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We present an analytical interatomic potential for gallium nitride which is
based on a new environment-dependent dynamic charge-transfer model.
The model consists of a short-ranged bond-order potential that accounts
for covalent/metallic interactions and an ionic Coulomb potential with
effective point charges that are dynamically adjusted. In contrast to
established models, these point charges are distance-dependent and vary
with the number and type of nearest neighbour atoms. The basic concepts
stem from the idea of bond charges. We assume pairwise symmetric
charge transfer between atoms of different type forming a bond. Charge
contributions of all bonds to an atomic site are weighted and added,
yielding the effective charge per atom. Mulliken charges, as obtained from
density-functional theory calculations within the local-density approxima-
tion, are used for adjusting the parameters and functional form of the
potential. The short-range contributions are chosen as angular-dependent
many-body bond-order potentials, which can be understood as an
extension of a Finnis–Sinclair type potential.

Keywords: computer simulation; ionic compounds; interatomic potential;
molecular dynamics

1. Introduction

Analytical interatomic potentials are widely used for atomic-scale simulations that
involve large systems and long time-scales and therefore cannot be treated by
computationally more demanding quantum mechanical methods. For metals, alloys,
and semi-conductors, a number of cluster potentials and environment-dependent
cluster functionals, such as various bond-order, (modified) embedded-atom or
Finnis–Sinclair type potentials, have been developed and successfully applied over
the last decades [1]. On the other hand, ionic solids are usually described by potential
models based on the assumption of fully ionic models with ionic polarisabilities [2,3]
and constant effective charges. In case of semi-ionic systems, these potentials are
usually complemented by pair or many-body potentials that account for the short-
range chemical interaction.

Many physical processes in chemistry, biology and materials systems, however,
involve charge-transfer processes that depend on the local atomic environments.
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If fixed charges are used in simulations, they reflect average or mean field charge
values of a particular phase, but cannot respond to variations of the electrostatic
fields which arise from atomic movements, phase transitions, variations of oxidation
states, chemical reactions, kinetically induced disorder, irradiation effects, etc.
Moreover, fixed charge models do not assure charge neutrality, if the composition of
the simulated ensemble varies. This can also lead to misinterpretations of the lattice
energies, since fully separated atoms stay ionised. Thus, refined concepts are needed
for understanding and modelling charge redistribution. In the past, the charge
equilibration formalism (QEq), based on the concepts of electronegativity equalisa-
tion, self-Coulomb repulsion and Coulomb interaction [4–9], has been the key
ingredient of most variable-charge models.

A successful implementation of a charge-dependent energy model for alumina
was presented by Streitz and Mintmire [10–12] and also parametrised for titania [13]
by combining the QEq method with an embedded-atom potential. Recently, an
improved version of this scheme was presented by Zhou et al. [14] which allows us to
describe metal oxides consisting of more than one metal element. A variant of the
QEq method is also used in the ReaxFF approach, where a core charge with fixed
positive amplitude is centred on an atom, and a valence charge described as a
Gaussian with negative amplitude is allowed to move off the nuclear centre [15,16].
However, Thomas et al. pointed out that in QEq models complemented by short-
range Morse potentials, shielding effects lead to significantly weaker electrostatic
contributions than fixed charge models [17,18]. Since the choice of the short-range
terms determines directly the transferability of such potentials, recent attempts have
been made to combine the QEq methods with established many-body potentials.
Yasuka [19] proposed an empirical approach that combines the Si-Tersoff potential
with effective charges as determined from the QEq method and was later adopted for
various ionic compounds [20,21]. An extension of the second-moment tight binding
approximation (SMTBþQEq) to partly ionic systems has recently been presented for
the case of TiO2 and ZrO2 [22] based on the alternating lattice model [23].

A general feature of potentials using the QEq model is that they are
computationally demanding in molecular dynamics simulations, since the charges
are calculated from an energy minimisation algorithm at every time step. Although
effective charges can change as an atom moves, they do not affect the calculation of
forces and stresses. This is a very useful feature if the potential model is implemented
within a MD code. However, atoms will remain ionic even at separations where they
are supposed to return to a neutral state and, as recently pointed out by Zhou and
Doty [24], total energy is not conserved in MD-simulations, since the energy
minimisation is done without a self-consistent adjustment of the interatomic forces.
This can be avoided if alternative functional forms are used that explicitly account
for the distance dependence of charge transfer. A phenomenological approach was
presented by Alavi et al. [25] for modelling silica. They calculated the effective
charges of the Coulomb potential as a linear sum of nearest neighbour contributions
using smooth step-functions, and added an empirical pair potential to account
for repulsion and covalent interaction. In a similar spirit, Jiang and Brown [26]
constructed a potential for the same system, but included three-body terms
taken from the silicon potential of Stillinger and Weber [27]. Another analytic
charge-transfer scheme was recently proposed by Muralidharan et al., where
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the effective charges were also taken as arguments for an embedding function of
EAM type [28].

In the past, we have shown that bond-order potentials of the Tersoff–Brenner
type are sufficiently flexible to not only describe covalent materials, like Si and C
[29], and compound semi-conductors, like GaAs and GaN [30,31], but also fcc [32]
and bcc metals [33,34]. This is because they are, in principle, an angular-dependent
variant of the second-moment tight binding approximation [32,35] and can therefore
be understood as an extension of a Finnis–Sinclair type potential [36].

In this paper, we introduce a dynamic charge-transfer model and corresponding
bond-order potential (‘DCT-BOP’) that represents an alternative implementation of
the valence bond method, but rests on an analytical functional form by combining a
short-ranged bond-order potential with an electrostatic term. The distance and
coordination dependence of the effective charges is based on the Mulliken analysis.
The model is derived for GaN but might be transferable to oxide systems, too.

2. Potential model

The purpose of this work is to derive a potential model that can be applied to mixed
covalent(or metallic)-ionic materials, covering the essential features of interatomic
interactions. To begin with, we write the total cohesive energy of the compound
material as

E ¼ Ebonded þ Ees, ð1Þ

where Ees accounts for the electrostatic contribution to the total energy, while
Ebonded describes the repulsive and the chemical interaction energies due to metallic
or covalent bonds.

2.1. Bonded interaction

Chemical and repulsive interactions are described by a well established bond-order
formalism that has been applied to a number of different compound systems
[29,32,37] before and is only briefly sketched here. The non-electrostatic contribu-
tions are written as a sum over individual bond energies of an ensemble of atoms
located on position ri,

Ebonded ¼
X
i4j

fCðrijÞ

�
VRðrijÞ �

bij þ bji
2|fflfflfflffl{zfflfflfflffl}
bij

VAðrijÞ

�
,

ð2Þ

with rij¼ jri� rjj and the pairwise attractive and repulsive contributions given by

VRðrÞ ¼
D0

S� 1
exp ��

ffiffiffiffiffiffi
2S
p
ðr� r0Þ

� �
ð3Þ

and

VAðrÞ ¼
SD0

S� 1
exp ��

ffiffiffiffiffiffiffiffi
2=S

p
ðr� r0Þ

� �
: ð4Þ
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Here, D0, S, � and r0 are adjustable parameters. The cutoff function

fCðrÞ ¼

1 r5R�D

1
2�

1
2 sin

�

2

r� R

D

� 	
jR� rj � D

0 RþD5 r

8>><
>>: ð5Þ

restricts the interactions to the first neighbour shell. The parameters R and D specify
the position and the width of the cutoff region. The bond-order is given by

bij ¼ 1þ �ij

 ��1=2

ð6Þ

with

�ij ¼
X
kð6¼i,j Þ

fCðrikÞ exp 2�ðrij � rikÞ
� 

gð�ijkÞ ð7Þ

and the angular function

gð�Þ ¼ � 1þ
c2

d 2
�

c2

d 2 þ ½hþ cos ��2

� 	
: ð8Þ

The three-body interactions are determined by the parameters 2�, �, c, d and h,
which leads in total to up to nine adjustable parameters all of them depending on
the type of atoms i and j.

2.2. Electrostatic interaction

The electrostatic energy of N interacting ions located at different positions ri is
simply given by the Coulomb energy,

Ees ¼
1

4��o

XN
i,j

q�i q
�
j

jri � rj j
, ð9Þ

and depends on the effective atomic charges q�i , while �o is the permittivity of free
space. If there are no atomic charges, Ees disappears and the non-electrostatic
contribution Ebonded prevails.

2.2.1. Charge-transfer analysis: Mulliken charges

In order to analyse how effective point charges can vary with nearest neighbour
distance and coordination, density-functional theory (DFT) calculations can provide
valuable insights. In principle, the electron density between the nuclei has to be
partitioned in a way that each nucleus has a fractional number of electrons
associated with it. By adding this number and the nuclear charge one obtains the net
atomic charge. A widely used method for performing population analysis has been
proposed by Mulliken [38]. All of the electron density in an orbital, represented by
the diagonal elements of the density matrix, is allocated to the atom on which the
orbital is located. The off-diagonal elements are assigned in equal halves to the
respective overlapping orbitals. Although this scheme has some shortcomings, it is in
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some respects, a close relative of the algorithm presented here, since charges

associated with overlap population are equally divided between pairs of atoms.
We have carried out a set of DFT calculations using the plane-wave code

CASTEP [39] and analysed the Mulliken charges for the B1, B2 and zincblende

structure at various lattice constants. The results are shown in Figure 1. The data

decay exponentially as a function of the interatomic distance and show no saturation

for short spacings. Most importantly, there is only a weak variation with the

coordination number, which cannot be described with a linear additive model.
In order to rationalise whether the effective charges as predicted by the Mulliken

scheme are physically meaningful, a consistency check can be established based on

the energy difference of the zincblende and wurtzite structure of GaN, which has

been calculated by Stampfl et al. [40].
If we assume that the local charge transfer is determined by the local atomic

environment within this first neighbour shell, the effective charges should be almost

identical in zincblende and wurtzite structures, since the nearest neighbour distances

are basically the same. Consequently, the electrostatic contributions to the

interatomic potential could be directly calculated from the Madelung energies of

both lattice types, if the effective charges were known. In return, knowing the energy

difference, we can determine the effective charges at an equilibrium distance

q� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEW

coh � EZB
cohÞro

	W � 	ZB

s
, ð10Þ
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Figure 1. Mulliken charge-transfer analysis for GaN in B1, B2 and zincblende structure.
The lines show the fit to the analytical charge-transfer model.
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if we assume that the bond lengths are the same for w-GaN and c-GaN. In fact, the
different Madelung energies shift the minimum of total potential slightly. This is,
however, a very small effect that does not substantially affect the validity of Equation
(10). The Madelung constant for wurtzite is 	W¼ 1.64132 and for zincblende
	ZB¼ 1.63806. The corresponding differences in formation energy are 0.008 eV/f.u.
using the LDA approximation [40]. From Equation (10), we obtain a corresponding
effective charge of 0.577e for a given bond length of ro¼ 1.9548 Å. This is in perfect
agreement with the result of the Mulliken analysis of our DFT calculations.

2.2.2. Charge-transfer model

The charge-transfer model is based on the assumption that charge transfer occurs
only among nearest neighbours. Suppose two initially isolated neutral atoms like Ga
and N were to approach one another and form a chemical bond. Then a certain
amount of charge is transferred between both atoms, which is dependent on the
distance and electronegativity of both atoms. The charge transfer is symmetric in the
sense that the effective charge gained by one atom (i.e. nitrogen) is counterbalanced
by an opposite charge on the other atom (i.e. gallium). If both atoms are the same,
there is no charge transfer.

The amount of charge that is transferred between a pair of atoms depends on
the distance and is given by a pairwise anti-symmetric charge-transfer function

(rij)¼�
(rji), which we choose to mimic the effective point charges shown in
Figure 1,


ðrijÞ ¼ A exp �
rij � rc
�
� 1

� �
ð�mimj

� 1Þmi , ð11Þ

where A, rc and � are adjustable parameters, while mi is the type index of atom i,
which is an even integer for cations and an odd integer for anions. The parameter rc
determines the locality of the charge-transfer process, while the Kronecker delta
switches the charge-transfer function off for bonds between like atoms.

The effective charge per atom is then a non-linear function of the bond charges,
which need to be weighted a quantity of Pij that can be understood as a measure for
the electronegativity of the direct environment:

Pij ¼ 1þ
X
k 6¼i,j


ðrikÞ=
ðrijÞ

 !�1=2n
: ð12Þ

The effective charge on atom i finally reads

q�i ¼
X
j6¼i

Pij þ Pji

2

ðrijÞ: ð13Þ

3. Parameter optimisation

The potential parameters are adjusted for the interactions of Ga-Ga, N-N and Ga-N,
separately. Since the even bonds are not affected by the charge-transfer scheme, we

3482 K. Albe et al.
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adopt the Ga-Ga and N-N parameters as published in [31] in the context of a short-

ranged bond-order potential for GaN.

3.1. Gallium nitride

The construction of the Ga-N interaction parameters involves the electrostatic and

the bonded part. As explained earlier, the parameters for the charge-transfer model

(A, rc, � and n) are determined by fitting to the Mulliken charges for different

interatomic distances and coordinations. After this is done, the fitting of the

remaining parameters for the bonded terms can be carried out by using a regular

fitting scheme [29,36]. The input data consist of a modified reference data set from

DFT-LDA calculations [31], where the electrostatic contributions have been

subtracted in the following way: For each structure with coordination number

Z (Z¼ 1, 4, 6 and 8) and nearest neighbour separation r0(Z), the effective charges

are calculated from Equations (11)–(13). Using the known Madelung sums for each

structure one can then analytically calculate the electrostatic contribution Ees to the

potential energy, which can be added directly to the bonded contribution Ebonded to

give the total cohesive energy/formula unit Ecoh/f.u. After this modification, the

fitting of the energies and distances can otherwise be carried out as for an ordinary

non-ionic bond-order potential.
The fitted energies and reference data are shown in Figure 2 in comparison to the

short-ranged bond-order potential [31]. The charge-transfer model allows us to

distinguish the cohesive energies of zincblende and wurtzite, but does not provide an

improved description of the B1 and B2 structures as compared to the short-range

potential.
The analysis of electrostatic and bonded contributions to the cohesive energy for

the various structures under consideration provides interesting insights into the

model (Figure 2). We see that, in all structures, the bonded and electrostatic

contributions to the cohesive energy are of similar magnitude, with increasing

relative contributions of the electrostatic energies at higher coordinations (Z¼ 4–6)

(see Figure 3).
Similarly, the equation-of-state for the zincblende phase is shown in Figure 4.

Here we analyse the volume dependence of both energy contributions. In contrast

to the QEq scheme, there is no softening of the Coulomb terms at shorter distances,

but increasing electrostatic energy contributions at smaller volumes due the the

exponential distance dependence of the charge-transfer function 
.
For the four-fold coordinated zincblende structure at the equilibrium distance,

we obtain an ionicity (Ees/Ecoh) of about 42%, in agreement with the usual estimates

of an ionicity of about 50% in GaN.
Table 1 shows the fitted energies and bond lengths as well as the results of the fit.

Also shown are the effective charges for each equilibrium distance r0, which are

directly comparable to the charges obtained from the Mulliken analysis. The choices

of the reference data used are discussed in detail in [31]. Note, especially, that thanks

to the inclusion of the electrostatic part, the wurtzite–zincblende energy difference in

our model is in practically perfect agreement with the LDA data.
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Figure 2. Energy/bond vs. bonding distance for various structure of GaN, including the
dimer, wurtzite, zincblende, B1 and B2 phases. Shown are the DFT-LDA reference data set,
the short-range bond-order potential [31] and the dynamic charge-transfer bond-order model.
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energy as a function of the coordination number.
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3.1.1. Elastic properties

The fitting of the elastic constants in the charge-transfer scheme needs a conceptually

similar modification to the fitting of the energies. The purely ionic contribution of

the shear moduli is determined first, and this is, during the fit, added to the covalent

contribution to obtain a total modulus which is fitted to the reference data.
The elastic moduli of wurtzite GaN have been studied experimentally [44–46] and

theoretically [47–50] by a number of groups. Their results are listed in Table 2 and

show significant deviations. This is most likely due to the fact that internal strain
leads to atomic relaxations, which is treated differently by the relaxation procedures

applied. Therefore, we decided to fit the potential parameters to the elastic properties

of zincblende GaN, where only the shear modulus c44 is affected by internal strain,

and then to validate the results for w-GaN.
For fitting the elastic moduli, we have used the static elastic moduli for

zincblende GaN as given by Shimada et al. [50]. With the final parameter set, all
tensor components were calculated directly by molecular statics allowing for full

internal relaxations. The good agreement of the zincblende internal strain parameter

 with the most recent DFT calculations [50] show that our model also properly

describes the internal relaxations. The results compared to the transformation

method and literature data are given in Table 2. All elastic moduli are well

reproduced within the uncertainty limits of the reference data. The relative
differences of directly calculated values and those obtained by the transformation

procedure are most significant for c44.
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Figure 4. Electrostatic and bonded energy contributions to the energy-volume curve of GaN
in zincblende structure.
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3.1.2. Point defects

Although there has been much progress in growing GaN during the last decade,
there are many open questions related to native point defects and impurities. The
sources of n type conductivity and yellow luminescence, for example, are still under
discussion, and knowledge of the electronic properties of defects in GaN in general is
still far from being complete, although the subject has been the topic of several recent
theoretical studies [52–57].

An inherent problem of analytic interatomic potentials is that they do not
describe the electronic subsystem and therefore cannot account for the presence of
electronic band defects and the fact that defects occur in various charge states

Table 1. Energy and structural parameters of different GaN phases. Given are experimental
values and theoretical results from DFT calculations in comparison to the corresponding
numbers as described with the analytical model. The q values give the charge per atom
(positive for Ga, negative for N) at the equilibrium separation ro of the corresponding
structure. The wurtzite structure has u¼ 3/8.

GaN dimer LCAO [41] Exp. (from [42]) BOP [31] DCT-BOP

ro (Å) 2.06 1.921 1.891
Do (eV) 2.45 2.45 2.657
q(ro) 0.441

Zincblende GaN LDA [42]
ao (Å

3) 4.497 4.50 4.498 4.500
Ecoh/f.u. (eV) 9.048 9.056 9.050
B (GPa) 196 205 202
B0 4.2 4.14 4.5
q(ro) 0.559

Wurtzite GaN
ao (Å

3) 3.180 3.190 3.180 3.179
c/a 1.632 1.627 1.633 1.636
ro (Å

3) 1.948 1.956 1.948 1.948
u 0.376 0.377 0.375 0.375
Ecoh/f.u. (eV) 9.058 9.058 9.056 9.057
B (GPa) 196 188–245 205 202
B0 4.3 3.2–4.3
q(ro) 0.560

B1 LDA [43]
ao (Å

3) 4.225 4.304 4.302
Ecoh/f.u. (eV) 8.150 7.460 7.514
B (GPa) 240 233 232
B0 4.5 4.7 4.6
q(ro) 0.480

B2
ao (Å

3) 2.802 2.676 2.699
Ecoh/f.u. (eV) 5.75 6.09 5.791
B (GPa) 240 218 218
B0 4.5 5.2 5.2
q(ro) 0.395

3486 K. Albe et al.
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depending on the Fermi energy level. Therefore, such potentials are of very limited
use for a thermodynamic understanding of the defect chemistry of solids. However, it
is a worthwhile task to characterise the potential properties also with respect to point
defects, since they can occur in molecular dynamics simulations under non-
equilibrium conditions. As compared to fixed charge models, the charge-transfer
scheme presented here has the advantage that charge neutrality is maintained even
for non-stoichiometric compositions, and therefore we restrict ourselves to the case
of neutral defects.

The basic goal was to reproduce the hierarchy in formation energies of the
different neutral point defects, which are, to a large extent, determined by the
significant difference in the atomic covalent radii of nitrogen and gallium atoms.
Defects were investigated for a system that was thermally equilibrated at 600K and
then slowly cooled down to 0K at zero pressure. The defect formation energy EF

then was determined from the potential energy ED of the cell containing the defect
following the formalism of Qian et al. [58]. The calculated defect formation energies
are given in Table 3 for the nitrogen rich limit.

The potential describes the nitrogen vacancy well, which is the most important
point defect in GaN. Also, the other vacancies and interstitials are reproduced with
reasonably accuracy considering the uncertainties of the reference data. Only the
formation energy of the N antisite is suspiciously high.

Although, currently, all of the defects have local charge neutrality as explained
above, we note that it would be possible to extend the model to deal with charged
defects by explicitly adding a charge state on atoms or on a vacant site.

Table 2. Elastic constants for zincblende and wurtzite GaN.

ZB Calc.1 Calc.2 Calc.3 Exp.4 Exp.5 Exp.6 BP7 BOP8 DCT-BOP9

c11 285 282 293 300 287 281
c12 161 159 159 191 169 164
c44 149 142 155 160 128 128
co44 202 200 244 204
 0.67 0.5 0.61 0.699

WZ
c11 350 367 390 365 377 386 343 337
c12 140 135 145 135 160 160 159 154
c13 104 103 106 114 114 141 123 118
c33 376 405 405 398 381 209 391 379 374
c44 101 95 105 109 81.4 115 72 71
c66 115 116 123 115 109 113 92 92

1LDA pseudopotential calculation [50]
2FP-LMTO LDA calc. [48]
3LDA pseudopotential calculation [49]
4Brillouin scattering [44]
5Brillouin scattering [45]
6Resonance ultrasound [46]
7Coulomb–Buckingham potential [51]
8Analytic bond-order potential [31]
9This work
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3.1.3. Melting point

The melting point of GaN is somewhat uncertain due to experimental difficulties

related to the very high temperature and N2 pressure necessary for melting.

Experiments in a high pressure anvil cell showed that GaN does not melt at

temperatures as high as 2573K at 68 kbar [59]. A CALPHAD (CALculation of

PhAse Diagrams) method thermodynamic analysis of available experimental data

predicts a melting temperature of 2792K at equilibrium pressure of N2 [60]. We

determined the melting point of the simulated model, firstly to find out that it is

not unrealistically low compared to the experimental assessments, secondly, since a
melting simulation carried out with the liquid–solid equilibrium method [61] serves

as a good test, that the potential does not have artificial minima [62].
Using the liquid–solid equilibrium method we found that the melting point of

GaN in the current model is 3500� 500K. The high uncertainty is due to the high

computational cost of simulating the ionic model for the long time-scales required to

find thermodynamic equilibrium. This is in reasonable agreement with the analytical

estimate of the melting point of 2791K at 45 kbar [63] and 2792K from the

CALPHAD method [60].

3.2. Practical implementation

The practical implementation of the current model requires three components

(which, in practice, are subroutines in a computer program). The covalent bonding

part can be treated with a subroutine for calculating the potential energy for Tersoff-

like potentials. Such routines are widely available. The charge transfer requires

another, entirely new routine which outputs the charge of each atom. Once the

charges are calculated, the long-range Coulombic interaction can be calculated with

any of the several methods available for this purpose, for instance Ewald mesh
methods [64,65] or fast multipole methods [66–68]. Also, truncated Coulomb

potentials can be used, although then care should be taken that this does not lead to

Table 3. Defect formation energies EF for the main point defects in GaN. The values are for
N-rich conditions. Energies are given in eV, formation volumes in Å3. The column non-ionic
gives the results for our earlier non-ionic model. [31]

Defect
EF

current work
EF

non-ionic EF
1 EF

2 EF
3

VGa 4.4 4.4 6.8 6.3
VN 2.1 1.4 1.2 4.6
GaN 3.8 3.0 6.8 10.5
NGa 10.6 5.2 5.2 5.7 5.8
IN 7.3 5.7 3.2
IGa 8.1 5.5 4.1

1LDA-DFT pseudopot. calc. [52]
2LDA-DFT pseudopot. calc., calculated in ZB [54,55]
3DFT-LMTO calc. [56]
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any of the known problems with potential truncation [69]. In the end, the covalent
bond and ionic energies are simply summed together.

For calculation of the potential energy only, the above approach is straightfor-
ward. To also calculate the interatomic forces (necessary for MD simulations),
a complication arises in that the atomic charges depend on the interatomic distances,
and hence give rise to force components not present in a fixed-charge model [70].
The Appendix presents a detailed derivation of these force components. With use
of the additional neighbour list described in the Appendix, these forces can be
added to the long-range force calculation scheme without major modification of
the code. The charge-transfer/force calculation subroutine is available from one
of the authors (KN).

In our code, we used a covalent force subroutine based on one originally
developed by Morris et al. [71] and heavily modified to be able to deal with
compounds and our modifications to the Tersoff functional form [72]. The long-
range forces were handled with the DPMTA method [67] which is a linear-scaling
fast multipole method. In a few cases, when high accuracy was desired, we noticed
that numerical ‘noise’ in this method prevented getting very accurate results. In such
cases, the final energy was evaluated with a brute-force direct summation of the
Coulomb interaction over symmetrically placed increasingly distant image cells. The
brute force approach was also used in the nanocluster simulations, since no periodic
image cells are needed and the direct summation is therefore exact when all pairs
are summed over.

The charge-transfer subroutine is comparable in efficiency with the covalent
bond (Tersoff) one, but any Coulomb potential calculation scheme is much slower
than either of these. Hence, our charge-transfer scheme does not cause any
significant slowdown of the code when compared to other methods with explicit
ionic charges.

4. Applications: irradiation effects

The irradiation of materials with high energy (keV or MeV) ions can lead to
dramatic modification of the material. It is well known that a single keV ion
irradiation event can melt the material locally for a few ps, produce hundreds of
defects, and for most ceramic materials, cause a crystalline-to-amorphous phase
transition (see e.g. [73] and references therein). It is also known that damage in highly
ionic materials often differs dramatically from that in covalent and metallic ones.
For instance, the amorphisation dose of GaN is one to three orders of magnitude
higher than that in GaAs [74,75]. Hence, it is a natural question to ask whether the
ionic bonding itself can be the reason to this difference. Since in an ionic material
defects can be charged, it is plausible that defects far from each other are subject to
the long-range ionic interactions, which could affect defect recombination strongly.
Our previous non-ionic model for GaN [31] and the present one are fitted to the same
database and are of comparable quality with respect to the reproduction of
crystalline phases, elasticity and defect properties. Hence, simulating irradiation
effects with both of them provides an ideal way to test whether including explicit
ionic interactions affects the primary state of damage during ion irradiation.
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We carried out the testing in two different stages. We first simulated the

damage produced by single high-energy recoils in GaN. Such recoils can be

experimentally produced inside a material with MeV electron, neutron or light ion

irradiation.
The defects produced in 400 eV and 1 keV cascades for both models are shown in

Table 4. It is evident that the the non-ionic and ionic models predict very similar

damage production in the recoil events. Because of the large statistical uncertainties,

we cannot rule out that there might be some difference in the number of antisites, but

it is clear that the difference is not an order-of-magnitude one.
Computer capacity limitations prevented us from simulating large numbers of

higher-energy cascades, which are known to produce liquid-like zones and

amorphisation in semi-conductors [76]. But to mimic heat spikes in a better-defined

system than the chaotic and extended cascades, we simulated a test system

manufactured as follows: A simulation cell consisting of 8192 atoms at perfect

lattice sites was set up. The atoms closer than 10 Å to the centre of the cell were given

an initial velocity in random directions. The velocity was selected so that the

cell heated up to about 2000K after reaching thermal equilibrium. This way

the centre of the cell heated up quickly and produced a molten zone, which then

partially recrystallised. The number of disordered atoms against time is given

in Figure 5 for the long- and short-range models. Again, the behaviour is very

similar. A molten region of about 800 atoms is produced in the centre of the cell.

The disordered region quickly recrystallises, and after 2 ps, there are about 100

disordered atoms remaining.
These results show, somewhat surprisingly, that the inclusion of explicit ionic

interactions does not affect damage production in GaN. This negative finding is

significant in that (if it proves to be valid in other materials as well) it shows that

the long-range effects of ionicity on the bonding can be well compensated by

a computationally much more efficient short-range model for modelling of the

primary state of radiation damage. It also indicates that the difference between

the primary state of irradiation damage in ionic and non-ionic materials is at least

not explicitly caused by the ionic interactions.

Table 4. Damage produced by 400 eV and 1 keV recoils with short- and long-range models.
The number of defects is a sum of the defects in both Ga and N sublattices.

Energy Vacancies Interstitials Antisites

Short-range
400 eV 2.8� 0.4 2.8� 0.4 0.66� 0.2
1 keV 6.3� 0.7 6.3� 0.7 2.1 � 0.4

Long-range
400 eV 3.0� 1.2 3.0� 1.2 0*

1 keV 6.3� 1.1 6.3� 1.1 3.3� 0.3

*Antisites were not observed in the five 400 eV simulations.
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5. Summary

We have presented an analytical dynamic charge-transfer scheme that reproduces the
distance and coordination dependence of Mulliken charges in gallium nitride as
obtained from an analysis of total energy DFT calculations. The basic concepts
derive from the idea of bond charges. We assume pairwise symmetric charge transfer
between odd atom types forming a bond. Charge contributions of all bonds are
individually weighted by the electronegative strength and summed up, which yields
the effective charge per atom, while maintaining overall charge neutrality. The
method is used to complement a short-ranged bond-order potential for the ionic-
covalent gallium nitride. The potential is fully analytic and computationally efficient
as compared to alternative schemes based on the QEq method, without suffering
from problems with energy conservation or shielding effects. By comparing defect
production rates for 400 eV and 1 keV recoils as obtained from MD simulations
using the ionic and a short-ranged bond-order potential no appreciable differences
are found.
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[43] A. Muñoz and K. Kune, Phys. Rev. B 44 (1991) p.10372.
[44] A. Polian, M. Grimsditch and I. Grzegory, J. Appl. Phys. 79 (1996) p.3343.

[45] M. Yamaguchi, T. Yagi, T. Azuhata, T. Sota, K. Suzuki, S. Chichibu and S. Nakamura,

J. Phys. Condens. Matter 9 (1997) p.241.

3492 K. Albe et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

ee
ds

] 
at

 0
2:

03
 1

4 
Ja

nu
ar

y 
20

13
 



[46] R. Schwarz, K. Khachaturyan and E. Weber, Appl. Phys. Lett. 70 (1997) p.1122.
[47] K. Kim, W. Lambrecht and B. Segall, Phys. Rev. B 53 (1996) p.16310.
[48] K. Kim, W. Lambrecht and B. Segall, Phys. Rev. B 56 (1997) p.7018.
[49] A.F. Wright, J. Appl. Phys. 82 (1997) p.2833.

[50] K. Shimada, T. Sota and K. Suzuki, J. Appl. Phys. 84 (1998) p.4951.
[51] P. Zapol, R. Pandey and J. Gale, J. Phys. Condens. Matter 9 (1997) p.9517.
[52] J. Neugebauer and C.G.V.D. Walle, Phys. Rev. B 50 (1994) p.8067.

[53] P. Boguslawski, E.L. Briggs and J. Bernholc, Phys. Rev. B 51 (1995) p.17255.
[54] T. Mattila, A. Seitsonen and R.M. Nieminen, Phys. Rev. B 54 (1996) p.1474.
[55] T. Mattila and R.M. Nieminen, Phys. Rev. B 55 (1997) p.9571.

[56] I. Gorczyca, A. Svane and N.E. Christensen, Phys. Rev. B 60 (1999) p.8147.
[57] I. Gorczyca, A. Svane and N. Christensen, Solid State Comm. 101 (1997) p.747.
[58] G.X. Qian, R. Martin and D. Chadi, Phys. Rev. B 38 (1988) p.7649.

[59] J. Edgar, Properties of Group III-Nitrides, INSPEC, London, 1994.
[60] A.V. Davydov and T.J. Anderson, Thermodynamic analysis of the Ga-N system, in III-V

Nitride Materials and Processes III, T.D. Moustakas, S.E. Mohney and S.J. Pearton, eds.,

ECS, Boston, MA, 1998, pp.38–49.
[61] J.R. Morris, C.Z. Wang, K.M. Ho and C.T. Chan, Phys. Rev. B 49 (1994) p.3109.

[62] K. Nordlund and A. Kuronen, Nucl. Instr. Meth. Phys. Res. B 159 (1999) p.183.
[63] J.A.V. Vechten, Phys. Rev. B 7 (1973) p.1479.
[64] P.A. Batcho, D.A. Case and T. Schlick, J. Chem. Phys. 115 (2001) p.4003.
[65] T. Darden, L. Pedersen, A. Toukmaji, M. Crowley and T. Cheathan, Proceedings of

the Eighth SIAM Conference on Parrallel Processing for Scientific Computing, PPSC

(1997) p.1.
[66] R.K. Kalia, A. Nakano, A. Omeltchenko, K. Tsuruta and P. Vashishta, Chemistry and

physics of nanostructures and related non-equilibrium materials, in Million Atom Molecular

Dynamics Simulation of Nanophase Silicon Nitride, E. Ma, B. Fultz, R. Shull, J. Morral

and P. Nash, eds., TMS, Warrendale, PA, 1997, pp.89–96.
[67] W.T. Rankin and J.J.A. Board, A portable distributed implementation of the parallel

multipole tree algorithm, in Proceedings of the 1995 IEEE Symposium on High Performance

Distributed Computing, IEEE Computer Society Press, Los Alamitos, California, 1995,

pp.17–22.
[68] L. Greengard and V. Rokhlin, J. Comput. Phys. 73 (1987) p.325.
[69] M. Patra, M. Karttunen, M. Hyvonen, E. Falck, P. Lindqvist and I. Vattulainen,

Eur. Biophys. J. 32 (2003) p.216.

[70] A. Alavi, L.J. Alvarez, R. Elliott and I.R. MacDonald, Phil. Mag. B 65 (1992) p.489.
[71] J.R. Morris, AL_CMD, code available at http://cmp.ameslab.gov/cmp/CMP_Theory/

cmd/cmd.html.
[72] K. Albe, K. Nordlund and R.S. Averback, Phys. Rev. B 65 (2002) p.195124.

[73] R.S. Averback and T. Diaz de la Rubia, Displacement damage in irradiated metals and

semiconductors, in Solid State Physics, H. Ehrenfest and F. Spaepen, eds., Academic

Press, New York, 1998, pp.281–402.
[74] E. Wendler, A. Kamarou, E. Alves, K. Gärtner and W. Wesch, Nucl. Instr. Meth. Phys.
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Appendix: Calculating forces from the charge-transfer potential

The total potential energy of an N atom system due to the charge-transfer potential is
calculated from (in units with 1/(4��0)¼ 1)

Vct ¼
1

2

X
s

X
t 6¼s

qsqt
rst

, ðA1Þ

where

qs ¼
X
u 6¼s

Psu þ Pus

2

ðrsuÞ ðA2Þ

Psu ¼ 1þ
X
v 6¼s,u


ðrsvÞ


ðrsuÞ

 !�1=2n
ðA3Þ


ðrsuÞ ¼ A e
�
rsu � rc
� � 1

 !
ð�1Þ�s, Nitrogen : ðA4Þ

The meaning of the terms is discussed in the main text of the paper. All sums described in this
appendix loop over all atoms 1, . . . ,N in the system, except when otherwise specified below the
sum sign.

To calculate the force Fi acting on atom i, we have to calculate

i ¼ �rri
1

2
Vct ¼ �rri

1

2

X
s

X
t 6¼s

qsqt
rst

: ðA5Þ

Contrary to the case of an ordinary Coulomb potential, where qs and qt are constant, in the
charge-transfer case they depend on the coordinates of the nearby atoms. Hence, the
derivative rri has to be applied on all terms qs, which depend on the coordinates of atom i.
In other words, we have to find all terms in the sum where either qs, qt or rst depend on ri.
Using the rule for a derivative of a product, we get

i ¼ �
1

2

X
s

X
t 6¼s

qsqt rri
1

rst
þ
ðrri qsÞqt

rst
þ
qsðrri qtÞ

rst

� 	
: ðA6Þ

The derivative of rst gives the usual forces acting between constant charged bodies. For qs,
we have to note that if either s, u, or v in Equations (A2)–(A4) is equal to i, there will be a force
contribution from the term rri qs, and similarly for qt.

Because the sum loops over all (s, t) pairs twice, the latter two terms in Equation (A6) are
equivalent on the exchange of s and t, and we can write

Fi ¼ �
1

2

X
s

X
t 6¼s

�
qsqt
r2st

r̂st|fflfflfflfflffl{zfflfflfflfflffl}
s¼i or t¼i

þ2
ðrri qsÞqt

rst

0
BB@

1
CCA ðA7Þ

¼ �
1

2

X
s

X
t 6¼s

�2
qsqt
r2st

r̂st|fflfflfflfflfflffl{zfflfflfflfflfflffl}
s¼i

þ2
ðrri qsÞqt

rst

0
BB@

1
CCA ðA8Þ
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¼ �
X
s

X
t 6¼s

�
qsqt
r2st

r̂st|fflfflfflfflffl{zfflfflfflfflffl}
s¼i

þ
ðrriqsÞqt

rst|fflfflfflfflffl{zfflfflfflfflffl}
Any s for which ðrri qsÞ6¼0

0
BBB@

1
CCCA: ðA9Þ

The first part is just the derivative of the Coulomb potential in a system with no charge
transfer.

Evaluating the latter part requires care. As stated above, qs is a three-body function, and
hence rri qs may be non-zero even when s 6¼ i. Thus, the sum can contain terms of the type

ðrri qsÞqt
rst

, i 6¼ s 6¼ t, ðA10Þ

which complicates practical evaluation: one needs to keep track of rriqs pairwise for (i, s) to
know which rst one should use. And even atoms which are not neighbours of s, but only
neighbours w of a neighbour u of s, can contribute to the force on atom i.

To find out for which terms rri qs 6¼ 0, we first need to fully evaluate

rri qs ¼ rri
X
u 6¼s

Psu þ Pus

2

ðrsuÞ

 !
ðA11Þ

¼ rri

X
u6¼s

1þ
X
v 6¼s,u


ðrsvÞ


ðrsuÞ

 !�1=2n
þ 1þ

X
w 6¼u,s


ðruwÞ


ðrusÞ

 !�1=2n
2


ðrsuÞ

0
BBBBB@

1
CCCCCA: ðA12Þ

Now we find that there are, in total, four atoms in the sum which may be the atom i and hence
contribute to the force on atom i: s, u, v or w.

Derivative of qs
Continuing from Equation (A13),

rri qs ¼
1

2
rri

X
u6¼s

1þ
X
v 6¼s,u


ðrsvÞ


ðrsuÞ

 !�1=2n
þ 1þ

X
w 6¼u,s


ðruwÞ


ðrusÞ

 !�1=2n2
4

3
5
ðrsuÞ ðA13Þ

¼
1

2

X
u6¼s

rri 1þ
X
v6¼s,u


ðrsvÞ


ðrsuÞ

 !�1=2n
þrri 1þ

X
w 6¼u,s


ðruwÞ


ðrusÞ

 !�1=2n2
4

3
5
ðrsuÞ

þ 1þ
X
v 6¼s,u


ðrsvÞ


ðrsuÞ

 !�1=2n
þ 1þ

X
w 6¼u,s


ðruwÞ


ðrusÞ

 !�1=2n2
4

3
5rri
ðrsuÞ

ðA14Þ

¼
1

2

X
u6¼s

�1

2n
1þ

X
v6¼s,u


ðrsvÞ


ðrsuÞ

 !�1=2n�1zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{�P d
su

rri

X
v6¼s,u


ðrsvÞ


ðrsuÞ

 !
þ

2
66664

�1

2n
1þ

X
w 6¼u,s


ðruwÞ


ðrusÞ

 !�1=2n�1zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{�Pd
us

rri

X
w 6¼u,s


ðruwÞ


ðrusÞ

 !377775
ðrsuÞ
ðA15Þ
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þ Psu þ Pus½ �rri
ðrsuÞ

¼
1

2

X
u6¼s

Pd
su

X
v6¼s,u


ðrsuÞðrri
ðrsvÞÞ � 
ðrsvÞðrri
ðrsuÞÞ


ðrsuÞ
2

 !"

þPd
us

X
w 6¼u,s


ðrusÞðrri
ðruwÞÞ � 
ðruwÞðrri
ðrusÞÞ


ðrusÞ
2

 !#

ðrsuÞ

ðA16Þ

þ Psu þ Pus½ �rri
ðrsuÞ: ðA17Þ

Here the atom configuration can be illustrated as follows:

i.e. w is a neighbour of v but not necessarily s.
Now this can be handled depending on which index s, u, v or w equals i. In the following,

we handle the four cases separately:

(A) s¼ i

rri qi ¼
1

2

X
u6¼i

Pd
iu

X
v6¼i,u


ðriuÞðrri
ðrivÞÞ � 
ðrivÞðrri
ðriuÞÞ


ðriuÞ
2

 !"

þPd
ui

X
w 6¼u,i


ðruiÞðrri
ðruwÞÞ � 
ðruwÞðrri
ðruiÞÞ


ðruiÞ
2

 !#

ðriuÞ

þ Piu þ Pui½ �rri
ðriuÞ

¼
1

2

X
u6¼i

Pd
iu

X
v6¼i,u


ðriuÞðrri
ðrivÞÞ � 
ðrivÞðrri
ðriuÞÞ


ðriuÞ
2

 !

ðriuÞ

þ Pd
ui

X
w 6¼u,i

�
ðruwÞðrri
ðruiÞÞ


ðruiÞ
2

 !

ðriuÞ

þ Piurri
ðriuÞ þ Puirri
ðriuÞ
� 

:

ðA18Þ

(B) u¼ i

rri qs ¼
1

2

X
i 6¼s

Pd
si

X
v 6¼s,i


ðrsiÞðrri
ðrsvÞÞ � 
ðrsvÞðrri
ðrsiÞÞ


ðrsiÞ
2

 !"

þPd
is

X
w 6¼i,s


ðrisÞðrri
ðriwÞÞ � 
ðriwÞðrri
ðrisÞÞ


ðrisÞ
2

 !#

ðrsiÞ

þ Psi þ Pis½ �rri
ðrsiÞ

¼
1

2

X
i 6¼s

Pd
si

X
v 6¼s,i

�
ðrsvÞðrri
ðrsiÞÞ


ðrsiÞ
2

 !

ðrsiÞ

þ Pd
is

X
w 6¼i,s


ðrisÞðrri
ðriwÞÞ � 
ðriwÞðrri
ðrisÞÞ


ðrisÞ
2

 !

ðrsiÞ

þ Psirri
ðrsiÞ þ Pisrri
ðrsiÞ
� 

:

ðA19Þ
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(C) v¼ i

rri qs ¼
1

2

X
u6¼s

Pd
su

X
i 6¼s,u


ðrsuÞðrri
ðrsiÞÞ � 
ðrsiÞðrri
ðrsuÞÞ


ðrsuÞ
2

 !"

þPd
us

X
w 6¼u,s


ðrusÞðrri
ðruwÞÞ � 
ðruwÞðrri
ðrusÞÞ


ðrusÞ
2

 !#

ðrsiÞ

þ Psu þ Pus½ �rri
ðrsuÞ

¼
1

2

X
u6¼s

Pd
su

X
i 6¼s,u


ðrsuÞðrri
ðrsiÞÞ


ðrsuÞ
2

 !

ðrsuÞ:

ðA20Þ

(D) w¼ i

rri qs ¼
1

2

X
u6¼s

Pd
su

X
v6¼s,u


ðrsuÞðrri
ðrsvÞÞ � 
ðrsvÞðrri
ðrsuÞÞ


ðrsuÞ
2

 !"

þPd
us

X
i 6¼u,s


ðrusÞðrri
ðruiÞÞ � 
ðruiÞðrri
ðrusÞÞ


ðrusÞ
2

 !#

ðrsuÞ

þ Psu þ Pus½ �rri
ðrsuÞ

¼
1

2

X
u6¼s

Pd
us

X
i 6¼u,s


ðrusÞðrri
ðruiÞÞ


ðrusÞ
2

 !

ðrsuÞ:

ðA21Þ

For practical implementation in a computer program, one can reduce the number of sums
to a single (ijk) three-body loop by using the following transformations. We handle the Psu,

P
v

loop as ijk and Pus,
P

w also as ijk. We use the transformations

for Psu,
X
v

:

s u v

# # #

i j k

and for Pus,
X
w

:

u s w

# # #

i j k

: ðA22Þ

This also determines which atom the force acts on: for instance, for the case u¼ i, the force will
act on either atom j (Psu) or atom i (Pus). After these transformations, several of the derivative
terms given above become identical and can be combined.

Finally, we note that the neighbour lists should be constructed such that they also contain
the far neighbours w as seen from atom s.

We tested that our derivative works correctly by comparing with numerical derivation in
parabolic approximation (three points). Using purely numerical means, we found that one can
get 	 eight-digit accuracy in the numerical derivative, providing for stringent testing of the
analytical derivative. We progressed in the testing from simple to more complicated systems,
starting from a dimer (tests two-body parts only), and continuing with two dimers separated
by more than rc (tests two-body parts plus long-range part), a linear trimer (tests three-body
part in simplest possible manner), and finally in random nanocluster and bulk atom
configurations. In the final version of the subroutine, perfect agreement between the analytical
and numerical derivative was achieved within the 	 eight-digit numerical accuracy for all these
cases.

When the charge-transfer scheme is implemented in a Ewald mesh [64] or field multipole
method [77] the charge-transfer force terms need to be added to the force evaluation of the
summation scheme.
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