/50, which sets the window on an azimuth
plane to enter the channel to about 45◦. This is supported by
experimental results reported in [39] where both maxima in
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Figure 8. 〈100〉 top view representation of the directions followed
by the (101) and (011) channels inside the silicon structure.

the intensities of the depth profiles in the (110) direction have
equal intensities.

Let us now take time to analyse deeper the reason for
the different depth distributions at 50 eV–60◦ observed with
Kieffer and Erhart–Albe potentials. It is known from figure 3
that energies and forces between carbon and silicon increase
faster at higher energies for the Erhart–Albe than for the
Kieffer potential. These steeper forces mean that it is easier for
the carbon atom to enter the channel when outside the correct
azimuth window, effectively widening it. With the weaker
repulsive forces of the Kieffer potential, the carbon is more
likely to form bonds with silicon atoms before being deviated
into the channels. This effect can also be observed, albeit to
a lesser extent, for deposition at 30◦. At 0◦ no differences
between the potentials can be observed because the channel
is completely out of reach for the carbon atom. This explains

the stronger stopping power at shallow depth for incoming
directions slightly out of the perfect channel window, i.e. 45◦.

5.2.3. Comparison with DFT. DFT calculations for carbon
adsorption have been performed on different sites on and
underneath the surface plane. On the surface, two adsorption
sites have been identified with very similar adsorption
energies of 7.26 and 7.16 eV. The most stable geometry is
when carbon adsorbs vis-á-vis of a surface silicon dimer,
creating bonds with three silicon atoms (figure 9(a)). The
three Si–C bond lengths are 1.76, 1.90 and 1.90 Å. On the
side of the silicon dimer where the carbon adsorbs, the dimer
is now only linked to the material through the carbon atom,
breaking two Si–Si bonds at the benefit of three Si–C bonds.
The other adsorption site (figure 9(b)) is located in between
two silicon dimers. The distortion of the silicon surface is
lower, but the carbon atom is only bonded with two silicon
atoms (1.82 Å both), explaining the slightly lower adsorption
energy. In parallel to these two surface adsorption sites, we
have identified two other sites for carbon deposition under the
surface plane (figures 9(c) and (d)) with adsorption energies
of 7.87 and 8.10 eV, which are significantly more stable than
those on the surface plane. In both subsurface sites, the carbon
atom sits tetrahedrally bonded beneath a surface silicon dimer.
In the most stable configuration (figure 9(d)), there is a strong
distortion of the silicon structure around the carbon defect,
with a silicon atom now protruding on the surface between
two silicon dimers. The four Si–C bond lengths are 1.82, 1.82,
1.92, and 2.04 Å. On the other subsurface site (figure 9(c)),
no silicon atom is pushed out of its initial location. Its higher
energy shows that the distortion observed in figure 9(d) allows
the structure to decrease the internal stress induced by the
interstitial carbon atom. These DFT results show a qualitative
agreement with the MD simulations presented above, as both
methods show that carbon atoms tend to favour subsurface
deposition sites. Indeed figure 5 shows that, provided it has
enough energy to pass through the first layer of the surface, the

Figure 9. Top and side views of four adsorption sites for carbon on the (100) surface as computed by DFT.
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carbon deposit is more likely to stay 2.5 Å below the surface
plane.

5.2.4. Sticking coefficient. Due to the shortness of
our simulations, 6 ps for the Kieffer potential and 5 ps
for the Erhart–Albe potential, the sticking coefficient of
carbon on silicon is not directly achievable from the
backscattering yields presented earlier. Some deposited matter
may eventually desorb from the collector by simple thermal
activation, leading to a lower sticking coefficient than the one
measured within the first 6 ps of the deposition. This loss of
matter by thermal activation is not easy to quantify as, ideally,
one would need to perform kinetic Monte Carlo simulations
knowing the activation energy for carbon desorption from
different deposition sites as well as the activation energies
for surface diffusion, coalescence, etc [9]. An easier way,
albeit still computationally expensive, to assess this loss
due to thermal activation is to let the MD simulations run
for significantly longer times. Two deposition conditions
using the Kieffer potential are selected to run the extra MD
simulations for significantly longer timing using the last
configuration of their corresponding simulation as starting
point. The first condition is the one with deposition at
50 eV–60◦ in order to have a highly energetic system and
a relatively shallow deposit. The second run has deposition
conditions of 1 eV–0◦ to have a high load of carbon deposit
at very shallow depths. Simulations are run using a 1 fs
time step for 200 ps. No desorption of carbon from the
collector due to thermal activation could be observed within
the 200 ps of the simulations. This leads us to conclude that
the thermal desorption of carbon from the silicon wafer is
very low and the backscattering yields observed in figure 4
may be a reasonable first approximation to assess the sticking
coefficients, as they are the inverse of the backscattering
yields. Deposition incidence angle close to the normal gives
rather high sticking coefficients. Depending on the initial
energy of the carbon atom, the sticking coefficients range from
100 to 92%, 100 to 95%, 100 to 93%, 100 to 90% for 0◦,
15◦, 30◦, 45◦ and 60◦ incidence angles respectively. At the
most grazing incidence angle, the sticking coefficient drops
significantly as it ranges within 100–73%.

6. Conclusion and outlook

With the view of performing analyses of alloys materials
using the storing matter technique developed at the Centre
de Recherche Public—Gabriel Lippmann in Luxembourg,
we present the first steps of a MD investigation of carbon
deposition on silicon surfaces. The reactive force field
developed by Kieffer is selected, as it enables the formation
and breaking of bonds via an adaptive and environment
sensitive charge transfer. As only parameters describing
Si–Si interactions are available in the literature, new sets
of parameters for Si–C and C–C are developed using an
in-house genetic algorithm. The Si–C and C–C parameter sets
are tested and validated on their abilities to model physical
properties as well as formation energies of point defects of

silicon carbide and diamond. The performances of the force
field are in line with other previously published force fields.

In a second step, the deposition of a single carbon atom
on a (100) reconstructed silicon surface at energies lower
than 50 eV is investigated and compared to similar MD
simulations performed using the well-established Erhart–Albe
potential. 100 independent simulations are run in order to
have significant statistics. Results using both potentials are
similar, although slight divergences appear at grazing angles
and for the higher end of the deposition energies. These small
differences are attributed to the very different approaches
used by the two force fields, as the Erhart–Albe potential is
a Tersoff-like bond order potential. Nevertheless, the overall
agreement between the two potentials for carbon deposition
coupled with the performance of the Kieffer potential to
model physical properties of silicon carbide and diamond
allow us to validate the Kieffer potential for the study of
low-energy carbon deposition on silicon surfaces.

The carbon deposition investigations also revealed a
channelling effect when implanting carbon at angles close
to 45◦. The channels are also open, albeit to a lesser extent,
to deposition trajectories at 30◦ and 60◦ relative to the
surface normal. This channelling effect is due to channels
running through the silicon crystalline structure at directions
symmetrically equivalent to the (110) direction. Therefore, on
an azimuthal plane, four orthonormal channels are available
from the (100) surface. The azimuthal window for a carbon to
enter these channels is estimated at 45◦.

Although the MD simulations are run over a rather short
timescale, the sticking coefficients of carbon on pristine (100)
silicon can be estimated. As expected, the sticking coefficients
are lowest at grazing angles and range from 100% to 73%
at 60◦. Other angles lead to sticking coefficients higher than
90%.

As next steps for the investigation of carbon deposition on
silicon surfaces, it will be interesting to focus on amorphous
surfaces and on rough surfaces, in order to check how
the morphology of the silicon surface will influence the
deposition. Also, the continuous deposition of carbon on
silicon will be considered, in order to simulate systems closer
to the experiments.
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