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2 x 2 matrix games, general treatment

Denote the two pure strategies of the game by R1 and R2, respectively. The pay-off
matrix is

R1 R2
R1 a b
R2 c d

R1 is an ESS if a>c, because in this case a rare mutant with strategy R2 in a population
of R1 individuals does worse than R1 itself, and hence is not able to spread (invade).
Similarly, R2 is an ESS if d>b. Note that R1 and R2 may be ESS at the same time (if
both a>c and d>b hold). In this case whichever of the two strategies is present in the
beginning, it is resistant to invasion by the other.

Next, we look for mixed ESSs. Assume that the entire population uses a mixed
strategy I, which applies R1 with probability p and R2 with probability 1-p. In this
population, the pay-off of the pure strategy R1 is given by

E(R1,I) = p a + (1-p) b

because it encounters R1 with probability p in which case it obtains a as pay-off, and it
encounters R2 with probability 1-p in which case it gets b. Similarly, the pay-off of R2
is

E(R2,I) = p c + (1-p) d

By the Bishop-Cannings theorem, these two pay-offs must equal with one another
(and also with E(I,I)) if I is to be an ESS. Hence we can calculate p from the equation

p a + (1-p) b = p c + (1-p) d

and we get 
dcba

bdp
+−−

−
=  as candidate ESS.

In order to conclude that we have found a mixed ESS, we need to see (1) whether p is
between 0 and 1 (if p is not a probability, this is not a meaningful strategy), and (2)
whether the second ESS condition is satisfied. We check the latter point first. The
second ESS condition requires that E(I,J) > E(J,J) for any possible strategy J that
differs from I. Denote the mixing frequency of the alternative strategy J by q. We are
interested in any q that is not equal to p; pure strategies are also included as
alternative strategies because q may be 0 (=pure R2) or 1 (=pure R1). We fill in the
pay-offs from the matrix to obtain

E(I,J) = p q a + p (1-q) b + (1-p) q c + (1-p) (1-q) d

For example, the probability that strategy I uses R1 is p; the probability that it meets a
strategy-J individual who also uses R1 is q; if both conditions hold true (with



combined probability p q), then the I-individual gets a as pay-off. The other three
terms of the above equation are interpreted analogously. In a similar way, we get

E(J,J) = q2 a + q (1-q) b + (1-q) q c + (1-q)2 d

To see whether the second ESS condition E(I,J) > E(J,J) holds, let us compute the
difference E(I,J) - E(J,J):

E(I,J) - E(J,J) = 

= pqa + p(1-q)b + (1-p)qc + (1-p)(1-q)d - [q2a + q(1-q)b + (1-q)qc + (1-q)2d]

= (p-q) [ q (a-b-c+d) + b - d ]

If I is indeed ESS, this last expression should be positive for every q that is different

from p. Since we have 
dcba

bdp
+−−

−
= , what is in the square brackets can be

written as [(a-b-c+d) (q - p)], and we finally get

E(I,J) - E(J,J) = - (a-b-c+d) (p - q)2

Since the square is always positive if p and q are different, the whole expression is
positive, and hence the second ESS condition is satisfied, if a-b-c+d is negative.

Finally, let's see whether 
dcba

bdp
+−−

−
= is between 0 and 1 given that a-b-c+d is

negative. For p to be positive, d must be smaller than b, because the denominator is
negative. For p to be less than 1, a must be smaller than c. We thus have a mixed ESS
if both a<c and d<b; in this case, a-b-c+d is negative.

We can summarize the general conclusions about 2x2 matrix games as follows:

(i) R1 is an ESS if a>c
(ii) R2 is an ESS if d>b
(iii) There is a single mixed ESS if a<c and d<b. (There was only one solution for p.)

       The ESS mixing frequency is 
dcba

bdp
+−−

−
= .

(iv) The game always has an ESS (there is no combination of a, b, c, d that is not
covered in the previous conditions).
(v) The game may have two pure ESSs at the same time, but if there is a mixed ESS,
then no pure strategy is ESS.


