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Abstract. We develop an analytic bond order potential for modelling of gold. The bond order formalism
includes bond angularity and offers an alternative approach to the embedded atom type potentials fre-
quently used to describe metallic bonding. The advantage of the developed potential is that it can be
extended to describe interactions with covalent materials. Experimental and ab initio data of gold prop-
erties is used to fit the potential and a good description of bulk and defect properties is achieved. We use
the potential to simulate melting of nanoclusters and find that the experimentally observed size dependent
melting behaviour is reproduced qualitatively.

1 Introduction

The noble metal gold has countless applications in chem-
istry, electronics, materials science, and medicine and has
therefore been studied extensively in both experiments,
electronic structure calculations, and atomistic simula-
tions using empirical potentials.

In order to simulate gold and other metals, where
bonding depends on local electron density and hence co-
ordination number, many developed potentials include
an effective electron density term in addition to pair-
wise interactions. Examples include gold potentials us-
ing the embedded atom model (EAM) [1–4], the glue
model [5], the corrected effective medium (MD/MC-CEM)
theory [6], and the Cleri-Rosato-type tight binding (TB)
potentials [7–9]. Bond directionality has, however, been
found to be important in small gold clusters [10], which
can explain some of the shortcomings of the aforemen-
tioned spherically symmetric potentials in describing for
instance surface energies. To solve this problem, gold po-
tentials with angular dependence have been developed
in the ReaxFF framework [11,12] and in a potential by
Olivier et al. [13].

The strength of “Tersoff-like” analytic bond order po-
tentials [14–17] lies in their ability to describe direc-
tional bonds. For this reason they have conventionally
been used to model covalently bonded materials. How-
ever, Brenner [18] has shown that the Tersoff formalism
is in absence of angular terms equivalent to the EAM-
like metal potentials. In recent years the Tersoff-like bond
order potential formulation has indeed also been success-
fully applied to a variety of metals, such as Pt [19], W [20],
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Fe [21], Zn [22], and Be [23]. Since bond order potentials
can be used for both types of bonding, it is a convenient
choice for simulations of mixed covalent-metallic systems.

One such material that has been subject of substantial
research is gold nanoparticles and nanorods in a dielec-
tric matrix. The surface plasmon resonance at the gold-
dielectric interface gives rise to interesting optical proper-
ties that have been utilized in biomedical imaging [24,25]
and nanophotonics [26,27].

In a different area of materials science, many stud-
ies have focused on swift heavy ion irradiation of gold
nanoparticles in silica, since it was found that this treat-
ment leads to shape transformation of the nanoparti-
cles [28–30]. The cause of the shape transformation is
still under investigation, and molecular dynamics simu-
lations [31] may provide some answers.

In this work, we develop a bond order potential for
gold as a first step to make a bond order description of
gold interfaces with covalent materials possible. We test
the potential by simulating the size dependent melting of
gold nanoclusters.

2 Methods

2.1 Potential development

We follow the potential fitting methodology for bond or-
der potentials described earlier in e.g. references [19,32].
In the Tersoff-Brenner formalism [18], using the Albe no-
tation [32], the total potential energy is given as a sum of
the individual bond energies:

E =
∑

i>j

fij(rij)
[
V R

ij (rij) − Bij + Bji

2
V A

ij (rij)
]

. (1)
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The pair terms describing attractive and repulsive inter-
actions are given by

V R(r) =
D0

S − 1
exp[−β

√
2S(r − r0)],

V A(r) =
SD0

S − 1
exp[−β

√
2/S(r − r0)], (2)

where D0 is the dimer bond energy, r0 the dimer bond
distance, and S an adjustable parameter which determines
the slope of the Pauling plot (Eq. (8)). For computational
efficiency, the range of the potential is limited to nearest
neighbours by the cut-off function

f c(r) =

⎧
⎪⎨

⎪⎩

1, r ≤ R − D,
1
2 − 1

2 sin
(

π
2 (r − R)/D

)
, |R − r| ≤ D,

0, r ≥ R + D,

(3)

where D and R are adjustable parameters. The bond-order
parameter Bij includes three-body terms and angular de-
pendence

Bij = (1 + χij)
−1/2 (4)

χij =
∑

k( �=i,j)

f c
ik(rik)gik(θijk) exp [2μik(rij − rik)] . (5)

The three indices monitor the type dependence of the pa-
rameters. The angular function g(θ) is given by

g(θ) = γ

(
1 +

c2

d2
− c2

d2 + (h + cos θ)2

)
. (6)

Here γ, c, d, and h are adjustable parameters.
The present formalism includes ten free parameters, of

which some can be deduced from known properties of the
material. The parameter β in equation (2) is determined
from the dimer bond energy D0 and the ground-state os-
cillation frequency ω according to

β =
2πω√
2D0/μ

, (7)

where μ is the reduced mass. The empirically derived
Pauling relation gives the bond energy as a function of
bond distance,

Eb = −D0 exp[−β
√

2S(rb − r0)]. (8)

A plot of ln(Eb) as a function of rb for different known
atomic coordinations of the material should thus follow a
straight line with slope S.

While initial guesses for D0, r0, S, and β were ex-
tracted from empirical data as described above, these
parameters were also varied in order to give the best pos-
sible fit. To find the remaining parameters of the poten-
tial, the functions were fit to experimental and ab ini-
tio data for cohesive energies and lattice parameters of
the diamond, simple cubic, body-centered cubic, and face-
centered cubic structures. All data for the non-ground
state structures are from electronic structure calculations

Table 1. Bond order potential parameters.

Parameter Value

D0 (eV) 2.302
r0 (Å) 2.463316

β (Å−1) 1.586426
S 1.95
γ 6.374494 × 10−4

c 3.351525
d 0.1649262
h 0.9941884
2μ 2.05

R (Å) 3.2
D (Å) 0.2

bf 12
rf 1.7

by Järvi et al. [11]. For the ground state face-centered
cubic phase, elastic constants were also included in the
fitting routine. Once the mentioned structural properties
were described well we further optimized the parameter
set to obtain reasonable melting temperature and vacancy
formation energy. The derived parameters are given in
Table 1.

In order to obtain a more accurate description of
atomic interactions at short separations, we modified
the repulsive part of the potential to follow the Ziegler-
Biersack-Littmark universal repulsive potential [33] at
such distances. The modified repulsive potential has the
form

V R
mod(r) = V ZBL(r)

[
1 − F (r)

]
+ V R(r)F (r),

where V R is the potential for states close to equilibrium
described earlier, and the Fermi function is

F (r) =
1

1 + exp[−bf(r − rf )]
.

The value of the constants bf and rf are chosen such
that the equilibrium properties are unaffected, and that
a smooth fit between V R and V ZBL with no spurious
minima is achieved. The obtained parameters are given
in Table 1.

2.2 Bulk properties

The MD simulation code parcas [34]1 was used to test
the developed potential. Properties including threshold
displacement energy, melting temperature, surface energy,
and defect energies were investigated.

We determined the threshold displacement energy in
simulations using the box size 10 × 10 × 14 unit cells at

1 The main principles of the molecular dynamics algorithms
are presented in [46,47]. The adaptive time step and electronic
stopping algorithms are the same as in [48].
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10 K. A random atom was given kinetic energy in a ran-
dom direction and the energy was increased in increments
of 2 eV until a stable defect was formed. We used the
definition for the average displacement threshold used by
Nordlund et al. in reference [35]. In defining values for
the crystal directions a 20◦ spreading of the angle was
included to account for beam spreading in experiments.

The bulk melting temperature was determined from
a simulation of a molten phase in contact with a crys-
talline phase. Below the melting temperature the molten
phase crystallizes and above it the crystalline phase starts
to melt. We obtained a bulk melting temperature of
1640 K, somewhat higher than the literature value of
1337.33 K [36].

We performed 5 ns long simulations of the diffusion of
a self-interstitial at different temperatures. The diffusion
coefficient was calculated from the mean square displace-
ment of interstitials using the Einstein relation. A least
square fit to an Arrhenius plot of the obtained diffusion
coefficients gave us the self-interstitial migration energy.

We studied the surface energies at 0 K of the (111),
(110), and (100) surfaces by comparing the potential en-
ergy of the free surface to that of the bulk.

2.3 Nanoparticle melting simulations

We used the developed analytical potential to simulate the
size dependent melting temperature of gold nanoclusters
in vacuum [37]. From fcc crystals with the bulk lattice
constant of gold, we created spherical nanoclusters with
diameters between 2 and 18 nm. To determine the melting
temperature the nanoclusters were equlibrated for 1 ns at
different temperatures using Berendsen temperature con-
trol [38]. In case the potential energy had not stabilized
after 1 ns, a longer simulation time was used. The heated
nanoclusters were inspected visually and analyzed with a
structure factor analysis method used in reference [39] for
the same purpose. When at some temperature the aver-
age structure factor, visual inspection, and potential en-
ergy all indicated complete melting, the nanocluster was
considered molten.

The bulk melting or condensation temperature can
only be determined accurately if there is a seed for melt-
ing or crystallization, respectively, from which the phase
transformation can nucleate. If no such seed is present,
superheating or supercooling occurs. For this reason we
use a two-phase simulation to determine the bulk melting
temperature of the potential (see above). In nanoclusters
the free surface area acts as nucleation site for melting,
hence, superheating is avoided as long as the surface-to-
volume ratio is high.

3 Results and discussion

In Table 2 the cohesive energies, lattice parameters, and
elastic constants obtained from the bond order potential
are compared to the reference data from experiments and

Table 2. Comparison of properties of dimer and bulk phases
between the literature and the developed bond order potential.
Ecoh: cohesive energy (eV/atom); r0: dimer bond length (Å);
ω: ground state oscillation frequency (cm−1); a0: lattice pa-
rameter (Å); B: bulk modulus (GPa); B′: pressure derivative
of bulk modulus; cij : elastic constants (GPa); Tmelt: melting
temperature (K); Ef

vac: vacancy formation energy (eV); Ef
int:

interstitial formation energy (eV); Em
int: self-interstitial migra-

tion energy (eV); Ed: average threshold displacement energy
(eV); γ: surface energy (J/m2). The properties are measured
at 0 K unless otherwise specified.

Literature BOP

Dimer
Ecoh –1.151 [40] –1.151
r0 2.472 [40] 2.463
ω 191 [40] 179

DIA
Ecoh –2.80 [11] –2.60
a0 5.98 [11] 6.11
SC

Ecoh –3.53 [11] –3.34
a0 2.68 [11] 2.69

BCC
Ecoh –3.77 [11] –3.67
a0 3.23 [11] 3.17

FCC
Ecoh –3.81 [49] –3.81
a0 4.065 [49] 4.065
B 180 [50] 168
B′ 5.5 [51] 5.5
c11 192 [36], at room temperature. 201
c12 163 [36], at room temperature. 151
c44 42 [36], at room temperature. 47

Tmelt 1337.3 [36] 1640
Ef

vac 0.89 [8,52] 0.80

Ef
int 4.41

Em
int 0.11

Ed 44 [53] 47
E100

d 24
E110

d 52
E111

d 28
γ111 0.67
γ100 1.50 [54], average surface energy. 0.90
γ110 0.97

γmissing row
110 0.86

ab initio calculations. The analytic potential shows good
agreement with established literature values.

Interstitials have not been observed experimentally in
gold [40], possibly because of a very low migration en-
ergy [41,42]. The ground state structure of interstitials
in gold is hence not known. With the present potential
we observe that a single interstitial gives rise to a crow-
dion in the [111] direction with formation and migra-
tion energy given in Table 2. This suggests that crowdion
motion might explain the very low migration energy in
experiments.
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Fig. 1. Cross-section of an 18 nm nanocluster melting from
the surface inward.

The surface energies are underestimated, but on par
with the values obtained with the commonly used Foiles-
Baskes EAM potential for gold [1,2]. (The second value
for the (110) surface energy in Tab. 2 refers to the (1× 2)
missing row reconstruction found in gold [43].) Some
newer potentials report surface energies that are in better
agreement with experimental data, see for instance [11]
and [13], where the former includes a comparison of sur-
face energies for different gold potentials. It should be
noted that the low surface energies for the developed po-
tential is a consequence of not fitting to surface proper-
ties rather than a fundamental weakness of the potential
formalism.

As previously shown by for instance Lewis et al. [44],
simulations of gold nanocluster melting reveal that
melting begins at the surface and proceeds inward. This
is illustrated in Figure 1. Small clusters are observed to
transform from spherical to faceted clusters at elevated
temperatures (see Fig. 2).

The nanoclusters are found to exhibit size dependent
melting temperature, in accordance with thermodynamic
theory and a vast array of literature (see e.g. Ref. [45] and
references therein). Figure 3 shows the ratio of nanocluster
to bulk melting temperature for the simulated nanocluster
sizes. This ratio approaches unity as the nanocluster di-
ameter increases. Compared to experiments by Buffat and
Borel [37], the nanocluster-to-bulk melting temperature
ratio found in both our simulations and the simulations
by Lewis is higher. The simulations are performed with
perfect crystalline clusters where the only seed for melt-
ing is the surface, therefore, superheating may explain this
discrepancy. We find that the bulk melting temperature is
not reached even for the largest nanocluster simulated.

4 Conclusions

An analytic bond order potential for gold was developed
to make development of gold-covalent interface potentials
possible. The potential provides a good description of bulk
properties, such as cohesive energy, lattice parameter and
elastic constants, while the surface energies are underes-
timated. The melting temperature is within reasonable
range from the literature value and the size dependence

Fig. 2. A gold nanocluster of diameter 6 nm (a) before melting,
(b) at the onset of melting, and (c) after melting. Note the
transition from spherical cluster in (a) to faceted at elevated
temperatures in (b).

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
m

el
t/T

m
el

tbu
lk

0 50 100 150 200 250

Diameter (A)

............
...............

...........
.............
.............
...................

.. .........................
.. ....... . ... ......

. Experiments
Simulations
Lewis 1997

Fig. 3. Relative melting temperature as a function of clus-
ter diameter, compared to experimental results by Buffat and
Borel [37] and MD simulations by Lewis et al. [44].
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of gold nanocluster melting temperatures is reproduced
qualitatively.

Computing time was provided by the Newton HPC Program
at the University of Tennessee.
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