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I. INTRODUCTION

Structural materials in a fusion power plant will be
subjected to neutron irradiation, which affects the life-
time of components because of radiation damage that
neutrons generate in the materials. Understanding, as-
sessing and, desirably, predicting the type of the damage
is one of the significant directions of fusion materials re-
search, and Molecular Dynamic (MD) simulations is one
of the effective and powerful tools capable of addressing
the problem. Simulations of irradiation phenomena in
tungsten and vanadium is of particular interest. This
is because, owing to its low tritium retention and low
sputtering yield [1], tungsten has been chosen as divertor
material in the fusion reactor ITER [2], and vanadium
alloys are among promising candidate materials for the
first-wall and blanket applications, due to their excellent
thermal and activation properties [3].

Interatomic potentials provide crucially important in-
put to MD simulations, and correct description of not
only equilibrium but also of defect properties are required
before a potential can be used to model more complex
collective events and processes. The short-range part of
a potential is of particular significance when dealing with
high-energy interactions. In this work we have modified
the repulsive part of two recently parametrized potentials
for vanadium and tungsten [4]. The potentials repro-
duce the correct point defect structures and, after suit-
able modification, they also describe well the observed
experimental threshold energies.

We also performed simulations of recoil cascades in V
and W. The resulting primary damage was compared to
that in Fe where a similar potential and same simula-
tion and analyzing methods were used [5, 6]. This gives
insight into the effect of the geometric structure of ra-
diation defects, since V and Fe are similar in atomic
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mass and threshold energies, but differ when it comes
to the structure of the most stable interstitial configu-
ration. In vanadium the 〈111〉 crowdion is the ground
structure [4, 7], while the 〈110〉 dumbbell is the most
stable in body-centred cubic iron [5, 6, 8]. The ground
state interstitial in tungsten is also the 〈111〉 crowdion,
and in addition tungsten differs strongly from vanadium
and iron in terms of the atomic mass, threshold energies
and defect formation energies.
In addition to the identification of similarities and dif-

ferences between radiation damage created in the three
bcc metals noted above, we note a significant pragmatic
aspect of systematic MD investigation of radiation dam-
age in these three materials. Predicting microstruc-
tural changes in materials under neutron irradiation re-
quires relating the incident flux of neutrons bombarding
the material with the concentration of radiation defects
produced by neutron impacts. In engineering applica-
tions semi-empirical rules are often used, for example,
the Norgett-Robinson-Torrens (NRT) model [9] where
the number of defects generated by fast neutrons is as-
sumed to be proportional to the energy of neutrons ini-
tiating collision cascades, and inversely proportional to
the threshold Frenkel pair formation energy. Finding the
pre-factor in the NRT equation determining the rates
of formation of Frenkel pairs in materials under irradi-
ation requires carrying out atomistic simulations similar
to those described below.

II. METHOD

A. Modification of the repulsive part

A merging interpolation function Vint(r) was used to
spline the universal potential of Ziegler, Biersack and
Littmark VZBL(r) [10] with the original tungsten and

vanadium pair potentials V W,V
orig (r). This approach was

also used for iron in Ref. [6]. The modified repulsive po-
tentials thus take the form
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V W,V
BN (r) = V W,V

ZBL(r), r ≤ rW,V
1

= V W,V
int (r), rW,V

1 < r < rW,V
2 (1)

= V W,V
orig (r), r ≥ rW,V

2

where r1 and r2 are the cutoffs for the interpolation
functions. These cutoffs were fitted in order to get the
threshold energies correct without affecting the intersti-
tial energies. The interpolation function is a fifth order
polynomial,

Vint(r) = a0 + a1r + a2r
2 + a3r

3 + a4r
4 + a5r

5 (2)

which was constructed to give a continuous potential
and first and second derivatives at r1 and r2.

B. Modification of the electron density function

The electron density function f(r) in both potentials
was also modified. This was done to better correctly
reproduce the contribution of the attractive electron d-
states. The electron density in the EAM formalism is of
the expression

ρi = Σj,j 6=if(rij), (3)

and it contributes to the embedding energy through
F (ρ) = −A

√
ρ, where A is a fitted constant found in

Ref. [4]. The modified density function fW,V
BN (r) looks

like

fW,V
BN (r) = ρW,V

0 , r ≤ rW,V
3

= ρW,V
int (r), rW,V

3 < r < rW,V
4 (4)

= ρW,V
orig (r), r ≥ rW,V

4 .

ρorig is equation 2 Ref. [4] and the ρint is a third order
polynomial

ρint(r) = b0 + b1r + b2r
2 + b3r

3, (5)

which was constructed assuming that the bonding part
of the potential approaches a constant value for inter-
atomic distances smaller than r3, and that it smoothly
joins the original density function at r4. The cutoff radii
r3 and r4 for the interpolation procedure were determined
by requirement that the bonding part of the potential
does not diverge in the limit of small separation between
atoms, and instead it saturates in this limit. The char-
acteristic interatomic distance at which this saturation
occurs is related to the spatial extent of overlapping d-
orbitals (the 3d orbitals in the case of vanadium atoms
and 5d orbitals in the case of tungsten atoms), which
provide the dominant contribution to the cohesive energy
in these transition metals. Figs. 2 and 3 show normal-
ized radial distributions of electron density in the atomic
orbitals of vanadium or tungsten atoms, calculated by
solving the relativistic Dirac equation in the local spin
density approximation. These distributions were used
for assessing the values of the cutoff radii r3 and r4.

C. Molecular dynamics simulations

The threshold energies were calculated as in Ref. [11]
and the collision cascades in V and W were initiated by
recoils with energies in the range 0.5 – 20 keV. The meth-
ods are the same as in Ref. [6] to enable direct comparison
with Fe.

The cascade damage was analyzed in terms of total
amount of Frenkel pairs and defect in clusters. Vacancies
closer than second nearest neighbour (nn) distance and
interstitials closer than third nn distance were defined as
belonging to the same defect cluster.

The interstitial defect migration energies were deter-
mined dynamically by following the mean square dis-
placements 〈R2〉 over a period of time t. The diffusivity

was calculated according to D = 〈R2〉
6t and the migration

energies were determined by fitting Arrhenius laws to the
diffusivity data. The temperature range was 300 to 550
K.

III. RESULTS AND DISCUSSION

A. Potential modifications and threshold energies

The resulting cutoff values used in Eq. 1 for V and W
are found in Tab. I. Although r1 in vanadium is larger
than the distance between two atoms in the shortest in-
terstitial configuration, the modification did not affect

its formation energy (Ef
〈111〉 = 3.32 eV). The constants

used in the interpolation polynomial (Eq. 2) are given in
table II. In Fig. 1 the resulting modification of the poten-
tials is illustrated. Following the modifications, the po-
tential for V is “harder” and the W potential is “softer”.

In vanadium, a reduction of the ZBL potential with a
constant V0 = 10 eV was found to be necessary to obtain
realistic values for the threshold displacement energies.
The electronic structure calculations on which the ZBL
potential is based are optimized only for high-energy in-
teractions, and are not meaningful at energies of a few
eV. Hence introducing a small shift in the ZBL potential
as a fitting parameter can be done without altering the
physically meaningful part of the potential. Note, more-
over, that the atom dynamics is only governed by the
forces dV/dr between atoms, and hence the introduction
of the constant does not change the atom trajectories in
high-energy collisions.

The density function cutoffs used in Eq. 4 are found in
Tab. I and the polynomial constants (Eq. 5) in Tab. II.

Table III comprises of the threshold simulation results
and available experimental data. The threshold ener-
gies of the original potentials were too low and too high
in vanadium and tungsten, respectively. Now, both the
global minimum and the direction specific minima are in
close agreement with the experimental values.
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B. Primary damage

Results from the analyze of the collision cascade dam-
age are illustrated in Fig. 4 to Fig. 9. Results from cas-
cades in Fe done earlier [6] are also included for compar-
ison.
Fig. 4 reveals that there are differences between the

Frenkel pair production of the potentials. Fe and V pro-
duce almost the same amount at each energy, whereas
the amount is clearly smaller in W. This can be related
to differences in the defect formation energies: in V and
Fe the SIA formation energies are in the range 3.3 – 4.2
eV and the vacancy formation energies are 1.97 eV (Fe)
and 2.51 eV (V), whereas for W, these values are 9.548
– 11.68 eV (SIA) and 3.56 eV (vacancy) [4]. The higher
the values are, the more energy is required to create the
same amount of defects. Differences in threshold dis-
placement energies are not believed to have the same
importance [12].
The cascade efficiency (inset in Fig. 4) is the ratio be-

tween the number of Frenkel pairs produced in the cas-
cades and the NRT prediction, NNRT

FP = FDn/2Ed [9].
FDn equals the recoil energy since no electronic stop-
ping was used and Ed is the average threshold energy
(Ed(Fe) = 35 eV [6], ED(V ) = 55 eV and Ed(W ) = 85.4
eV). A similar behaviour is seen in for all elements,
namely a decrease of the efficiency with increasing en-
ergy.
The Frenkel pair production as a function of time dur-

ing 10 keV cascades is illustrated in Fig. 5. W is seen to
have the lowest amount throughout the cascade, which
is related to the discussion above. The recombination in
both Fe and W is large. V differs sligthly, since here the
peak is reached faster and the recombination is smaller.
Visualization of the cascades revealed that the cascades
in V are very spread out and subcascades are formed al-
ready at 10 keV. The somewhat larger lattice parameter
and sligthly smaller mass of V (mV = 50.94u, aV0 = 3.040
Å) compared to Fe (mFe = 55.85u, aFe

0 = 2.866 Å) ex-
plain why the subcascade threshold is lower in V. This
also leads to smaller heat spikes in V, explaining both
the fast cooling and fast recombination.
Differences between the elements are found when com-

paring the interstitial cluster fraction as a function of
recoil energy (Fig. 6). The fraction is about 30% at all
energies in V, which is explained by the subcascade for-
mation already at 10 keV. A break-up of a cascade into
smaller ones effectively hinders large clusters to form.
As opposed to V, the cluster fraction increases for both
Fe and W. W shows the largest increase, starting from
about 9% at 0.5 keV and ending up at about 72% at 20
keV. In order to explain this behaviour, the time evolu-
tion of the fraction was studied (see Fig. 7). After the
collisional phase (after about 1 ps) the fraction is seen
to diminish due to recombination in all potentials. How-
ever, the decrease of the clusters in W is very small when
compared to V and Fe. This can be related to the very
fast movement of the ground state SIA in W, since the

mobility activation energy of the 〈111〉 crowdion in W is
only 0.03±0.002 eV. (In Ref. [4] this energy was deter-
mined to 0.013 eV by also taking the local drift motion
into account.) On the other hand, the ground state SIA
in Fe is the 〈110〉-dumbbell with a high activation energy
of about 0.26 eV. The fast migration makes is possible
for the interstitials to find each other and form clusters.

The SIA mobility activation energy in V was deter-
mined to be 0.079±0.005 eV. Note that the V and W
energies were calculated only up to 550 K, since at high
temperatures the migration behaviour is strongly non-
Arrhenius and includes 3D motion. This was also ob-
served for V in Ref. [13] and W in Ref. [4].

A study of the clusters of the other defect type, va-
cancies, also reveals some dissimilarities. Here W, again,
shows deviating behaviour, since the fraction of vacan-
cies in clusters is seen to diminish as a function of recoil
energy (see Fig. 8). V and Fe behave similarly, with a
constant fraction of about 35%. Looking at the behaviour
during 10keV cascades (Fig. 9), one can see that the frac-
tion in W decreases much more than in V and Fe during
the recombination phase. This is attributed to the higher
melting point of W (3775±50 K) when compared to V
(2350±50 K) and Fe (2125±25 K). A high melting point
makes the recrystallization front, that pushes vacancies
towards the center of a cascade, to move faster [14, 15].
This, in turn, leads to that the vacancies freeze in the
lattice instead of migration to the center to form clus-
ters. Hence, a high melting point leads to a low vacancy
cluster fraction. At low energies no heat spike liquid zone
exists and thus no recrystallization front. This explains
why the differences between the potentials are only seen
at high energies.

IV. CONCLUSIONS

The recent ab initio-based V and W potentials were
modified to be suitable for high-energy simulations. Col-
lision cascades were performed and a comparison between
the resulting damage in V, W and Fe revealed elemental
differences. These differences were attributed to differ-
ences in melting points, defect formation energies, mi-
gration energies and subcascade thresholds. The cascade
efficiency was, however, seen to be the same (∼20% at
high energies) in all three elements.
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Table I: Cutoffs in Å for the interpolation polynomials. r1 and r2 are used in the repulsive potential interpolation, r3 and r4 in
the density function interpolation. The ρ0 used in the electron density function modification and the shortest distance between
two atoms in an interstitial configuration are also given.

r1 r2 r3 r4 r〈111〉 ρ0
W 1.10002200044 2.2500450009 1.5000300006 1.80003600072 2.28 10.0064910346
V 0.85001700034 2.10004200084 1.05002100042 1.30002600052 2.0 9.92285513058

Table II: Polynomial coefficients of the interpolation functions for tungsten and vanadium, eq. (2) and (5).

n aWn bWn aVn bVn
0 1.384158153390557 · 104 −0.659035020672109 · 103 0.481114923981019 · 104 0.315794835330294 · 102
1 −3.580948686976579 · 104 1.199684049310425 · 103 −1.442929495827347 · 104 −0.849624405029494 · 102
2 3.720306176683384 · 104 −0.707527073754107 · 103 1.753254942221297 · 104 1.029027394065896 · 102
3 −1.923831128499638 · 104 0.136726326994010 · 103 −1.058481288061244 · 104 −0.396469807405803 · 102
4 0.493430401777675 · 104 0.315140381503299 · 104
5 −0.050165283774299 · 104 −0.036943173076800 · 104

Table III: Threshold displacement energies in eV as predicted by the different potentials. Ndirection is the number of directions
that was used in determining the minimum Ed(θ, φ) and the average threshold Eav

d,ave. The uncertainty of the values (except
for the average threshold) is due to the energy steps used in the calculations. The direction specific thresholds are calculated
in an interval of 0.2 Miller index around the principal directions. The simulated thresholds were obtained at 4 K and 20 K for
tungsten and vanadium, respectively. Available experimental values are also included.

Ndirections Ed(θ, φ) Eav
d,ave

All 〈100〉 〈110〉 〈111〉

W

Unmodif. 680 55±3 55±3 >100 93±3 88.3±0.7
Modif. 1096 41±1 41±1 93±1 41±1 84.5±0.9
Exp. 42±1 a (< 7 K), 40±2 a 44±1 a

42±1 b (4 K), 50±2 c (350 K)

V

Unmodif. 2713 13±3 13±3 19±3 13±3 19.6±1.8
Modif. 1561 23±1 23±1 43±1 41±1 55.0±0.6

Exp. 30 d (295 K), 30d 39d 34d

26±2 e(4 K), 25±2 f (20 K)

aRef. [16]
bRef. [17]
cRef. [18]
dRef. [19]
eRef. [20]
fRef. [21]
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Figure 1: The original and modified repulsive potentials for vanadium and tungsten. The universal ZBL potentials are also
included.



6

0.0

0.5

1.0

1.5

2.0

2.5

R
ad

ia
le

le
ct

ro
n

de
ns

ity
di

st
rib

ut
io

n
[1

/Å
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Distance to the nucleus [Å]
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