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Abstract

We consider mating strategies for females who search for males sequentially during a season of limited length.

We show that the best strategy rejects a given male type if encountered before a time-threshold but accepts him after.

For frequency-independent benefits, we obtain the optimal time-thresholds explicitly for both discrete and continuous

distributions of males, and allow for mistakes being made in assessing the correct male type. When the benefits are

indirect (genes for the offspring) and the population is under frequency-dependent ecological selection, the benefits

depend on the mating strategy of other females as well. This case is particularly relevant to speciation models that

seek to explore the stability of reproductive isolation by assortative mating under frequency-dependent ecological se-

lection. We show that the indirect benefits are to be quantified by the reproductive values of couples, and describe how

the evolutionarily stable time-thresholds can be found. We conclude with an example based on the Levene model,

where we analyze the evolutionarily stable assortative mating strategies and the strength of reproductive isolation

provided by them.

Mate choice is a decisive process that shapes the genotypic distribution of populations in the course of evolution.

Females, who are often the active sex in mate choice, are faced with the task of selecting a male who gives the best

chances for the production and survival of their progeny. In many species, the search for males is constrained to hap-

pen sequentially in time (Janetos 1980, Real 1990, Bakker and Milinski 1991, Backwell and Passmore 1996, Forsgren

1997, Houde 1997, Ivy and Sakaluk 2007, Lehmann 2007). In sequential search, the female faces a decision at each

encounter with a male to be either satisfied with the male, in which case she accepts him for mating and terminates her

search, or to decline him and continue searching for other males at the risk of running out of time. Ideally, the choice

made at each encounter reflects the quality or quantity of benefits the encountered male is offering, where benefits

could be either direct, e.g. a high-quality territory, nutrition, parental care or protection (Møller and Jennions 2001,

Andersson and Simmons 2006) or indirect, i.e., genes for the offspring (Møller and Alatalo 1999, Andersson 2006,

Andersson and Simmons 2006).

In the first part of this paper, we show that the best mating strategy, which maximizes the expected benefits for a

sequentially searching female, is a particular time-threshold strategy. A female with a time-threshold strategy accepts

a given male for mating if she encounters him after a time-threshold that depends on the type of the male. Some

type(s) of males will have zero time-threshold, i.e., will be accepted from the beginning of the mating season, whereas

others will be discriminated against by declining them until a time-threshold is passed. By the ”best” mating strategy,

we mean a globally evolutionarily stable strategy or the globally optimal strategy (sensu Metz et al. 2008), depending

on whether selection is frequency-dependent or not. We derive the best time-thresholds for arbitrary variation among
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males, i.e., genetic or environmental, discrete or continuous, for both optimization and frequency-dependent selection

on the mating strategies. The best time-thresholds are expressed in terms of benefits various male types are offering.

Females may however make mistakes in assessing a male. Such mistakes are incorporated in a natural way into our

model, and we discuss the consequences of making mistakes via an example. Several theoretical papers have pre-

viously explored sequential mate search (e.g. Janetos 1980, Real 1990, 1991, Wiegmann et al. 1999, Fawcett and

Johnstone 2003a, Fawcett and Johnstone 2003b, Wiegmann et al. 2007, Etienne et al. 2014); here we extend this work

by generalizing female decisions to a time-threshold strategy.

In the second part of the paper, we focus on indirect benefits in populations where frequency-dependent ecological

selection maintains the genetic polymorphism. We show how evolutionarily stable mating strategies can be found, and

illustrate the method using a population genetic model where heterozygotes are selected against and conditions for

ecological speciation are met. We investigate the stability of assortative mating that arises from homozygote females

discriminating against the opposite homozygote or heterozygote males, investigate the conditions under which poly-

morphism is maintained (nonrandom mating implies sexual selection, which can interfere with ecological selection in

maintaining the polymorphism), and explore when reproductive isolation between homozygotes is strong enough to

maintain separate species.

The Model

Consider a large and well-mixed sexually reproducing population with k different types of males present. These types

may represent any kind of variation, including genotypes or non-hereditary phenotypes. The type distribution may

also be continuous; formulas for this case are given in Supporting Information S2. Females (the choosy sex) encounter

males (who are always ready to mate) sequentially, such that at each encounter with a male, the female must either

accept the male for mating and terminate her search or decline the male and continue searching. If a female of type f

accepts a male of type g for mating, she will receive a positive benefit εf,g .

Encounters occur randomly at a rate λ during a mating season of length T . Importantly, the encounter rate depends

on population density, because it is easier to find a male in a more dense population; we ease the notation by using

λ for the encounter rate evaluated at the equilibrium density. Females who remain unmated till the end of the mating

season cannot reproduce.
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TIME-THRESHOLDS AS PREFERENCE TRAITS

Suppose that at time t in the mating season, a female f encounters a male of type g. In a sequential search, she has

only two possible decisions: accept or reject. Thus the most general strategy the female may follow is to accept the

male with probability Πf,g(t) and to reject with probability 1−Πf,g(t). The benefit that this strategy yields on average

is Bf,g(t) = Πf,g(t)εf,g + (1 − Πf,g(t))Ef (t), where Ef (t) denotes the benefit an unmated female of type f can

expect to receive in the remainder of the mating season. Bf,g(t) is a simple linear function of Πf,g(t), so that the best

choice of Πf,g(t), which maximizes Bf,g(t), is

Πf,g(t) =

 1 if εf,g > Ef (t)

0 otherwise
(1)

The female thus accepts the male if he provides a greater benefit than what the female can expect if she continues

searching.

Let P̃m denote the frequency of male type gm in the mating season (the symbol Pm is reserved for frequency at

birth, see below). In Supporting Information S1, we show that the expected benefit of females who are still unmated

at time t, Ef (t), changes according to

Ėf (t) = λ

[
Ef (t)−

k∑
i=1

P̃i max{Ef (t), εf,gi}

]
(2)

with Ef (T ) = 0 (at the end of the mating season, unmated females receive no benefit). Equation (2) is an extended

version of the sequential search (or one-step decision) tactic introduced in Janetos (1980) and further developed in

Real (1990), Wiegmann et al. (1999), Wiegmann and Angeloni (2007).

Because Ef (t) ≤
∑k
i=1 P̃i max{Ef (t), εf,gi} for all t, the expected benefit of unmated females, Ef (t), decreases

throughout the mating season towards Ef (T ) = 0. If Ef (0) > εf,gi for a given male type such that, according to

equation (1), the female should not accept males of this type at the beginning of the season, then there is a single time-

threshold τf,gi such that εf,gi > Ef (t) holds for all t > τf,gi and the female should accept the male if she encounters

him at any time after τf,gi (see Figure 1). If εf,gi > Ef (0), then τf,gi = 0, as εf,gi exceeds the expected benefit at

all times and the male should be accepted right from the beginning of the mating season. For convenience, we index

the male types in decreasing order of benefits, εf,g1 ≥ εf,g2 ≥ ... ≥ εf,gk (note that this ordering may depend on the

female), which implies τf,g1 ≤ τf,g2 ≤ ... ≤ τf,gk , i.e., better males are accepted earlier in the season. Obviously, the
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best male type is accepted at any time such that τf,g1 = 0. There might however be more than one male types that

provide higher benefit than Ef (0), in which case several of the thresholds are zero; we denote by nf the number of

male types that are accepted by a female f from the beginning of the season, so that we have τf,g1 = · · · = τf,gnf = 0.

Since unmated females receive no benefit, all male types have thresholds strictly less than T such that at the very end

of the season, all males are accepted.

Equation (2) can be solved analytically and the best time-thresholds τf,g1 , . . . , τf,gk of female f can be obtained

(see Supporting Information S1) in the form

τf,gi+1 − τf,gi =
1

λ
∑i
j=1 P̃j

ln

[
Ēif − E

i+1
f

Ēif − Eif

]
for nf < i ≤ k, (3)

where τf,gk+1
= T by definition,

Ēif =

∑i
j=1 P̃jεf,gj∑i
j=1 P̃j

(4)

is the average benefit provided by the male types {g1, . . . , gi} accepted in the time interval [τf,gi , τf,gi+1 ], and where

we use the shorthands Eif = εf,gi for nf < i ≤ k for the benefits provided by males not yet accepted at the beginning

of the season, Ek+1
f = Ef (T ) = 0 for the expectation at the end of the season and Enf = Ef (0) for the initial

expectation given that τf,g1 = · · · = τf,gnf = 0. If the benefits εf,gi are known, then we can explicitly calculate all

thresholds from equation (3) in the following way: First substitute i = k to obtain τf,gk . Then proceed backwards with

i = k− 1, i = k− 2 etc. to obtain τf,gk−1
, τf,gk−2

etc., until the time-thresholds are no longer positive; the remaining

male types should be accepted any time. Hereafter we use the symbol τf,g to denote the best time-thresholds obtained

from (3), and tf,g to denote any time-threshold strategy that does not necessarily give the maximum return of benefits.

MATING PROBABILITIES AND THE EXPECTED BENEFITS

Here we derive the probability that a female f using the time-threshold strategy tf,g1 , . . . , tf,gk mates with a male

of type gm and the expected benefit she eventually receives (this calculation applies to any time-threshold strategy,

not only to the best time-thresholds tf,g = τf,g). To simplify the formulas below, we use the shorthand tf,gi = ti

and set tk+1 = T . The probability for a focal female f and a male of type gm to mate during a mating season of

length T is obtained from the probability of mating within each time interval [ti, ti+1] (where i = 1, . . . , k), and then
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adding these up given that the female hasn’t terminated her search. Because 1−e−λ(ti+1−ti)
∑i
j=1 P̃j is the probability

that acceptable males of types {g1, . . . , gi} are encountered between ti and ti+1 and P̃m∑i
j=1 P̃j

is the probability that a

particular type gm is encountered out of the types {g1, . . . , gi}, we have that a female f mates with a male of type gm

with probability

Qf,gm P̃m =

k∑
i=m

[ P̃m∑i
j=1 P̃j︸ ︷︷ ︸

choose gm
out of g1, . . . , gi

×
(

1− e−λ(ti+1−ti)
∑i
j=1 P̃j

)
︸ ︷︷ ︸

encounter g1, . . . , gi
between ti and ti+1

×
i−1∏
j=1

e−λ(tj+1−tj)
∑j
l=1 P̃l

︸ ︷︷ ︸
remain unmated

until time ti

]
. (5)

By similar arguments, we obtain the benefit a female f can expect to receive during the entire mating season, i.e.,

Ef (t) evaluated at time t = 0, as

Ef (0) =

k∑
i=n

[
Ēif ×

(
1− e−λ(ti+1−ti)

∑i
j=1 P̃j

)
×

i−1∏
j=n

e−λ(tj+1−tj)
∑j
l=1 P̃l

]
. (6)

WHEN DOES NON-RANDOM MATING EVOLVE?

When all time-thresholds are zero, the female accepts the first male she encounters and therefore mates at random.

According to equation (3), this is the best solution when the time-threshold of the worst male, τf,gk , is not positive,

i.e., when

λT ≤ ln

[
Ēkf

Ēkf − Ekf

]
. (7)

λT is the expected number of males encountered during a mating season; if this is below a critical value, then the

females run a high risk of remaining unmated and therefore the best strategy is to accept any male they encounter.

Short mating seasons therefore select for random mating. The right hand side of condition (7) is large when there is

only a small difference between Ēkf , the average benefit from a random male, and Ekf = εf,gk , the benefit provided

by the worst male type gk. Therefore if there are only small differences between males, then mating at random is

the best strategy unless the females are able to sample a great number of males. Equation (7) can be rewritten as

Ekf > Ēkf (1 − e−λT ), which says that random mating is the best strategy if even the worst male gives higher benefit

than the average benefit times the probability of finding any male. If condition (7) holds for all females of the popula-

tion, then random mating evolves; if it holds for some but not all females, then the population as a whole does not mate
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randomly, but some females do. Note that by equation (1), the best time-threshold strategy is better than any other

conceivable mating strategy. Hence if condition (7) holds, no strategy is better than random mating; and the opposite

of (7) is necessary for the evolution of any form of preferential mating.

MISTAKES IN EVALUATING MALES

Females may naturally make mistakes in estimating the correct type of the male. To incorporate such mistakes, we

need to characterize the males not by their true type, but by their perceived type. For example, a male is of the type

”good-looking” either if the female assesses a good-quality male correctly or if a bad-quality male deceives the female

so that she believes him to be good. Males of perceived type g vary in the real benefit they provide. We can however

use the above results simply by substituting the mean of the real benefit from males of perceived type g for εf,g. With

this, equation (3) yields the time-thresholds for females to accept males based on their perceived type, i.e., based on

the information available to females. (Note however that with this, equation (5) gives the probabilities of mating with

perceived types, not with true types. Supporting Information S1 explains how the probability of mating with a certain

true type can be obtained.)

If mistakes are common, then the mean benefits from different perceived male types are similar to each other, be-

cause different perceived types are almost random samples from the entire male population. In this case, inequality (7)

holds and random mating is the best mating strategy. In other words, females do not discriminate among the perceived

male types when the available information is too unreliable.

Examples for optimal mating strategies

If the benefits εf,g are constants, then the best time-thresholds of a given female are independent of what other females

do. Finding the best mating strategy thus reduces to an evolutionary optimization problem sensu Metz et al. (2008).

Here we give three simple examples for this case, assuming that all females are equal, whereas males and the benefits

they give vary due to some environmental effects such as the quality of the microhabitat where the males grew up.

Example 1: Good vs bad males. Suppose that a fraction pg of males are of good condition and able to provide εg
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offspring, whereas the remaining pb = 1 − pg fraction of males are of bad condition and can provide only εb < εg

offspring (since we assume all females to be equal, we suppress the female index f ). Females can ascertain whether

a male is good or bad without mistakes. The females should obviously accept a good male at any time, and therefore

the only trait of interest is the time-threshold after which females accept also the bad males. Taking i = k in equation

(3) and substituting τf,gk = τb, P̃1 = pg , P̃2 = pb, Ēkf = pgεg + pbεb, and Ekf = εb, we obtain the optimal threshold

as

τb = T − 1

λ
ln

[
pgεg + pbεb

pgεg + pbεb − εb

]
= T − 1

λ
ln

[
1 +

εb
pg(εg − εb)

]
(8)

provided that this is positive; otherwise the females should accept also the bad males at any time. The threshold τb

is high, i.e., discrimination against bad males is strong, when the difference between the benefits is large (relative to

εb) and when encounters occur often and the good males are frequent such that females discriminating against the bad

males do not run a high risk of remaining unmated.

Example 2: Mistakes in determining male type. Now we expand the above example allowing for mistakes that females

might make in determining whether a male is good or bad. Suppose that with probability q < 1
2 , a good male the

female perceives as bad, and with the same probability a bad male she perceives as good (in case q > 1
2 , the females

should just make the opposite decisions). We assume the same probability for the two mistakes for simplicity, and

hence consider situations where the mistake is due to extrinsic reasons such as visual constrains (e.g. turbid water,

Seehausen et al. 1997), rather than due to male deception.

From the females’ point of view, males are ”good-looking” or ”bad-looking”, and these males occur with frequency

πg = pg(1− q) + pbq and πb = pb(1− q) + pgq, respectively. The benefit a good-looking male provides on average is

ηg =
pg(1−q)
πg

εg + pbq
πg
εb, whereas a bad-looking male provides ηb = pb(1−q)

πb
εb +

pgq
πb
εg . It is easy to check that good-

looking males give on average higher benefits (ηg > ηb), and therefore females should always accept good-looking

males. The optimal time-threshold after which females should accept bad-looking males, τb, is calculated as in the

previous example, but using P̃1 = πg , P̃2 = πb, and Ekf = ηb; note that the average benefit Ēkf = πgηg + πbηb

simplifies to Ēkf = pgεg + pbεb as above. This yields

τb = T − 1

λ
ln

[
pgεg + pbεb

pgεg + pbεb − ηb

]
=

= T − 1

λ
ln

[
εb + pg(εg − εb)

pg(1− pg)(εg − εb)
× 1− q − pg(1− 2q)

1− 2q

]
(9)
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As in the previous example, strong discrimination evolves when the difference εg − εb is large (relative to εb)

and when λ is high. τb decreases with increasing q, i.e., mistakes make the optimal discrimination less strong; this is

because bad-looking males may well be good when mistakes are frequent. The effect of pg is slightly more compli-

cated (see Figure 2). At low values of pg , τb increases with pg and therefore discrimination against bad males becomes

stronger; this is similar to the case without mistakes, but an additional factor is that at low pg , most good-looking males

are in fact of the common bad type, only mistaken for good, and therefore should not be preferred (thus random mating

for very low pg , Figure 2). At high values of pg , however, τb decreases with the frequency of good males. This may

seem counterintuitive because a higher frequency of good males should allow the females to be more discriminative

against bad males without running the risk of remaining unmated. However, if bad males are rare, it is increasingly

likely that a bad-looking male is in fact a good male, and therefore it doesn’t pay off to discriminate against it.

Example 3: Continuous male type-distribution. If the distribution of male types is continuous, then the best time-

thresholds of a female f are specified by a function τf (g) such that the female accepts a male of type g if she encounters

him at a time t > τf (g) during the mating season. We derive the best time-threshold function for the general model

in Supporting Information S2. Figure 3 shows two examples, one with uniform and one with log-normal distribution

of male types, and with εf (g) = g (note that this differs from the reverse ordering we used for the discrete case where

low values of g provided the highest benefits). If the males are uniformly distributed over the interval [0, 1], then we

can obtain the optimal time-threshold function analytically (see Supporting Information S2),

τf (g) = max

[
T − 2g

λ(1− g)
, 0

]
(10)

which is depicted in Figure 3a. Males with benefit higher than g0 = λT
2+λT have zero threshold, i.e., they are accepted

from the beginning of the mating season. Notice that in this example, the females should never mate randomly; in

particular, the worst male g = 0 is not accepted until time T . This is because at any time before T , the female has a

chance to encounter a male with a positive benefit, and therefore she should not terminate her search with accepting

a male with no benefit. Notice further that the time-threshold function τf (g) is concave down, which means that the

discrimination between two similar male types is greater when both males are of better quality than when they are of

the worse quality. In the beginning of the mating season, the females do not have a high risk of remaining unmated

and therefore take a longer time during which they discriminate between males of similar qualities; but towards the

end of the mating season, the females accept worse males sooner.

In Figure 3b, we assume the biologically more realistic log-normal distribution of male types,
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p(g) =
1√

2πσg
e−

(ln g−µ)2

2σ2 . (11)

In this case, the solution has to be evaluated numerically (Supporting Information S2), but its qualitative features are

the same as with the uniform distribution.

Frequency-dependent indirect benefits

In the remainder of this paper, we assume that the male types correspond to genotypes and that the benefits the males

provide are the genes inherited by the offspring. We also assume that the offspring undergo frequency-dependent

viability (ecological) selection, which maintains the polymorphism. This raises two difficulties in quantifying the

benefits and finding the best time-thresholds. Firstly, the offspring are of various genotypes, and therefore the number

of offspring is not an appropriate measure of the benefit a female receives from a male; it is possible that the couple

would have many offspring but these do not survive, or survive to reproduction but are then unable to find mates with

whom they can reproduce successfully. In the first subsection below, we show that the benefit εf,g is given by the

reproductive value of the f, g couple. Secondly, the fitness of a given offspring genotype depends on the genotypic

frequencies in the offspring population, and therefore the benefit from a given male to a given female depends on the

mating preferences of other females. This means that the benefits εf,g are not constants but depend on the mating

strategy followed by the resident population. Our results enable us to determine whether certain time-thresholds are

the best for an individual female assuming that all other females follow the same strategy. In the second subsection

below, we discuss how this can be used to determine the evolutionarily stable mating strategy (ESS).

REPRODUCTIVE VALUES AS INDIRECT BENEFITS

Consider first a population with non-overlapping generations. If males contribute only their genes to the offspring,

then the benefit a female f receives from a male g is the number of her offspring who survive and reproduce, weighted

with the eventual success accrued from each reproducing offspring. The benefit is thus given by

εf,g = 2K
∑
r

Rf,g→rvr · 1
2

(∑
h

Qr,hP̃h
εr,h
2

+
∑
h

Qh,rP̃h
εh,r

2

)
, (12)
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where 2K is the number of offspring (K daughters andK sons), Rf,g→r is the probability that parents with genotypes

f and g produce an offspring with genotype r according to the Mendelian rules for autosomal loci, and vr is the

probability of survival of an offspring of genotype r. Importantly, vr may be density- and frequency-dependent.

1
2Qr,hP̃h is the probability that the offspring is a female and that she gets mated with a male h, whereas 1

2Qh,rP̃h

is the probability that the offspring is a male times the expected number of females of genotype h he is mated with.

For time-threshold mating strategies, these quantities are given by equation (5). The weights attached to the offspring,
εr,h

2 and εh,r
2 , respectively, are halved because the offspring will pass the focal female’s gene with probability 1

2 .

Equation (12) is valid only at equilibrium, where the density- and frequency-dependent survival probabilities and the

benefits are constants across generations. BecauseRf,g→r = Rg,f→r, the benefits are symmetric such that εf,g = εg,f

(but Qf,g is generally different from Qg,f ). In Supporting Information S3, we show that the benefit given in (12) is

the reproductive value of the couple f, g and generalize equation (12) to iteroparous populations. For a single locus

under random mating, the benefits reduce to the expected viability fitness of the offspring of the couple (Supporting

Information S3).

EVOLUTIONARILY STABLE MATING STRATEGIES

Since in any population the best mating strategy is a time-threshold strategy (cf. equation (1)), all evolutionarily sta-

ble strategies must be time-threshold strategies. To determine the evolutionarily stable time-thresholds, we assume

non-overlapping generations (the extension to iteroparous organisms is tedious but straightforward). Let Pg denote

the frequency of genotype g at birth, and let N be population size. To calculate the genotype frequencies after se-

lection, we define wg =
vg
v̄ , the relative viability of genotype g, where v̄ =

∑
g Pgvg is the average probability of

survival; and since w̄ =
∑
g Pgwg = 1, the frequency of genotype g after ecological selection and before mating is

P̃g = Pg
wg
w̄ = Pgwg . vg and therefore wg depend on N and on P1, ..., Pk.

Suppose that all females of the resident population mate using the (not necessarily best) time-thresholds t1, ..., tk.

This resident population equilibrates at a population size and genotype frequencies that satisfy

Pr =
1

Q̄

∑
g,h

P̃gP̃hQg,hRg,h→r

=
1

Q̄

∑
g,h

PgPhwg(N,P1, ..., Pk)wh(N,P1, ..., Pk)Qg,hRg,h→r for r = 1, ..., k (13a)
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N = Kv̄(N,P1, ..., Pk)Q̄(N,P1, ..., Pk)N (13b)

where Qg,h is given in (5) with λ evaluated at the equilibrium density N and Q̄ =
∑
g,h P̃gP̃hQg,h is the fraction of

females who mated by the end of the season.

Let us focus attention on an individual female in the equilibrium resident population. The benefits she obtains

are determined by equation (12) evaluated at the resident equilibrium of N,P1, ..., Pk. If the time-thresholds t1, ..., tk

are actually the best possible time-thresholds for an individual female who lives in this resident population, then they

coincide with the time-thresholds obtained from equation (3). If it is so, then no other (mutant) mating strategy could

invade this resident population, and therefore the resident time-thresholds correspond to an ESS. To determine the ESS

time-thresholds, therefore, we need to solve equations (13) and (12) simultaneously for the unknowns N,P1, ..., Pk

and εf,g for f, g = 1, ..., k, substituting throughout the time-thresholds from equation (3) and Qf,g from (5) with λ

evaluated at N . Once the solution of (12) is known, the ESS time-thresholds are obtained by substituting the benefits

into (3). Since the equations are nonlinear, multiple solutions may exist, yielding multiple ESSs for the same model

parameters. A further complication is that even though equation (3) gives the time-thresholds to be used in (5) explic-

itly, it supposes that we know, for each female genotype, the ranking of male genotypes (recall that male types must be

indexed in decreasing order of benefits) and the number of male types nf accepted by a female genotype f from the

beginning of the mating season. Since with frequency-dependence this depends on the solution itself, one has to check

each possible configuration of male rankings and nf values separately, calculating the solution for a hypothetised

configuration and checking whether the time-thresholds of the solution reproduce the configuration assumed. Every

solution found gives a mating strategy τf,g for all f, g and the corresponding population equilibrium N,P1, ..., Pk,

where the evolutionary stability of τf,g is guaranteed by the fact that equation (3) yields the best time-thresholds, but

the population dynamical stability of N,P1, ..., Pk (with the time-thresholds fixed) must be checked separately using

the standard method of linear stability analysis.

Example: assortative mating in the Levene model

To demonstrate the method of finding the evolutionarily stable mating strategy under frequency-dependent selection,

we consider a population that undergoes viability selection according to the multiple niche polymorphism model of

Levene (1953). We assume that there are two habitats of equal size that support a population of fixed size (hence N

12



is constant). Two alleles, a and A, segregate in a single locus so that the possible genotypes are aa, aA and AA. The

relative viabilities in the Levene model are given by

wg =
1

2

(u(1)
g

U1
+
u

(2)
g

U2

)
, (14)

where u(i)
g is the probability of survival for genotype g in habitat i, and Ui =

∑
g Pgu

(i)
g is the average survival proba-

bility in habitat i. wg is frequency-dependent because U1 and U2 depend on the genotype frequencies. For simplicity,

we assume symmetric selection, i.e., u(1)
aa = 1, u(2)

aa = 1 − s and u(1)
AA = 1 − s, u(2)

AA = 1 such that homozygotes aa

(AA) are selected against in habitat 2 (in habitat 1) with the same selection coefficient s, and u(1)
aA = u

(2)
aA = 1 − hs

(with 0 ≤ h ≤ 1) such that heterozygotes are selected against equally in both habitats (Hoekstra et al. 1985). Figure

4 shows the selection regimes in this model under random mating.

We restrict our analysis to symmetric equilibria (P̂aa = P̂AA). Since half of the offspring of heterozygote females

are heterozygote and the other half homozygote, and the two homozygote genotypes are under equal selection at the

symmetric equilibrium, we have εaA,aa = εaA,aA = εaA,AA; this implies that heterozygote females do not benefit

from any preference and thus their best strategy is random mating, τaA,aa = τaA,aA = τaA,AA = 0. Moreover, at the

symmetric equilibrium we have εaa,aa = εAA,AA, which means that we have just four unknowns in equations (12)

and (13), εaa,aa, εaa,aA, εaa,AA and P̂aa (recall that εf,g = εg,f ). Due to symmetry, the best time-thresholds are also

symmetric, τ1 = τaa,aa = τAA,AA, τ2 = τaa,aA = τAA,aA and τ3 = τaa,AA = τAA,aa, such that the two homozygote

females discriminate equally against the opposite homozygote males and also equally against the heterozygote males.

We aim this analysis at understanding the degree and stability of reproductive isolation by assortative mating. For

this reason, we confine ourselves to ESSs where homozygote females benefit most from mating with identical homozy-

gotes and least from the opposite homozygotes (εaa,aa ≥ εaa,aA ≥ εaa,AA), thereby disregarding situations where the

production of heterozygotes is favoured and disassortative mating evolves. We therefore consider only three configu-

rations of mating strategies for homozygote females (f = aa or AA): random mating (RM ) with τ1 = τ2 = τ3 = 0

(all males accepted equally; nf = 3); partial assortative mating (PAM ) with τ1 = τ2 = 0 and τ3 > 0 (opposite

homozygotes discriminated; nf = 2); and assortative mating (AM ) with τ1 = 0 and 0 < τ2 ≤ τ3 (heterozygotes

and opposite homozygotes discriminated; nf = 1 and heterozygote males rank higher than opposite homozygotes).

For these three configurations, we solved equations (12) and (13) (supplemented with (5) and (3)) numerically, using

Maple 13.0, for various values of the three model parameters, the expected number of males encountered in the mating

season λT , the strength of viability selection s, and heterozygote disadvantage h.
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Figure 5 summarizes the results of this analysis, and Supporting Information S4 gives an extended discussion and

derivations. We find ESSs with random mating (RM ), with partial assortative mating (PAM ), and with assortative

mating (AM ) in parameter regions that partially overlap, yielding multiple ESSs. Assortative mating is evolutionarily

stable on the right of the thick line in Figure 5. For high s, we find two different ESSs of the AM configuration

(the corresponding nonlinear equations have multiple solutions), which are denoted with superscripts + and − (for

higher and lower homozygote frequency, respectively; see Figure 5b). At all ESSs shown, the solution is stable with

respect to small perturbations of the genotype frequencies; the parameter regions where this is not the case are marked

with NSS for no stable solutions. The subscripts PP and UP indicate whether the polymorphism is protected or

unprotected. NAMS marks regions which don’t allow for assortative mating strategies, i.e., where no ESS exists with

εaa,aa ≥ εaa,aA ≥ εaa,AA.

If heterozygotes are at an advantage during ecological selection (h < 1/2), then there is either AM or NAMS.

The reason is that with RM or PAM , heterozygote males are not discriminated against by the females and hence

suffer no disadvantage either in ecological selection or in sexual selection. With AM strategies, however, females do

discriminate against heterozygote males, and when this sexual selection is sufficiently strong, it can override ecolog-

ical selection and lead to an overall disadvantage of heterozygotes, thus making AM an evolutionarily stable mating

strategy. This mechanism can stabilize reproductive isolation upon secondary contact even if the hybrids are at an

ecological advantage.

The conditions under which random mating (RM ) is evolutionarily stable can be obtained analytically (see Sup-

porting Information S4). These conditions hold when λT is small, so that rejecting a male runs a high risk of remaining

unmated; and also when h is close to 1
2 , so that all genotypes have similar viabilities (but at high λT , this region be-

comes too narrow to be seen in Figure 5). When h exceeds hint = (2−
√

4− 4s− s2)/(2s), theRM equilibrium loses

its population genetic stability, whereas above h0 = 1/(2− s), the RM and PAM polymorphisms are not protected.

Increasing λT increases the time-thresholds τ2 and τ3 of the AM/AM+ strategy, so that homozygote females

increasingly discriminate against other genotypes (but the same is not true for the AM− strategy). As discrimina-

tion increases, the frequency of each homozygote approaches 1/2 and the heterozygotes disappear. We measure the

strength of reproductive isolation between the homozygotes by comparing the frequency of heterozygotes at birth to

the frequency of heterozygotes under random mating, i.e., using the statistic F = 1 − PaA
2PaPA

= 1 − 2PaA (since
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Pa = PA = 1
2 at the symmetric equilibrium). When the homozygote females adopt the AM/AM+ strategy, F ex-

ceeds 0.99 in the shaded area in Figure 5. With strong heterozygote disadvantage during ecological selection (high s

and high h), even a PAM strategy can sustain reproductive isolation (F > 0.99 for PAM in the darkly shaded area

in Figure 5b), because heterozygotes are so rare during mating that discrimination against the opposite homozygotes

alone suffices to maintain reproductive isolation. We thus conclude that with a sufficiently long mating season, repro-

ductive isolation by assortative mating is evolutionarily stable.

Discussion

We have determined the best mating strategy for females who search for mates sequentially. We have shown that the

best mating strategy is always a time-threshold strategy, such that a given female rejects a given type of male if she

encounters him before a certain point in time during the mating season and accepts him after (this time-threshold may

also be zero, meaning that the female accepts the male at any time). We have derived the best time-thresholds for

both discrete and continuous male type distributions, calculated the probabilities that a given female will mate with a

particular male type, and gave a condition under which non-random mating should evolve.

If the benefits are direct, as in our first set of examples, then the model reduces to an optimization model where

time-thresholds always evolve to the values given by the best time-thresholds strategy. For the case of indirect benefits,

i.e., when males contribute their genes to the success of the female’s offspring, we have shown that the reproductive

value of the couple is the appropriate measure of the benefit. We then embedded the sequential mate search model

into a population genetic model of speciation, and established the conditions under which reproductive isolation by

assortative mating is evolutionarily stable.

Females may make mistakes when assessing the type of the male. These mistakes are easily incorporated into our

model by characterizing the males not by their true type but by their perceived type. We found that the distribution of

true male types (pg in Figure 2) influences whether females should discriminate among males in a somewhat surprising

manner: When good males are common, it is not worth to discriminate against bad-looking males, even though finding

a good male would not be difficult. This is because if bad males are rare, mistakes occur more often than encounters

with bad males, i.e., it is quite likely that a bad-looking male is in fact a good male. On the other hand, if good males

are rare, then the females should accept any mates or else they remain unmated. The females therefore should mate at
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random whenever they are prone to make mistakes and the frequencies of good and bad males are far from equal. In

interspecific hybridization, conspecifics are usually ”good” and heterospecifics ”bad”. Our result is thus in agreement

with the so-called Hubbs principle, which states that hybridization occurs more often when one of the species is rare

(Hubbs 1955, Mayr 1963, Grant and Grant 1997, Randler 2002), and explains the puzzling fact that also females of

the common species, who could easily find conspecific males, are often found in hybrid pairs (Randler 2002).

The best time-thresholds could be found by maximizing the expected benefit (given in equation (6)) with respect to

t1, ..., tk (for a continuous male type distribution, the same can be done using the calculus of variations, see e.g. Sagan

1992; Parvinen et al. 2006). We offer a more efficient way to find the best time-thresholds, which yields the explicit

formula in equation (3). The globally optimal or (under frequency-dependent selection) globally evolutionarily stable

mating strategies we have found are valid for any kind of variation, i.e., irrespectively whether the mating strategies

are inherited or learned (Schimmel and Wasserman 1991, ten Cate et al. 1993, Kendrick at al. 1998, Irwin and Price

1999, Verzijden and ten Cate 2007, Dukas 2008, Kozak and Boughman 2009), whether they may take any form or are

constrained to time-threshold strategies, whether they may change arbitrarily or only by small mutations, and what

is the covariance structure of pleiotropic mutations affecting e.g. multiple time-thresholds (cf. Dieckmann and Law

1996; Durinx et al. 2008; Leimar 2009). In this article, we did not purse the dynamics of evolution leading to an

evolutionarily stable mating strategy, which would be affected by all these details.

Our model addresses several issues that have received little attention in recent models of assortative mating and

speciation. Firstly, it is often assumed that females have a fixed level of choosiness throughout the mating season.

This is the case, for example, in the highly influential model of Gavrilets and Boake (1998), used e.g. by Kirkpatrick

and Nuismer (2004), Schneider (2005), Schneider and Bürger (2006), Pennings et al. (2008), Ripa (2009), Peischl

and Schneider (2010), and Kisdi and Priklopil (2011). In reality, however, females become gradually less choosy

towards the end of the mating season, so as to avoid remaining unmated (Backwell and Passmore 1996, Thomas et al.

1998, Gray 1999, Kodric-Brown and Nicoletto 2001, Moore and Moore 2001; Tinghitella et al. 2013). Resorting to

self-fertilization, despite the cost of inbreeding, at the end of the reproductive age also amounts to relaxing choosiness

(Tsitrone et al. 2003). To account for this, Kopp and Hermisson (2008) assumed that at their very last encounter,

females accept any male, but otherwise choosiness is constant. Our model quantitatively predicts how females should

become less choosy as the mating season progresses. There is always a period at the end of the mating season when

females should accept any male (unless some matings result in no offspring at all). If the mating season is short relative

to the rate of encountering males, then random mating is the best strategy throughout the mating season (see inequality
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(7)).

Secondly, many speciation models assume self-referent assortative mating, where females prefer males that are

similar to themselves with respect to the ecological trait (Doebeli 1996, Matessi et al. 2001, Kirkpatrick and Nuismer

2004, Schneider 2005, Schneider and Bürger 2006, Pennings et al. 2008, Ripa 2009, Peischl and Schneider 2010,

Kisdi and Priklopil 2011); but this means that maladapted females are constrained to prefer maladapted males. Our

model imposes no constraint on which males a female may prefer. In particular, benefits from a given male may de-

pend on the type of the female. This is often ignored in the so-called good genes models, where the effect of paternal

genes are assumed to be independent of the recipient (Iwasa et al. 1991, Iwasa and Pomiankowski 1994, Proulx 2001,

Lorch et al. 2003). Indiscriminate preference for fit males is problematic if females choose males from across an

adaptive valley, which may result in producing unfit phenotypes and can cause chaotic dynamics of allele frequencies

(van Doorn et al. 2009, Priklopil 2012).

Thirdly, most of the recent assortative mating models assume that each female can encounter a fixed number of

males before the mating season runs out, or that there is no maximum number of encounters and all females are mated

(see references above). In reality, the number of males a female encounters depends on population density and is

affected by the stochasticity inherent in the search process. Our model incorporates both of these factors naturally by

assuming that mate search is a Poisson process with a density-dependent encounter rate λ. It is also straightforward

to extend the model such that λ depends on female type. For example, if mate sampling is costly due to time and

energy expenditures (Thornhill 1984, Slagsvold et al. 1988, Alatalo et al. 1988, Milinski and Bakker 1992) or due to

increased risk of predation (Sakaluk and Belwood 1984, Forsgren 1992), a female better adapted to the environment

might bear the costs easier and sample more mates (Jennions and Petrie 1997, Cotton et al. 2006).

In the Levene model with disruptive ecological selection (h > 1/2), we found that an ESS with nearly perfect re-

productive isolation exists if females encounter on average about 10 males during the mating season (Figure 5, shaded

area), provided that the polymorphism is maintained. This number is roughly in agreement with the results of Kopp

and Hermisson (2008), who assumed a fixed number of encounters and self-referent assortative mating in a different

ecological model. There are, however, two facts that complicate matters. Firstly, genetic polymorphism may be lost

due to the positively frequency-dependent sexual selection that is induced by assortative mating (see Matessi et al.

2001). If ecological selection is weak, then the polymorphism is stable only if a large number of males is encountered;

for s = 0.05, this raises the necessary number of encounters to about 20. Secondly, the model can have alternative
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evolutionarily stable strategies without strong reproductive isolation at the same parameter values where an ESS with

reproductive isolation exists. This happens when ecological selection is strong (Figure 5b) so that, surprisingly, weaker

selection may sometimes be more conducive to reproductive isolation because then the alternative evolutionarily stable

strategies are absent.
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Figure 1. Time-thresholds used by a female f during a mating season of length T . (a) A time-threshold strategy

where males of types g1, . . . , gn are accepted right from the beginning of the season. Males of type gi (with i > n)

are accepted only after time tf,gi . For convenience, we set tf,gk+1
equal to the length of the mating season, T . (b)

A particular solution to equation (2) which describes how the expected benefit Ef (t) changes throughout the mating

season. εi abbreviates εf,gi , and similarly τi abbreviates τf,gi . Males with types g1, . . . , gn offer higher benefits than

the initial expectation Ef (0), i.e. ε1 ≥ · · · ≥ εn > E(0), and therefore they are accepted right from the beginning of

the mating season. Males with type gi offer higher benefits than the female is expected to receive in the future only

after the time-threshold τi. To receive the maximum benefits, the female hence should reject male gi before time τi

and accept after τi. The expression for τi is given in equation (3).

Figure 2. Example 2: (a) A plot where the optimal time-thresholds lead to non-random and random mating. The

parameter values are λT = 3, εg = 1 and εb = 0.75. The dashed line indicates the cross section and the value of q

used in plot (b). (b) The optimal time-threshold as a function of pg , when q = 0.2. The other parameter values are as

in (a).

Figure 3. The optimal time-threshold function τf (g) when male types are identified with the benefit they provide

(εf (g) = g). (a) The benefits are uniformly distributed over the interval [0, 1]; (b) the benefits are lognormally dis-

tributed with µ = 1, σ = 1. Parameters: λ = 1 and T = 3.

Figure 4. Ecological selection in the Levene model under random mating. Panels A-D show the relative viabilities

waa, waA, wAA as functions of the allele frequencies Pa and PA at Hardy-Weinberg equilibrium. The middle panel

shows for which parameter values s, h configurations A-D exist and whether the symmetric polymorphic equilibrium

(P̂aa, P̂aA, P̂AA) = ( 1
4 ,

1
2 ,

1
4 ) is stable. In panel A, near the fixation equilibria (Pa = 0 or PA = 0) the heterozygotes

have higher viability fitness than the common homozygotes so that the polymorphism is protected. Because the het-

erozygotes do better also at equal allele frequencies, selection is stabilizing at the symmetric equilibrium. In panel B,

near the fixation equilibria selection is similar to panel A, but at equal allele frequencies the heterozygotes do worse

than homozygotes, hence ecological selection is disruptive at the symmetric equilibrium. The symmetric equilibrium

is globally stable in A and B. In C and D heterozygotes do worse than homozygotes at all allele frequencies and both

fixation equilibria are stable. However, in C there exists a stable symmetric equilibrium (unprotected polymorphism)

whereas in D the symmetric equilibrium is unstable and polymorphism is not maintained (not shown). In area C, the

polymorphism is hence unprotected whereas in area D polymorphism is not maintained. In the middle panel, areas B
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and C are separated by the line h0 = 1
2−s , whereas areas C and D are separated by the line hint = 2−

√
4−4s−s2
2s (see

Supporting Information S4 for derivation). The dashed vertical lines mark the values of s used in Figure 5. Note that

this figure would look different for non-random mating, because the genotype distribution is then different.

Figure 5. ESS mating strategies of the homozygote females for (a) s = 0.3 and (b) s = 0.7. See text for

explanation. Note that in (a), h0 = 0.5882 and hint = 0.5896, so that the RMUP region in-between is too narrow to

be seen.
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Supporting Information S1: Derivations for discrete male types
DERIVATION OF EQUATION (2)

We can write the expected benefit at time t in two parts, corresponding to the possibilities that in the next time interval
dt the female will or will not encounter a male:

Ef (t) = (λdt)

 ∑
εi<Ef (t+dt)

P̃iEf (t+ dt) +
∑

εi>Ef (t+dt)

P̃iεf,gi

+ (1− (λdt))Ef (t+ dt) (S1.1)

Here (λdt) is the probability that the female encounters a male in the time interval [t, t+ dt]. In this case, the female
either rejects the male, and then she has Ef (t + dt), the expected benefit of unmated females dt time later (first
summation within the brackets); or accepts the male, in which case her search is terminated and receives the benefit
provided by the male (second summation within the brackets). The summations

∑
εi<Ef (t+dt) and

∑
εi>Ef (t+dt)

mean that we sum over all i = 1, . . . , k for which εf,gi is smaller or greater, respectively, than the expected benefit
Ef (t + dt). If the female does not encounter a male, which happens with probability (1− (λdt)), then she has the
expected benefit of unmated females dt later, Ef (t+ dt). Equation (S1.1) can be rearranged into

1

dt
[Ef (t+ dt)− Ef (t)] = λ

 ∑
εi>Ef (t+dt)

P̃iEf (t+ dt)−
∑

εi>Ef (t+dt)

P̃iεf,gi

 , (S1.2)

and taking the limit dt→ 0, we get

Ėf (t) = λ

 ∑
εi>Ef (t)

P̃iEf (t)−
∑

εi>Ef (t)

P̃iεf,gi

 = λ
∑

εi>Ef (t)

P̃i [Ef (t)− εf,gi ] =

= λ

[
Ef (t)−

k∑
i=1

P̃i max{Ef (t), εf,gi}

]
. (S1.3)

SOLUTION OF EQUATION (2)

In the main text, we have proven that Ef (t) is a decreasing function of time, and therefore there exist time-thresholds
τf,gi and τf,gi+1

such that the male types g1, ..., gi are accepted at times τf,gi < t < τf,gi+1
. In this time interval,

equation (S1.3) simplifies to

Ėf (t) = λ

 i∑
j=1

P̃j

[Ef (t)−
∑i

j=1 P̃jεf,gj∑i
j=1 P̃j

]
= λ

 i∑
j=1

P̃j

[Ef (t)− Ēi
f

]
(S1.4)

This separable differential equation is readily integrated over [τf,gi , τf,gi+1
] to yield

ln
Ēi

f − E(τf,gi+1
)

Ēi
f − Ef (τf,gi)

= λ

 i∑
j=1

P̃j

 (τf,gi+1
− τf,gi) (S1.5)

and with Ef (τf,gi) = εf,gi ≡ Ei
f , this is equivalent to equation (3).

MATING PROBABILITIES WHEN MISTAKES OCCUR IN EVALUATING MALES

Suppose that females can distinguish the perceived male types g1, ..., gk in a population with true male types h1, ..., hkT
.

The number of true male types, kT , need not be the same as the number of perceived types, k; for example, there may
be several true types with different benefits whom the females cannot distinguish from each other. To keep with the
notation of the main text, we denote the frequencies of perceived types in the mating season with P̃1, ..., P̃k, whereas

1



the frequencies of true types are P̃T
1 , ..., P̃

T
kT

. Let qij be the probability that a female evaluates a male of true type hj
as a male of perceived type gi. The probability that a female f eventually mates with a male of true type hi is given
by

QT
f,hi

P̃T
i =

k∑
j=1

rijQf,gj P̃j (S1.6a)

where Qf,gj is from equation (5), rij is the probability that a male of perceived type gj is of true type hi, given by
Bayes’ theorem,

rij =
qjiP̃

T
i∑kT

l=1 qjlP̃
T
l

(S1.6b)

and from the identity rijP̃j = qjiP̃
T
i , the frequencies of perceived types are

P̃j =
qjiP̃

T
i

rij
. (S1.6c)

Equations (S1.6) express the mating probabilities among true types in terms of the frequencies of true types (which
derive from the ecological model that describes the origin of variation) and the probabilities of making mistakes, qij .
Note that the probabilities qij (or even the number of perceived male types) may depend on the female’s type f . In this
case, rij and the frequencies of perceived types (P̃i) are different for different female types, but the formulas above
can be used for each female type separately.
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Supporting Information 2: Continuous distribution of male types
Suppose that the male type g has a continuous distribution with a probability density function p(g). In this case, the
best mating strategy of female f is specified by a function τf (g), which gives the time-threshold after which the female
should accept a male of type g. Let εf (g) denote the benefit a female f receives if she mates with a male of type g;
we assume that the benefit is a continuously differentiable function of male type.

Equation (2) directly generalizes to the continuous case in the form

Ėf (t) = λ

Ef (t)−
∞∫
−∞

p(g) max{Ef (t), εf (g)}dg

 (S2.1)

As in the discrete case, a female should start accepting a male of type g when the benefit from this male equals the
benefit she can expect if she keeps searching, i.e., we have

Ef (τf (g)) = εf (g) (S2.2)

Differentiating both sides of this equation yields Ėf (τf (g))τ ′f (g) = ε′f (g) (where prime denotes differentiation with
respect to g). Substituting Ėf from (S2.1) and using (S2.2) again yields

τ ′f (g) =
ε′f (g)

λ
[
εf (g)−

∫∞
−∞ p(g̃) max{εf (g), εf (g̃)}dg̃

] (S2.3)

The right hand side of this differential equation contains only known functions and therefore can readily be inte-
grated to obtain τf (g) up to a constant. To find the integration constant, one possibility is to (numerically) integrate
equation (S2.1) with Ef (T ) = 0, and find a male type g0 such that εf (g0) = Ef (0); then we have τf (g0) = 0, and we
can use this as the initial value to go with the differential equation in (S2.3). There is a simpler way (not involving an
integral with the max function in (S2.1)) to find the integration constant if the benefit has a global minimum at some
male type g∗ (i.e., if εf (g∗) ≤ εf (g) for all g in the support of the male type distribution). If εf (g∗) > 0 such that
even the worst male type gives a positive benefit, then there is a time interval [τf (g∗), T ] of positive length at the end
of the mating season when max{Ef (t), εf (g)} = εf (g) for all g and the female should accept all males. Integrating
equation (S2.1) over this interval of time yields

τf (g∗) = T − t

λ
ln

[
Ēf

Ēf − εf (g∗)

]
, (S2.4)

where Ēf =
∫∞
−∞ p(g)εf (g)dg is the expected benefit from a random male (this result is analogous to equation (3) of

the case of discrete male types, with Ēf = Ēk
f and i = k). If εf (g∗) = 0, then τf (g∗) = T .

The solution of equation (S2.3) can be negative for those male types g who should be accepted from the beginning
of the mating season. As in the discrete case, these negative values must be truncated to zero. Since the right hand
side of equation (S2.3) does not depend on τf , the truncation has no effect on the non-negative part of the solution.

Suppose now that εf (g) = g and g assumes only non-negative values. In this case, equation (S2.3) simplifies to

τ ′f (g) =
1

λ
[
g −

∫∞
0
p(g̃) max{g, g̃}dg̃

] =
−1

λ
[∫∞

g
p(g̃)(g̃ − g)dg̃

] (S2.5)

with the initial value τf (0) = T , so we have the solution explicitly as

τf (g) = T − 1

λ

g∫
0

1∫∞
ĝ
p(g̃)(g̃ − ĝ)dg̃

dĝ (S2.6)

If the benefits are uniformly distributed over the interval [0, 1], then

1



p(g) =

{
1 if 0 ≤ g ≤ 1
0 otherwise (S2.7)

and the solution simplifies to

τf (g) = T − 1

λ

g∫
0

1∫ 1

ĝ
(g̃ − ĝ)dg̃

dĝ = T − 2g

λ(1− g)
(S2.8)

The optimal time-threshold is given by this formula when its value is positive, and zero otherwise (cf. equation (10)
in the main text; Figure 3a). If the benefits follow the lognormal distribution (equation (11) in the main text), then the
integrals in formula (S2.6) must be evaluated numerically to obtain τf (g) as shown in Figure 3b.
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Supporting Information 3: Reproductive values as indirect benefits
REPRODUCTIVE VALUES

Let Nfg(t) denote the number of couples where the female and the male have genotypes f and g, respectively and
let N = [N11, N12, . . . , N1k, N21, . . . ]

T . Recall that a male can mate several times and can thus be part of several
couples. The population dynamics are given by the matrix model N(t+ 1) = A(t)N(t), where A(t) is a k× k block
matrix of k × k blocks with elements

Arh,fg = 1
2

[
KRf,g→rvrQr,hP̃h + KRf,g→hvhQr,hP̃r

]
. (S3.1)

The two terms of this expression correspond to the daughters and the sons of the couple (f, g), respectively, who
become half of a couple (r, h) a generation later. At equilibrium, the elements of A are constants and the dominant
eigenvalue of A is 1. The (fg)’th element of the dominant left eigenvector of A,

εfg =
∑
r

∑
h

εrhArh,fg =

=
K

2

[∑
r

∑
h

Rf,g→rvrQr,hP̃hεrh +
∑
r

∑
h

Rf,g→hvhQr,hP̃rεrh

]
=

=
K

2

∑
r

∑
h

Rf,g→rvrP̃h (Qr,hεrh + Qh,rεhr) (S3.2)

is the benefit that a female f receives from being part of a couple (f, g), as given by equation (12) in the main text.
Equation (12) determines the benefits only up to a constant, but this is irrelevant to finding the best time-thresholds
as they depend only on the ratios of benefits. The elements of the left eigenvector are the reproductive values of the
corresponding couples (Caswell 2006). The best time-thresholds of a female maximize her reproductive value by
choosing to be part of a couple with the highest reproductive value (cf. McNamara 1991).

INDIRECT BENEFITS FOR A SINGLE LOCUS UNDER RANDOM MATING

For a single locus under random mating, the reproductive value of a couple simplifies to the expected viability fitness
of their offspring. To see this, recall that under random mating, the probability that a female f is mated to a male g is
the probability that she is mated at all times the frequency of genotype g, i.e., using the notation introduced at equation
(13) in the main text, Qf,gP̃g = Q̄P̃g , from which we obtain that Qf,g = Q̄ is the same for all f, g. Equation (12)
therefore simplifies to

εf,g = K
∑
r

Rf,g→rvrQ̄
(∑

h

P̃hεr,h

)
(S3.3)

Since at equilibrium Kv̄Q̄ = 1 (cf. equation (13)), KvrQ̄ equals the relative viability fitness wr = vr
v̄ and we have

εf,g =
∑
r

Rf,g→rwrzr (S3.4)

with zr =
∑

h P̃hεr,h. Now we prove that for a single locus and under random mating, zr = z is the same for all
genotypes r. Multiplying both sides of equation (S3.4) with P̃g and summing over all g yields

zf =
∑
g

P̃g

∑
r

Rf,g→rwrzr for f = 1, ..., k, (S3.5)

which is a linear system of equations for z1, ..., zk. This linear system is satisfied by zr = z for all r if∑
g

P̃g

∑
r

Rf,g→rwr = 1 (S3.6)
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holds for all f . This is indeed the case for a single locus under random mating, where Rij,mn→im = 1
4 and P̃ij =

pipjwij (where pi is the frequency of allele Ai and we used that w̄ = 1). Substituting these into the left hand
side of equation (S3.6) and using repeatedly that in equilibrium, all allelic (marginal) fitnesses are equal and thus∑

j pjwij = 1 for all i, we obtain for the female genotype f = AmAn∑
g

P̃g

∑
r

Rf,g→rwr =
1

4

∑
i

∑
j

pipjwij(wim + win + wjm + wjn)

=
1

4

∑
i

pi(wim + win) +
1

4

∑
j

pj(wjm + wjn)

=
1

4
(1 + 1) +

1

4
(1 + 1) = 1

This proves that zr = z is the same for all genotypes r, and therefore equation (S3.4) reduces to εf,g = z
∑

r Rf,g→rwr

where z is an arbitrary constant (recall that the reproductive values are determined only up to a constant, and the con-
stant z cancels in equation (3)).

EXTENSION TO ITEROPAROUS POPULATIONS

Equation (12) can straightforwardly be extended to iteroparous organisms. Let lr(a) denote the probability that a
newborn of genotype r is alive at age a (with non-overlapping generations, lr(1) = vr and lr(a) = 0 for a ≥ 2), and
let 2Kr(a) be the number of offspring born to a female of of genotype r and age a. In general lr(a) and Kr(a) are
density- and frequency-dependent, but we consider their equilibrium values only. The reproductive value accrued by
a female of age a and genotype f in one season from mating with a male of genotype g is then

εf,g(a) = 2Kf (a)
∑
r

Rf,g→r ·
1

2

∞∑
a′=1

lr(a′)
(∑

h

Qr,hP̃h
εr,h(a′)

2
+
∑
h

Qh,rP̃h

∞∑
a′′=1

lh(a′′)

Lh

εh,r(a′′)

2

)
, (S3.7)

where P̃h is the frequency of genotype h in the entire population, Lh =
∑∞

a=1 lh(a) is the expected life span of an
individual with genotype h, and lh(a)

Lh
is the probability that a female of genotype h is of age a at equilibrium. Note

that when femle fecundity depends on her age and genotype, the benefits are no longer symmetric, i.e., εf,g(a) is not
the same as εg,f (a).

References

[1] Caswell, H. 2006. Matrix population models: Construction, analysis and interpretation. Sinauer Ass.
Inc., US

[2] McNamara, J. M. 1991. Optimal life histories: A generalisation of the Perron-Frobenius theorem.
Theor. Pop. Biol. 40: 230–245.

2



Supporting Information 4: Detailed discussion and derivations for the Levene
model
MAINTENANCE OF ASSORTATIVE MATING

In the Levene model, two mechanisms maintain assortative mating by stabilizing the AM strategy: ecological selec-
tion against heterozygotes (for h > 1

2 only) and sexual selection against heterozygotes (by the AM strategy itself; see
main text). When the strength of ecological selection is moderate, then it is mainly sexual selection that disfavours
heterozygote males and therefore h has little effect on whether an AM strategy is evolutionarily stable; in Figure 5a,
the thick line, which separates the region where the AM strategy is stable, is almost vertical. When ecological selec-
tion is strong, then a disadvantage of heterozygotes (h > 1

2 ) facilitates AM , whereas an advantage of heterozygotes
(h < 1

2 ) hinders it (Figure 5b).

At h = 1
2 , all genotypes have equal viabilities at the symmetric equilibrium so that whether or not the AM solu-

tion exists is independent of the strength of selection. However, the stability of this solution with respect to perturbing
the genotype frequencies still depends on s (see below) such that with weaker selection, stable solutions exist only at
higher λT (compare Figure 5a and b).

At h = 1
2 , also reproductive isolation reaches the level F = 0.99 at the same value of λT irrespectively of s,

provided that the polymorphism is stable in the population genetic sense. When heterozygotes are at a disadvantage
during ecological selection (h > 1

2 ), stronger selection facilitates reproductive isolation because heterozygote disad-
vantage selects for stronger discrimination. For h < 1

2 , this effect is the reverse, yet sexual selection from assortative
mating alone can lead to strong reproductive isolation if λT is sufficiently high.

PROTECTED VERSUS UNPROTECTED POLYMORPHISMS

A polymorphism is protected if the fixation equilibria are unstable. In this section, we investigate the stability of the
fixation equilibrium (P̂aa, P̂aA, P̂AA) = (1, 0, 0) with respect to perturbations of the genotype frequencies for RM ,
PAM and AM mating strategies with fixed time-thresholds (by symmetry, the stability conditions of the opposite
fixation equilibrium (P̂aa, P̂aA, P̂AA) = (0, 0, 1) are the same).

The fixation equilibrium (P̂aa, P̂aA, P̂AA) = (1, 0, 0) is unstable when the marginal fitness of allele A in a popu-
lation monomorphic for allele a exceeds 1, i.e., when

Wa(A) =
1

2

(
Qaa,aA +QaA,aa

Qaa,aa

)
waA > 1, (S4.1)

(Kisdi and Priklopil 2011). In this condition, waA is to be evaluated at the fixation equilibrium, which in the Levene
model yields

waA =
1

2

(
1− hs

1
+

1− hs
1− s

)
(S4.2)

Qaa,aA, QaA,a and Qaa,aa, defined in equation (5), are evaluated at the fixation equilibrium using the time-thresholds
of the RM , PAM and AM mating strategies as follows:

RM: Under random mating, Qaa,aA = QaA,aa = Qaa,aa = 1 − e−λT , and condition (S4.1) is reduced to Wa(A) =
waA > 1. Using (S4.2), this can be written as

h < h0 =
1

2− s
. (S4.3)

PAM: Under partial assortative mating with time-thresholds t1 = t2 = 0 and t3 > 0, equation (5) yields

1



QaA,aa = 1− e−λT (S4.4)

Qaa,aA =
1

P̃aa + P̃aA
(1− e−λ(P̃aa+P̃aA)t3) + (1− e−λ(T−t3))e−λ(P̃aa+P̃aA)t3 (S4.5)

Qaa,aa = Qaa,aA, (S4.6)

which reduces to Qaa,aA = QaA,aa = Qaa,aa = 1 − e−λT when evaluated at (P̂aa, P̂aA, P̂AA) = (1, 0, 0). The
condition for stability is thus the same as in the RM case, see (S4.3). This result is intuitive, since under both RM
and PAM , the homozygote females do not discriminate against the heterozygote males and therefore mating does not
influence the marginal fitness of the rare allele.

AM: Under assortative mating with time-thresholds t1 = 0 and t2, t3 > 0, equation (5) at the fixation equilibrium
(P̂aa, P̂aA, P̂AA) = (1, 0, 0) reduces to

QaA,aa = 1− e−λT (S4.7)

Qaa,aA = e−λt2 − e−λT (S4.8)

Qaa,aa = 1− e−λT , (S4.9)

which leads to the condition

Wa(A) =

[
1− 1

2
· 1− e−λt2

1− e−λT

]
waA > 1. (S4.10)

for the instability of the fixation equilibrium with waA given in (S4.2). For t2 > 0 we have waA > Wa(A), so that
the fixation equilibrium is easier unstable (i.e., the polymorphism is easier protected) for RM and PAM strategies
than for AM strategies. This is because under an AM strategy, the resident homozygote females discriminate against
the heterozygote males carrying the rare allele. AM strategies therefore imply sexual selection against heterozygote
males, whereby they stabilize the fixation equilibria and hinder protected polymorphisms.

To determine whether the polymorphism is protected under an ESS strategy of the AM configuration, the ESS
time-threshold τ2 must be substituted for t2 in (S4.10). For ESSs of the RM and PAM configurations, the condition
of protected polymorphism in (S4.3) does not depend on the ESS time-thresholds.

EXISTENCE AND STABILITY OF THE RANDOM MATING SOLUTION

We can obtain the conditions under which random mating is an evolutionarily stable mating strategy analytically using
inequality (7) and checking the population genetic stability of the symmetric equilibrium (P̂aa, P̂aA, P̂AA) = (1

4 ,
1
2 ,

1
4 )

of the Levene model. We assume h > 1
2 such that heterozygotes are at a disadvantage during ecological selection.

(Note however that the RM solution exists also for h < 1
2 , in the region marked NAMS in Figure 5, but since here

heterozygotes are at an advantage so that the condition εaa,aa ≥ εaa,aA ≥ εaa,AA is violated, we do not pursue the
analysis of this part.)

Heterozygotes always mate at random (see the main text), and therefore it suffices to evaluate inequality (7) for the
homozygote females f = aa (by symmetry, the same condition applies also to AA). For a single locus under random
mating, the benefits are given by the expected viability fitness of the offspring (see Supporting Information S3); and
with heterozygote disadvantage during viability selection, AA males give the least benefit to aa females so that we
have

Ekaa = εaa,AA = waA =
1− hs

1− 1
2s(h+ 1

2 )
.
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The expected benefit Ēkaa is given by

Ēkaa =
1

4
εaa,aa +

1

2
εaa,aA +

1

4
εaa,AA

=
1

4
waa +

1

2

(
1

2
waa +

1

2
waA

)
+

1

4
waA

=
1

2
waa +

1

2
waA = 1

where the last step can be confirmed by direct substitution of the viability fitnesses, but also follows from the fact that
waa = wAA by symmetry and w̄ = 1. Substituting Ekaa above and Ēkaa = 1 into inequality (7) yields

λT ≤ ln
1

1− Ekaa
= ln

4− s(2h+ 1)

s(2h− 1)
for h >

1

2
.

This condition is satisfied to the left of the curve that delimits the RM area in Figure 5.

To establish the population genetic stability of the symmetric equilibrium under random mating, we need to eval-
uate the Jacobian of the population genetic recursion

P ′r =
∑
g,h

PgPhwgwhRg,h→r

where prime denotes the next generation (cf. equation (13); recall that under random mating, Qg,h = Q̄). With the
three genotypes aa, aA,AA, this reads

P ′aa = P 2
aaw

2
aa + PaaPaAwaawaA + 1

4P
2
aAw

2
aA

P ′aA = PaaPaAwaawaA + 2PaaPAAwaawAA + 1
2P

2
aAw

2
aA + PAAPaAwAAwaA

P ′AA = P 2
AAw

2
AA + PAAPaAwAAwaA + 1

4P
2
aAw

2
aA

with the relative viability fitnesses from the Levene model from equation (14),

waa =
1

2

(
1

Paa + PaA(1− hs) + PAA(1− s)
+

1− s
Paa(1− s) + PaA(1− hs) + PAA

)
waA =

1

2

(
1− hs

Paa + PaA(1− hs) + PAA(1− s)
+

1− hs
Paa(1− s) + PaA(1− hs) + PAA

)
wAA =

1

2

(
1− s

Paa + PaA(1− hs) + PAA(1− s)
+

1

Paa(1− s) + PaA(1− hs) + PAA

)
After some algebra, we get that the dominant eigenvalue of the Jacobian evaluated at the symmetric equilibrium
(P̂aa, P̂aA, P̂AA) = (1

4 ,
1
2 ,

1
4 ) is greater than 1, i.e., the symmetric equilibrium is unstable, if

h > hint =
2−
√

4− 4s− s2
2s

. (S4.11)

hint gives the upper border line of the RM area in Figure 5.
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