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Abstract. Empirical studies of dispersal indicate that decisions to immigrate are patch-type
dependent; yet theoretical models usually ignore this fact. Here, we investigate the evolution of
patch-type dependent immigration of a population inhabiting and dispersing in a heterogeneous
landscape, which is structured by patches of low and high reward. We model the decision to im-
migrate in detail from a mechanistic underpinning. With the methods of adaptive dynamics, we
derive both analytical and numerical results for the evolution of immigration when life-history
traits are patch-type dependent. The model exhibits evolutionary branching in a wide parameter
range and the subsequent coevolution can lead to a stable coexistence of a generalist, settling in
patches of any type, and a specialist that only immigrates into patches of high reward. We find
that individuals always settle in the patches of high reward, in which survival until maturation,
relative fecundity and emigration probability are high. We investigate how the probability to
immigrate into patches of low reward changes with model parameters. For example, we show
that immigration into patches of low reward increases when the emigration probability in these
patches increases. Further, immigration into patches of low reward decreases when the patches
of high reward become less safe during the dispersal season.
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1 Introduction

Dispersal is the key ecological process of individuals moving between and breeding in different
habitats. Dispersal enables populations to thrive in a heterogeneous environment in which
habitats differ in size, the geography and location in the landscape, quality, food availability,
conspecific presence (Bowler and Benton, 2005; Travis et al., 2012) or the social environment
(Cote and Clobert, 2007). Such environmental variations trigger dispersal decisions to be based
on local circumstances and individuals come equipped with sophisticated receptors and cognitive
or sensory abilities (Doyle, 1975; Ehlinger, 1990; Garant et al., 2005) to smell, detect or sample
the environment (Matter and Roland, 2002; Schooley and Wiens, 2003; Zollner and Lima, 1999).
Ultimately, individuals may base emigration and immigration decisions only on a specific cue
inferred from the habitat type (Mitchell, 1977; Rees, 1969). Examples include scarce coppers
which favour flower-rich patches (Schneider et al., 2003), or the butterfly species P. smintheus
which settles in habitats with high abundance of host plants and nectar flowers (Matter and
Roland, 2002).

The number of theoretical studies on dispersal is staggering. Although the immigration
decision is an important part of dispersal (Bonte et al., 2012; Edelaar et al., 2008; Travis et al.,
2012), the greater body of literature focuses on emigration and avoids an explicit description
of immigration. Most models assume that dispersers are evenly distributed over space (e.g.
Hamilton and May, 1977) or travel to a certain distance (e.g. Rousset and Gandon, 2002).
Models of habitat choice may treat the probability of entering a certain habitat directly as
an evolving parameter, suppressing details of locating habitats during dispersal and making a
decision on settlement (e.g. Ravigné et al., 2009). In models of structured populations, dispersers
are often assumed to settle in the first patch they encounter (e.g. Parvinen, 2002). Some studies,
however, have made immigration dependent on local population density (Metz and Gyllenberg,
2001; Parvinen et al., 2012; Poethke et al., 2011; Saether et al., 1999), also in combination
with mate abundance (Shaw and Kokko, 2015), or preferred distance (Delgado et al., 2014),
dependent on patch size (Hanski and Gyllenberg, 1993), or on expected fitness (Ruxton and
Rohani, 1998). In this paper, we focus on immigration depending on the physical characteristics
(but not on population density) of the target patch.

When dispersal is modelled, one has to consider the processes explicitly and model survival
during the dispersal season, patch encounter and the decision on settlement in a mechanistic
way, since it should be clear that it is the individual’s behaviour that shapes the dynamics of the
population as a whole. With a mechanistic underpinning of patch-type dependent immigration,
it is possible to incorporate the individual’s decision to settle more realistically. In this latter
respect, our model is conceptually similar to the studies of Doyle (1975), Ward (1987), Baker and
Rao (2004) and Stamps et al. (2005). These authors determined the optimal patch-dependent
immigration behaviour when habitats differ in abundance and suitability, but (except for an
attempt by Ward, 1987) neglected eco-evolutionary feedbacks from the immigration behaviour
of individuals to the strength of competition experienced in different habitats.

Here, we derive a mechanistic underpinning for immigration of dispersing individuals, where
we explicitly incorporate a continuous time dispersal season during which individuals randomly
encounter patches. Upon encounter individuals settle in a patch with a patch-type dependent
settlement probability (we follow the terminology of Bonte et al., 2012; Clobert et al., 2009;
Travis et al., 2012). Habitat type affects survival during the dispersal season, survival from
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establishment to reproduction, fecundity and the probability of emigration of the offspring. We
call individuals that settle in any patch generalists, whereas individuals that settle in patches
of a specific type are called specialists. In this work, we study the eco-evolutionary dynamics of
patch-type dependent immigration, i.e., the settlement strategy.

In Section 2 we derive the ecological model that incorporates the mechanistic derivation of
the dispersal process of a population. In Section 3 we use the adaptive dynamics framework to
study the long-term evolutionary behaviour of settlement strategies. In Section 3.1 we derive
the monomorphic singularities and in Section 3.2 we investigate the stability conditions of the
singular strategy. We give conditions when patch-type dependent settlement is prone to undergo
evolutionary branching. We show an example where, after evolutionary branching, the coevolu-
tion of the two strategies leads to a stable coexistence of a specialist and a generalist strategy.
In Section 3.3 we investigate the change (increase or decrease) of the settlement probability as
we vary the model parameters. In Section 3.4 we focus on the effects of the parameters on the
stability of evolutionary singularities of the different evolutionary outcomes. In Section 4 we
discuss our results.

2 The model

We consider an asexual, annual, semelparous organism inhabiting a heterogeneous landscape of
M patches of different types i = 1, 2 and frequencies φ1 and φ2 = 1−φ1. Patches differ in death
rates during the dispersal season once settled in the patch (patch safety or pre-competitive
death), survival until reproduction (post-competitive survival), in relative fecundity, and the
probability to emigrate (disperse). Individuals are characterised by their patch-type dependent
settlement probability, the trait vector f = (f1, f2), which is under natural selection. In the
beginning of the year every patch is occupied by one individual. Each individual survives with
a patch-type dependent survival probability si and gives birth to Bβi offspring, where βi is the
relative fecundity in a patch of type i. We assume that the number of offspring B and the
number of patches M are infinitely large, such that the model remains deterministic. Offspring
disperse from a patch of type i with probability pi and stay in the natal patch (of type i) with
probability 1− pi. Every disperser joins the dispersal pool and may settle during a continuous-
time dispersal season of length T . During the dispersal season dispersers encounter patches of
type i at a rate φiρ and settle in a patch of type i with probability fi. Throughout the dispersal
season every individual faces a risk of death (during dispersal and in the patches). We denote
the death rate of individuals during transfer by ν and the death rate in a patch of type i by µi.
We assume that the death rate in the dispersal pool is higher than the death rate in any of the
patches during the dispersal season, i.e., ν > µi for i = 1, 2. Dispersers who have not settled by
the end of the dispersal season die. After the dispersal season the remaining individuals compete
for one site per patch. All model parameters are summarised in Table 1.

To keep track of the dynamics of the model, we construct a disperser generation expansion
(Diekmann et al., 1998, 1990). It follows the expected total offspring and their descendants of
a single mother in the dispersal pool. The mother and her descendants are called a family. Let
G be the next generation operator that maps the number of dispersers N of strategy f in one
generation to the next during the lifetime of the disperser’s family:

G(N) = F (n, f1, . . . , f l, f)N, (1)
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when the number of different settlement strategies present is l. The unit vector n ∈ Rl, with
entries nj , describes the frequency of individuals characterised by the settlement trait vector

f j in the dispersal pool, where f j = (f j1 , f
j
2 ) and j = 1, . . . , l. We assume that the population

is either monomorphic, where all patches are occupied by individuals of a single settlement
strategy (n1 = 1), or in the polymorphic case it has reached its positive equilibrium. The
function F (n, f1, . . . , f l, f) can be written as

F (n, f1, . . . , f l, f) = Q>(n, f1, . . . , f l)V(n, f1, . . . , f l)Π(f). (2)

The entries Qi(n, f
1, . . . , f l) of the two-dimensional vector Q(n, f1, . . . , f l) describe the expected

number of offspring that a family occupying a patch of type i contributes to the dispersal pool.
The elements Vi(n, f

1, . . . , f l) of the two-dimensional diagonal matrix V(n, f1, . . . , f l) describe
the probability of an individual winning a patch of type i. The two-dimensional vector Π(f) has
entries Πi(f) that describe the probability of a disperser settling in any of the patches of type i
and surviving until the end of the dispersal season.

We take a closer look at the factors in Eq. (2): To calculate the probability Πi(f), note
that dispersers disappear from the dispersal pool exponentially as they encounter a patch where
they settle at the rate

∑2
j=1 ρφjfj and they die in the dispersal pool at the rate ν. Hence the

probability that a disperser is still in the dispersal pool at time t ∈ [0, T ] is e−(
∑2
j=1 ρφjfj+ν)t.

Given that the disperser is in the dispersal pool at time t, it encounters a patch of type i within
the short time period (t, t+dt) with probability φiρdt, and settles in this patch with probability
fi. If this happens, the individual stays in patch i and survives until the end of the dispersal
season with probability e−µi(T−t). Integrating over t, we obtain the probability that a disperser
settles in a patch of type i and survives there until the end of the dispersal season as

Πi(f) = φiρfi

∫ T

0
e
−(

2∑
j=1

ρφjfj+ν)t−µi(T−t)
dt (3)

= φiρfi
e−µiT − e

−(
2∑
j=1

ρφjfj+ν)T

2∑
j=1

ρφjfj + ν − µi
.

To write Πi(f) neatly, let

α =
2∑
j=1

ρφjfj + ν

denote the rate at which a disperser leaves the dispersal pool and define η(x) = ex−1
x for x > 0

and η(0) = limx→0 η(x) = 1. Then Eq. (3) is

Πi(f) = ρφiTfie
−αT η((α− µi)T ).

The average number of offspring emigrating from a patch is Bu with:

u =
2∑
j=1

φjsjβjpj . (4)
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For simplicity we define kj = sjβjpj . The expected number of dispersers settling during the

dispersal season in a single patch of type i and surviving there is MBu
l∑

j=1
nj

Πi(f
j)

φiM
. Note that

Πi/(φiM) is the probability of settling and surviving in a single patch of type i. The non-
dispersed surviving fraction of offspring in a patch of type i is βi(1− pi)e−µiT . At the beginning
of the dispersal season, the fraction 1 − si of the patches of type i is empty. Dispersers either
arrive with probability 1−si at a site of type i in which the mother died before reproduction or,
with probability si at a site where non-dispersing individuals are present. Hence, the probability
of a single individual winning competition in a patch of type i is

Vi(n, f
1, . . . , f l) =

si

Bβi(1− pi)e−µiT +Bu
l∑

j=1
nj

Πi(fj)
φi

+
1− si

Bu
l∑

j=1
nj

Πi(fj)
φi

. (5)

Next, we derive the expected number of years a family stays alive in its natal patch. The
probability of non-dispersing individuals winning competition in a patch of type i is

siBβi(1− pi)e−µiT

Bβi(1− pi)e−µiT +Bu
l∑

j=1
nj

Πi(fj)
φi

.

Hence, the expected number of years a family defends its natal patch is given by

Ei(n, f
1, . . . , f l) =

1

1− siBβi(1−pi)e−µiT

Bβi(1−pi)e−µiT+Bu
l∑

j=1
nj

Πi(f
j)

φi

. (6)

The vector entryQi(n, f
1, . . . , f l) in Eq. (2) can be written asQi(n, f

1, . . . , f l) = BkiEi(n, f
1, . . . , f l).

Using (5) and (6), the product Qi(n, f
1, . . . , f l)Vi(n, f

1, . . . , f l) simplifies to

Qi(n, f
1, . . . , f l)Vi(n, f

1, . . . , f l) = BkiEi(n, f
1, . . . , f l)Vi(n, f

1, . . . , f l) =
φiki

u
l∑

j=1
njΠi(f j)

.

We have derived all factors of the function F (n, f1, . . . , f l, f) in Eq. (2). Thus the next gener-
ation operator that maps the number of dispersing individuals N of one dispersal generation to
the next is written as follows:

G(N) =

(
φ1k1Π1(f)

u
l∑

j=1
njΠ1(f j)

+
φ2k2Π2(f)

u
l∑

j=1
njΠ2(f j)

)
N. (7)

3 Evolutionary Dynamics

Here, we analyse the long-term evolution of patch-type dependent settlement strategies. Assume
that a resident population with settlement strategy f = (f1, f2) is occupying almost all patches
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Table 1: Notation
Variable Definition

B number of offspring
βi relative fecundity in patch of type i
f = (f1, f2) settlement trait vector
fi settlement probability into patch of type i
ki = siβipi reward in patch of type i
M number of patches
µi death rate in patch of type i (patch safety)
ν death rate of dispersers
pi emigration probability from patch of type i
φi frequency of patch of type i
ρ encounter rate
si survival until reproduction in patch of type i
T length of the dispersal season

in the landscape, whereas an infinitesimal fraction of patches is occupied by mutants. The
mutants characterised by a slightly different settlement strategy, the trait vector fm = (fm1 , f

m
2 ),

experience an environment that is set up by the resident. If the mutant’s fitness is higher than
the resident’s, the mutant increases in numbers, outcompetes the resident and the ecological
dynamics settles at a new population dynamical equilibrium. These assumptions permit the
use of the adaptive dynamics framework (Geritz et al., 1998). We measure fitness as the basic
reproduction number (Gyllenberg and Metz, 2001; Metz and Gyllenberg, 2001) and derive it
from Eq. (7) for l = 2. The fitness function is given by:

w(fm, f) =
φ1k1

u

Π1(fm)

Π1(f)
+
φ2k2

u

Π2(fm)

Π2(f)
. (8)

Eq. (8) has a Levene-type form (Kisdi, 2001; Levene, 1953).

3.1 Monomorphic singularities

Monomorphic evolution ceases at the singular strategy f∗ = (f∗1 , f
∗
2 ) where:

∂w

∂fmi

∣∣∣∣
fm=f=f∗

=
φ1k1

uΠ1(f)

∂Π1(fm)

∂fmi
+

φ2k2

uΠ2(f)

∂Π2(fm)

∂fmi

∣∣∣∣
fm=f=f∗

= 0 for i = 1, 2.

To write
∂Πj(f)
∂fi

neatly, we define

c(x) = 1− η′(x)

η(x)
=

1

x
− 1

ex − 1
,

and
xj = (α− µj)T.

The function c is positive and we write c(xj) short as cj . Note that xj > 0 since ν −µj > 0 and
α and therefore xj are functions of the settlement strategy f .
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With this notation, the derivatives of Πj are written as follows:

∂Πj

∂fi
=

{
−ρφiTcjΠj for i 6= j
Πj
fj
− ρφjTcjΠj for i = j.

(9)

When i 6= j the partial derivative in (9) is negative; when i = j it is positive (see Prop. 1 in
Appendix A).

The singularity condition for i = 1 is thus:

∂w

∂fm1

∣∣∣∣
fm=f=f∗

=
φ1k1

uΠ1(f)

∂Π1(fm)

∂fm1
+

φ2k2

uΠ2(f)

∂Π2(fm)

∂fm1

∣∣∣∣
fm=f=f∗

=
φ1k1

uΠ1
(
Π1

f∗1
− ρφ1Tc1Π1)− φ2k2

uΠ2
ρφ1Tc2Π2

=
φ1k1

uf∗1
− 1

u
ρφ1T (φ1k1c1 + φ2k2c2) = 0.

We define γ(f1, f2) = φ1k1c1 +φ2k2c2. Then, the singularity conditions are given by the system:{
∂w
∂fm1

∣∣
fm=f=f∗

= 0
∂w
∂fm2

∣∣
fm=f=f∗

= 0
or, equivalently as

{
k1
f∗1

= ρTγ(f∗1 , f
∗
2 )

k2
f∗2

= ρTγ(f∗1 , f
∗
2 ).

(10)

In Prop. 2 in Appendix A we prove that system (10) has no solution, i.e., there exists no
singularity in the interior of trait space.

Suppose now that fi is close to zero with fj (j 6= i) being arbitrary. The selection gradient
∂w
∂fmi

∣∣
fm=f

= φi
u (kifi − ρTγ(f1, f2)) is then positive because ki

fi
→ ∞ as fi → 0 and γ(f1, f2) is

bounded. It follows that the boundaries (0, f2) and (f1, 0) of the trait space [0, 1]2 are repelling,
and all evolutionary trajectories are attracted to the boundaries (1, f2) and (f1, 1).

3.2 Stability of the boundary singularity

Without loss of generality, let us assume that the singular strategy is located on the boundary
(1, f2), with f∗ = (1, f∗2 ). Then the selection gradient with respect to fm1 is positive:

∂w

∂fm1

∣∣∣∣
fm=f=f∗

> 0 or, equivalently k1 > ρTγ(1, f∗2 ), (11)

which pushes the trait to the boundary (1, f2). The singularity condition for f∗ = (1, f∗2 ) reduces
to a single equation:

∂w

∂fm2

∣∣∣∣
fm=f=f∗

= 0 (12)

or, equivalently to k2
f∗2

= ρTγ(1, f∗2 ). In particular, at the singular strategy k1 > k2/f
∗
2 holds. We

call patches of type 1 highly rewarding if k1 > k2, i.e., the product of survival until maturation,
relative fecundity and emigration probability in patches of type 1 is higher than the same product
in patches of type 2. Individuals always settle in patches of the highly rewarding type.
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If there exists no solution to Eq. (12) and neither a solution to k1
f∗1

= ρTγ(f∗1 , 1), then selec-

tion pushes both traits to 1. We call the strategy (1, 1) corner singularity. Individuals exhibiting
such a settlement behaviour are generalists, who settle in the first patch they encounter.

If there exists a solution to Eq. (12) or to k1
f∗1

= ρTγ(f∗1 , 1) respectively, then we call the

strategy a boundary singularity. The boundary singularity f∗ = (1, f∗2 ) is evolutionarily stable
(ESS) if

E =
∂2w(fm, f)

∂fm2
2

∣∣∣∣
fm=f=f∗

=
φ1k1

uΠ1

∂2Πm
1

∂fm2
2

+
φ2k2

uΠ2

∂2Πm
2

∂fm2
2

∣∣∣∣
fm=f=f∗

(13)

is negative (Hofbauer and Sigmund, 1990; Maynard Smith and Price, 1973). To write the
derivatives in Eq. (13) explicitly, we have to investigate the derivative of cj :

∂cj
∂fi

= ρφiT (−c2
j +Hj), (14)

where Hj is a short notation for H(xj) =
xj(e

xj+1)−2(exj−1)

xj(e
xj−1)2 , which is positive for all xj . Using (9)

and (14) and substituting (f∗1 , f
∗
2 ) = (1, f∗2 ) from (12), the condition for evolutionary stability

can be rearranged with some algebra into

(ρTφ2)2

u
(2φ1k1c1(c1 − c2)− (φ1k1H1 + φ2k2H2)) < 0. (15)

If c2 ≥ c1, then this condition holds and the boundary singularity is a fitness maximum. The
inequality c2 ≥ c1 is equivalent to µ2 ≥ µ1. Therefore, the boundary singularity is an ESS if
the patches of high reward are safer during the dispersal season than the patches of low reward.
If the death rate in patches of type 1 is sufficiently higher than in patches of type 2, then E may
be positive so that boundary singularity is a fitness minimum (see example below).

The boundary singularity is attracting (convergence stable) if

∂2w(fm, f)

∂fm2
2

+
∂2w(fm, f)

∂f2∂fm2

∣∣∣∣
fm=f=f∗

< 0 (16)

(Christiansen, 1991; Eshel, 1983), which always holds (see Prop. 4 in Appendix A). Since the
singularity is always convergence stable, we conclude that the singularity is also unique.

In summary, the boundary singularity (1, f∗2 ) or (f∗1 , 1) is either an attracting fitness maxi-
mum (CSS) or minimum (BP ). At a CSS evolution reaches its long-term evolutionary endpoint.
At a BP , branching point, evolutionary diversification occurs and two divergent strategies ap-
pear. To explore what happens after evolutionary branching, the dimorphic invasion fitness
is derived from Eq. (1) for l = 3 and at equilibrium G(N) = N for the two residents. The
frequencies of the two coexisting resident subpopulations n1(f1, f2) and n2(f1, f2) are derived
by solving F (n, f1, f2, f i) = 1 for i = 1, 2. We substitute the relative frequencies into the
dimorphic fitness function F (n, f1, f2, fm) and investigate the evolutionary dynamics for rare
mutants with trait fm = (fm1 , f

m
2 ) (Geritz et al., 1998). Further evolutionary branching can

be excluded since the number of environmental feedback variables is two (
l∑

j=1
njΠ1(f j) and
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Figure 1: (a) The stream plot of the dynamics in the interior of trait space; evolution pushes
the trait vector to the (1, f2)-boundary of trait space. The dot marks the boundary singularity
(1, f∗2 ). Parameters: φ1 = 0.3, T = 1, µ1 = 100, µ2 = 40, k1 = 0.8, k2 = 0.1, ν = 150,
ρ = 100. (b) Pairwise invadability plot of the dynamics of the trait f2; the boundary singular
strategy (1, f∗2 ) is an evolutionary branching point (BP ). Parameters as in (a). (c) Mutual
invadability plot with coexistence within the white area. Arrows indicate the direction of the
dimorphic coevolution to the upper left corner (big dot). The dimorphic selection gradient
∂F (n, f1, f2, fm)/∂fm1 |fm1 =f1

1 =f2
1 =1,f i2=fm2

with i = 1, 2 remains positive; and hence f∗1 = 1. The

two strategies evolve to (f1
2 , f

2
2 ) = (0, 1). Parameters as in (a).

l∑
j=1

njΠ2(f j), cf. Eq. (7)), which sets an upper limit to the number of coexisting strategies

(Geritz et al., 1997; Levin, 1970). If the partial derivative of the dimorphic fitness function
∂F (n, f1, f2, fm)/∂fm1 |fm1 =f1

1 =f2
1 =1,f i2=fm2

is positive for i = 1, 2, the settlement probability f∗1
remains 1.

In Fig. 1 we present an example of the monomorphic evolution and dimorphic coevolution of
patch-type dependent settlement. We chose parameters such that patches of type 1 are highly
rewarding (k1 > k2) but less safe during the dispersal season (µ1 > µ2). Fig. 1a shows the
adaptive dynamics in a monomorphic population that leads to a boundary singularity at (1, f∗2 )
(dot in Fig. 1). Fig. 1b shows the pairwise invadability plot for the trait f2. It is a sign plot
of the logarithm of the fitness function given in Eq. (8). There exists one singular strategy,
an evolutionary branching point (BP ). At this point the monomorphic population branches
into two subpopulations. In Fig. 1c the adaptive dynamics of the coevolution of strategies
is presented by a mutual invadability plot. The strategies coexist in the white area of this
figure and evolve towards the corner (f1

2 , f
2
2 ) = (0, 1). The arrows indicate the vector field

of the selection gradient ∂F (n, f1, f2, fm)/∂fm2 |fm1 =f1
1 =f2

1 =1,f i2=fm2
for i = 1, 2. The dimorphic

selection gradient with respect to fm1 remains positive at f∗1 = 1. Hence, the coevolution of two
subpopulations leads to the strategies (f1∗

1 , f1∗
2 ) = (1, 1) and (f2∗

1 , f2∗
2 ) = (1, 0). This implies

that a generalist, which settles in all patches, and a specialist, which settles only in patches of
type 1 coexist. Note, that the strategy (1, 0) can evolve only after branching in coexistence with
a second sub-population.
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3.3 Effects of model parameters on the settlement probability

Here, we investigate the effects of model parameters on the patch-type dependent settlement
probability. We assume that the reward in patches of type 1 is high, i.e., f∗1 = 1, and investigate
how the singular strategy f∗ = (1, f∗2 ), in particular how f∗2 , varies with changing parameters
T, ρ, ν, µi, φi and ki. The selection gradient of trait f∗2 depending explicitly on one of the model
parameters (ξ) is defined as usual as D(f∗2 , ξ) = ∂w/∂fm2

∣∣
fm=f=f∗

= 0.

To study the effects of the model parameters, we implicitly differentiate this equation with
respect to ξ. Rearranging terms leads to

df∗2
dξ

= −
∂D
∂ξ

∂D
∂f∗2

,

which has to be evaluated at the singular strategy. As we have seen in the previous section, the
singular strategy is a convergence stable strategy, making ∂D

∂f∗2
negative. Thus the sign of ∂D

∂ξ

determines the sign of change of the singular strategy (i.e., sign
[df∗2
dξ

]
=sign

[
∂D
∂ξ

]
). In the next

paragraphs we investigate the effects of each parameter of the model on the singular trait f∗2 by
deriving the sign of the partial derivatives of D(f∗2 , ξ).

The effect of the dispersal season length and encounter rate
First, we investigate how the dispersal season length and encounter rate affects the settlement
probability of patches of type 2. With some algebra, the partial derivative of D with respect to
T simplifies to

∂D

∂T
= −ρφ2

u

(φ1k1 (1 + ex1(x1 − 1))

(ex1 − 1)2 +
φ2k2 (1 + ex2(x2 − 1))

(ex2 − 1)2

)
.

Since 1 + ex(x − 1) is positive for all x > 0, ∂D
∂T is negative and f∗2 decreases with increasing

length of the dispersal season.

When ρ is varied we get:

∂D

∂ρ
= −T

u

(
φ2γ(1, f∗2 ) + ∂2γ(1, f∗2 )(φ1 + φ2f

∗
2 )
)
, (17)

where ∂2γ(1, f∗2 ) = ∂γ(f1,f2)
∂f2

|(f1,f2)=(1,f∗2 ) is negative. Rewriting Eq. (17), we get:

∂D

∂ρ
=
φ2T

u
ρT (φ1 + φ2f

∗
2 )

2∑
i=1

φiki
(
ci(ci −

1

ρT (φ1 + φ2f∗2 )
)−Hi

)
. (18)

Because ci <
1
xi

and 1
xi
< 1

ρT (φ1+φ2f∗2 ) we conclude that ci − 1
ρT (φ1+φ2f∗2 ) < 0 holds for i = 1, 2.

So (18) is negative and the settlement strategy f∗2 decreases with increased encounter rate.

The higher the encounter rate or the longer the dispersal season, the smaller the probability
to settle in the patches of low reward because the number of encounters during the dispersal
season increases, which increases the chance to find a highly rewarding patch. Therefore, the
patches of low reward are more often rejected (see also Boulinier and Danchin, 1997; Stamps
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et al., 2005; Ward, 1987).

The effect of death rates during the dispersal season
Second, we investigate the effect of the death rate in the dispersal pool on the singular trait f∗2 :

∂D

∂ν
= −ρφ2T

u

(
φ1k1

∂c1
∂ν

+ φ2k2
∂c2
∂ν

)
. (19)

The partial derivative is ∂ci
∂ν equals Tc′(xi). In Prop. 3 in Appendix A we prove that c′(x) is

negative. So we can conclude that (19) is positive. When dispersal becomes more dangerous,
the probability to settle increases. Individuals also settle in the worse patches with higher
probability because the risk of death in the dispersal pool increases (see also Barton et al.,
2009; Doyle, 1975; Hanski and Mononen, 2011; Jones and Boulding, 1999; Ruxton and Rohani,
1998). Contrastingly, an increasing patch-dependent death rate during the dispersal season µi
decreases the settlement probability in patches of type i, for both types i = 1, 2. The derivative

∂D

∂µi
= −ρφ2T

u

(
φ1k1

∂c1
∂µi

+ φ2k2
∂c2
∂µi

)
is negative because ∂cj/∂µi = 0 for i 6= j and ∂ci/∂µi > 0 for i = 1, 2.

When patches of low reward become less safe, individuals reject such patches more often
because conditions become more hostile (see also Metz and Gyllenberg, 2001). Still, f∗2 remains
positive, since survival in the patch is higher than in the dispersal pool and settling pays off
because of reduced competition.

When safety decreases in the patches of high reward, individuals reject the patches of low
reward more often, to increase the probability of encountering a highly rewarding patch. The
high death rate in the patches causes a decrease in the number of competitors which increases
the chances of establishing in a patch of high reward.

The effect of the patch-type distribution
Third, we investigate the effect of the patch-type distribution. Using φ2 = 1− φ1, the singular
trait f∗2 decreases with increased φ1 when

∂D

∂φ1
=
ρφ2T

u

(
k2c2 − k1c1 −

1− f∗2
φ2

∂2γ(1, f∗2 )
)

(20)

is negative. In Prop. 5 in Appendix A we prove that (20) is always negative. When patches of
type 1 become more frequent, or patches of type 2 less frequent, the probability to settle when
encountering a patch of type 2 decreases (see also Boulinier and Danchin, 1997; Ward, 1987).
When the frequency of patches of type 2 is high, the chances to encounter a patch of high reward
is low; settlement in the patches of low reward is favoured since the chance of not encountering
the highly rewarding patches at all is high and dispersal remains costly.

The effect of survival until reproduction, relative fecundity and emigration
Last, we investigate the effects of survival until reproduction si, relative fecundity βi and emi-
gration probability pi on the settlement probability f∗2 , i.e., we study the effect of the parameter
ki = siβipi for i = 1, 2. If patches of type 1 become more rewarding, the singular trait f∗2

11
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Figure 2: Two-parameter bifurcation diagrams. Plot markers indicate different evolutionary
outcomes as described above. Evolution to the corner (1, 1) of trait space represents the evolution
to a single generalist. If the outcome is a CSS, on one of the two boundaries, an intermediate
specialist evolves with (1, f∗2 ), or (f∗1 , 1). In this examples holds, that at the evolutionary BPs,
the resulting coevolution leads to a generalist (1, 1) coexisting with a specialist (1, 0), or (0, 1)
respectively. Parameters: T = 1. (a) ρ = 11, ν = 10, φ1 = 0.4, µ1 = 9, µ2 = 3; (b) ρ = 11,
ν = 10, φ1 = 0.4, µ1 = 3, µ2 = 9; (c) ρ = 11, φ1 = 0.4, µ1 = 9, k1 = 0.5, k2 = 0.2; (d) ρ = 11,
ν = 10, φ1 = 0.5, µ1 = 5, µ2 = 5; (e) ρ = 11, ν = 10, φ1 = 0.1, µ1 = 9, µ2 = 3; (f) ν = 10,
φ1 = 0.4, µ1 = 9, µ2 = 3, k1 = 0.5; (g) ρ = 11, φ1 = 0.4, µ1 = 9, µ2 = 3, k2 = 0.2.

decreases if

∂D

∂k1
= −φ1φ2k2

u2

(
ρφ2Tc1 +

[ 1

f∗2
− ρφ2Tc2

])
(21)

is negative. The derivative (21) is negative because the term in the brackets is positive (see
proof of Prop. 1 in Appendix A). The probability to settle in a patch of type 2 decreases as k1

increases because the highly rewarding patches become more rewarding and therefore individuals
discriminate more strongly against patches of low reward.

The parameter k2 increases the singular trait f∗2 if

∂D

∂k2
=
φ2φ1k1

u2

(
ρφ2Tc1 +

[ 1

f∗2
− ρφ2Tc2

])
is positive, which always holds. When the probability of survival until reproduction, relative
fecundity and emigration increase in patches of type 2, individuals settle in patches with higher
probability.
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3.4 Effects of parameters on the stability of different evolutionary outcomes

Here, we investigate the effects of model parameters on the stability of the boundary singularity
and the evolutionary outcome. We present two-parameter bifurcation plots of different varying
parameters (Fig. 2). From the previous section we know that the singular strategy is either a
CSS or BP boundary singularity, or a corner strategy. To obtain the two-parameter bifurcation
diagrams we numerically solved Eq. (12) and checked if inequality (11) is fulfilled. If there
exists no solution to Eq. (12) we solved the singularity condition for f1 and checked if the fitness
gradient with respect to f2 is positive. If neither of the gradients vanish, the singular strategy is a
corner singularity. At boundary singularities we numerically evaluated the stability criterion (13)
to determine the evolutionary stability of the singular strategy. When the boundary singularity is
a BP on the boundary (1, f∗2 ), we checked if the fitness gradient of the dimorphic fitness function
with respect to f i2 evaluated at the point (f1

2 , f
2
2 ) = (0, 1) is negative for i = 1 and positive for

i = 2 and if the dimorphic fitness gradient of f1 is positive at 1. If so, the point (f1
2 , f

2
2 ) = (0, 1)

in the dimorphic trait space is locally stable and a generalist and a specialist can coexist.
If the boundary singularity lies on the other boundary, we proceeded analogously to check
whether (f1

1 , f
2
1 ) = (0, 1) is locally stable and if ∂F (n, f1, f2, fm)/∂fm2 |f i1=fm1 ,f1

2 =f2
2 =fm2 =1 > 0

for i = 1, 2. In Fig. 2 coevolution always leads to such a coexistence. Note however, that the
point (f1

2 , f
2
2 ) = (0, 1) may be locally unstable for different parameter values and coevolution

after branching may halt at two mixed strategies (1, f1∗
2 ) and (1, f2∗

2 ), or (f1∗
1 , 1) and (f2∗

1 , 1),
respectively.

In Fig. 2a we show that generalists evolve if k1 ≈ k2 since both patches are equally reward-
ing, even though in this example, the patch-specific death rates differ. When k2 increases the
settlement probability f∗1 decreases and the singularity moves from the corner onto the bound-
ary (f1, 1). Individuals always settle in patches of type 2 when they become more rewarding
(survival until maturation, relative fecundity and emigration probability increase), whereas the
patches of the other type may sometimes get rejected. On the other hand, if survival until
maturation, relative fecundity and emigration probability increase in patches of type 1, the set-
tlement probability f∗2 decreases and the singular strategy is located at the (1, f2)-boundary. In
this example µ1 > µ2 holds and the strategy is then a branching point (see explanation below
Eq. (15)). The two-parameter plot in Fig. 2b shows the effect of patch death rates when k1

and k2 are varied. In this figure patches of type 1 are safer than patches of type 2 (in Fig. 2a:
µ1 > µ2). Hence, if k1 is sufficiently higher than k2, then the singular strategy is an evolutionary
maximum. If k2 > k1, the singular strategy is a branching point on the (1, f2)-boundary, instead
of a CSS as in Fig. 2a. In Fig. 2c we varied the death rate in patches of type 2 and death
rate during dispersal. As mentioned earlier we assume ν > µ2 and in particular greater than
µ1 = 9 < ν. In this plot k1 > k2 holds and the singular strategy is located at the corner or at the
boundary (1, f2). For a relatively low death rate during dispersal and when µ2 < µ1, the singular
strategy is an evolutionary branching point because the highly rewarding patches are unsafe. As
µ2 increases the singular strategy becomes a fitness maximum. When dispersal becomes very
costly, natural selection favours a generalist. In Fig. 2d we studied the effect of k1 and k2,
when all other parameters are patch-type independent and when the abundance of patches of
low reward equals the abundance of the highly rewarding ones. If k1 is much greater than k2,
the settlement probability f2 decreases and the singularity is located on the (1, f2)-boundary.
Since death rates are patch-type independent the boundary singularity is always a CSS (cf.
inequality (15)). If k2 is greater than k1, the CSS is (f∗1 , 1). If ki = k for i = 1, 2, but µ1 6= µ2,
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then generalists are favoured (see Prop. 6 in AppendixA). In Fig. 2e the frequency of patches
of type 1 is less than in Fig. 2a. Since f∗2 increases with decreased φ1 and γ increases as well,
Eq. (12) is less often fulfilled and hence the singular strategy moves from the boundary to the
corner which increases the area of corner singularities. Fig. 2f shows the effects of varying ρ and
k2. Increased ρ generally decreases the settlement probability and hence the area of generalists
decreases as ρ increases. When k2 is higher than k1 = 0.5, the singular strategy is either in the
corner (for low ρ), or on the (f1, 1)-boundary (for high ρ). In this example µ1 > µ2 holds and
the boundary singularity is a CSS. When k2 < 0.5 the strategy is either a corner singularity or
a branching point boundary singularity on the (1, f2)-boundary. In Fig. 2g the parameters k1

and ν are varied and µ1 > µ2 holds. When k1 < k2 = 0.2 evolution pushes the strategy towards
the corner or a CSS on the (f1, 1)-boundary. When k1 increases, f∗2 decreases; Patches of type
1 become more rewarding and selection starts to push the singular strategy towards the other
boundary. Since the death rates are higher in patches of type 1, the boundary singularity (1, f∗2 )
is a branching point.

4 Discussion

In this paper, we considered a population that inhabits a heterogeneous environment with two
types of patches, and analysed the evolution of patch-type dependent immigration, i.e., the
decision to settle in a patch upon encountering it. Models of habitat choice often suppress
the details of searching for a suitable patch, and assign only a fixed probability to settle in a
certain type of habitat (e.g. Egas et al., 2004; Rausher, 1984; Rausher and Englander, 1987;
Ravigné et al., 2009, 2004). In particular, early studies considered the evolution of habitat
selection in a cost-free movement environment, leading to an arrangement of species in ideal free
distribution (Fretwell and Lucas, 1969; Rosenzweig, 1981). In contrast, we have modelled the
dispersal process mechanistically, assuming that in each generation after emigration, dispersal
is possible up to a certain length of time, i.e., in the dispersal season, during which individuals
encounter patches randomly and must decide whether they accept the patch or keep searching
(non-randomness is discussed by Conradt et al., 2001). Movement is costly because the death
rate of searching individuals (i.e., the death rate in the dispersal pool) is higher than the death
rate in any of the patches during the dispersal season, and individuals not settled by the end of
the dispersal season die. These assumptions exclude an ideal free distribution, and also underpin
a nontrivial relationship between the probabilities that an individual is alive and settled in a
patch of type 1 versus patch of type 2 at the end of the dispersal season (i.e., Π1 vs Π2).

We have found that evolutionary branching may lead to the coexistence of a generalist
strategy that settles in every patch and a specialist strategy that settles only in the highly
rewarding patches. We must emphasise that our current use of ”generalist” and ”specialist”
differs from the literature. Specialisation is commonly defined in terms of the probability of
survival during viability selection or fecundity in contrasting habitats (Berdahl et al., 2015;
Kisdi, 2002; Kisdi and Geritz, 1999; Levene, 1953; Meszéna et al., 1997; Ravigné et al., 2004;
Ronce and Kirkpatrick, 2001), the competitive ability in different habitats (Egas et al., 2004;
Haegeman and Loreau, 2014), or the efficiency of using different resources (Day, 2000; Nurmi and
Parvinen, 2008, 2011; Rueffler et al., 2006). These definitions are all based on the notion that
a specialist has high fitness but only in a certain habitat, whereas a generalist does reasonably
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well in every habitat. Consistence with this common notion led Cheptou and Massol (2009)
to consider outcrossing plants (which have high fitness but only in habitats where pollinators
are available) specialists and selfing plants (which have more modest fitness but independently
of the presence of pollinators) generalists. Our present terminology, however, relies on where a
certain strategy is found (generalists in all patches, specialists only in certain patches), and not
on its habitat-specific fitness.

Despite this difference, our model yields a fitness function that is mathematically equivalent
to fitness in the Levene model (Levene, 1953), with Π1 and Π2 replacing the within-habitat
fitnesses of a strategy (see Eq. (8)). The Levene model predicts evolutionary branching when
the within-habitat fitnesses are traded off according to a convex function (Kisdi, 2001). In the
present model, Π1 and Π2 depend on two traits, i.e., the probabilities of settling in the patches
of high and low reward. Since selection always keeps the probability of settling in the highly
rewarding patch equal to 1, the relevant trade-off between Π1 and Π2 is generated by varying
the probability of settling in the patches of low reward. The present model yields evolutionary
branching when the resulting trade-off between Π1 and Π2 is convex in the neighbourhood of
the singular strategy. It is always the probability of settling in the patch of low reward that
undergoes branching, and hence we never have specialisation to the worse patch type or two
specialists each using one patch type.

When the trade-off between Π1 and Π2 is concave, the probability of settling in the patches
of low reward evolves to a CSS. We find that the settlement probability in patches of low
reward increases with increasing emigration from these patches: The expected number of years
a family defends its natal patch Ei (see Eq. (6)) is decreasing with an increase in the emigration
probability. In contrast, the probability of a single individual winning competition in a patch
Vi (see Eq. (5)) is increasing with increasing emigration probability. The effects of emigration
cancel in the two factors (Ei and Vi) of the fitness function and the emigration probability pi
remains only in the product ki = siβipi for i = 1, 2. Higher emigration from the patches of low
reward guarantees higher contribution to the next generation and hence also settlement into
them pays off.

In case emigration was evolving, the emigration probability of mutants pmi would not cancel
with the emigration probability of the residents pi in the above mentioned terms and kin selection
effects would matter. In our present model kin competition plays no role since dispersing mutants
never compete (they are rare and do not interact during transit and neither after settlement).
If emigration probabilities are allowed to mutate, individuals may evolve patch-type dependent
emigration probabilities keeping the locally optimal competitive weight at home and sending
away the rest (Ezoe and Iwasa, 1997; Gyllenberg et al., 2011; Kisdi, 2004). Furthermore, we
expect emigration to be higher in low quality patches (Gyllenberg et al., 2011). If patch-
type dependent settlement is allowed to coevolve with emigration, highly rewarding patches
are characterised as habitats with high survival until reproduction and high relative fecundity.
Full acceptance of highly rewarding patches may evolve and low emigration from them. On the
contrary, the settlement into patches of low reward is conjectured to evolve to a positive but low
optimum, and emigration to a high one.

Here, we assumed that individuals are simple organisms that are unaware of time in the
dispersal season. Some studies have incorporated time dependency of settlement decisions mech-
anistically (Baker and Rao, 2004; Doyle, 1975; Stamps et al., 2005; Ward, 1987). In these papers,
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as also shown in our study, individuals should always settle in the most suitable habitat (see also
Poethke et al., 2011; for empirical evidence see Matter and Roland, 2002; Schneider et al., 2003).
In time-dependent models a time threshold evolved at which individuals no longer discriminate
against bad quality patches, but settle in any patch they encounter; i.e., individuals become
less choosy as time passes by (Stamps, 2006; Stamps and Davis, 2006; Ward, 1987). If indi-
viduals are aware of time we expect that specialists change their behaviour towards the end of
the dispersal season and become generalists. Individuals would not need to make a compromise
between choosing one or the other strategy, and we expect to lose the possibility of branching.

For simplicity, we assumed that individuals can ascertain the types of patches they encounter
without mistakes. In reality, however, patch type can be mistaken. McNamara and Dall (2011)
have shown that if the information available about the future type of a patch is less than fully
reliable, it may be best to ignore it when a decision on emigration is made. This is because the
existence of an individual in a certain patch is a signal that the patch was likely good in the
past, and with positive temporal autocorrelation it will likely be a favourable patch also in the
future (the ”multiplier effect” of McNamara and Dall, 2011). In our model, the evolving trait is
expressed only if the individual has emigrated from its natal patch, and hence the ”multiplier
effect” does not play a role. However, uncertainties about patch types will have an effect on
the adaptive dynamics of immigration strategies. In our model, an individual rejects a patch of
low reward to have a chance to encounter and settle in a highly rewarding one. If patches of
different types cannot be distinguished by the individuals, then there is no reason to reject the
patch first encountered. By continuity, the more uncertain is the cue that signals a patch of low
reward, the less likely the patch should be rejected. We thus expect that mistakes in judging
patch types will shift the singular strategy towards settling in all patches, or, in our current
terminology, towards a generalist strategy.

The present study further ignored density-dependence in the settlement behaviour. It as-
sumed that individuals are incapable of sensing more than the type of the patch although there
exists evidence that some species select habitats depending on local population density (An-
dreassen and Ims, 2001; Clobert et al., 2009; Schaub et al., 2013; Stamps, 2006, but see Gaines
and McClenaghan, 1980). However, it has been indicated that density does not always affect
individual’s patch selectivity (Jones and Boulding, 1999; I. Hanski, personal communication)
and that habitat use and active selection of patches may increase with patch quality (Morris
and MacEachern, 2010).

The present model can be compared to general optimal foraging theory (Krebs and Davies,
1993). Optimal foraging theory predicts that individuals consume the less nutritious prey if
the probability to find the better prey is small. In any case the consumption of a prey is a
pure gain for the individual, but prey of higher nutritional value is favoured. Similarly, in our
model individuals settle in patches of low reward more likely if the probability of encountering
patches of high reward is small or dispersal costly. Still, a decision to settle in a highly rewarding
patch may be accompanied by high competition if other individuals choose the same strategy;
i.e., settling in the highly rewarding patch is not necessarily a pure benefit for the individual.
Frequency-dependence in our model acts as a driver to settle in the patches of low reward, even
if the probability to find a rewarding patch is relatively high.

We have also assumed that the patches have fixed characteristics in terms of patch-specific
fecundity, emigration, pre-reproductive survival and death rate during the dispersal season. This
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excludes not only temporal variation in the environment, but also the possibility that adaptation
to local environmental conditions would change the patch-specific demographic parameters.
The evolution of a trait involved in local adaptation (such as thermal adaptation or drought
resistance) would change how rewarding a certain patch is, and therefore the evolution of local
adaptation would interact with the evolution of the immigration strategy. If the local adaptation
trait becomes dimorphic such that some individuals find patch type 1 more rewarding whereas
others find patch type 2 more rewarding, then two specialist immigration strategies may also
evolve such that individuals adapted to patch 1 settle only in patch 1 and individuals adapted
to patch 2 settle only in patch 2.

One intriguing aspect of the joint dynamics of local adaptation and dispersal is the possi-
bility of multiple evolutionary attractors. Billiard and Lenormand (2005) found that emigration
may evolve either to a high or to a low value when a locus responsible for local adaptation is
polymorphic (they assumed that the alleles of this polymorphism do not change; see also Blan-
quart and Gandon, 2014). At low dispersal, each habitat contains mostly the locally adapted
allele, and since dispersers typically carry the alternative allele, dispersal is selected against.
At high dispersal, there is little difference in the frequencies of local adaptation alleles between
the habitats, and therefore selection against dispersal is relaxed. By analogy, we expect that
the immigration strategy may also have multiple evolutionary attractors. Suppose the resident
population contains two specialists, each adapted to one patch type and immigrating only in
patches to which it is adapted (as described in the previous paragraph). In this case, each patch
contains only the locally adapted allele, and the alternative allele is strongly selected against.
In this resident population, a generalist immigration strategy that settles in every patch would
settle also in patches where the local adaptation allele (whichever it was carrying) is mismatched
with the patch type, and therefore the generalist immigration strategy would be selected against.
Conversely, if the resident population follows a generalist immigration strategy, then every patch
contains every allele, and the mismatched allele is less strongly selected against. This relaxes
selection against the generalist immigration strategy, and since it suffers less from dispersal-
related mortality, the generalist immigration strategy may be at an advantage over specialists.
Investigating the coevolution of immigration and other traits in mechanistic models should be
a next step to reveal novel mechanisms of dispersal syndromes.
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A Appendix

In this appendix we give detailed proofs of six auxiliary results needed in the main text.

Proposition 1. The partial derivative of Πj with respect to fj is positive.

Proof. The derivative

∂Πj

∂fj
=

Πj

fj
− ρφjTcjΠj is positive iff fjρφjTcj < 1.

From the definition of cj = 1
xj
− 1

exj−1
, we know that cj < 1/xj and xj = (ρφ1f1+ρφ2f2+ν−µj)T

and ν − µj > 0. Therefore,

fjρφjTcj < fjρφjT
1

xj
< 1.

Proposition 2. There exists no solution to the system of equations:{
∂w
∂fm1

∣∣
fm=f=f∗

= 0
∂w
∂fm2

∣∣
fm=f=f∗

= 0.
(22)

Proof. The system (22) can be rewritten as:{
k1
f∗1

= ρTγ(f∗1 , f
∗
2 )

k2
f∗2

= ρTγ(f∗1 , f
∗
2 )

or, equivalently as

{
k1
f∗1

= ρTγ(f∗1 , f
∗
2 )

f∗2 = f∗1
k2
k1
.

(23)

Assume that there exists a solution to the system (23). Using cj < 1/xj and the definition of
xj , the term ρTγ(f∗1 , f

∗
2 ) in system (23) can be written as

ρTγ(f∗1 , f
∗
2 ) = ρT (φ1k1c1 + φ2k2c2) < ρT

(φ1k1

x1
+
φ2k2

x2

)
<
φ1k1 + φ2k2

φ1f∗1 + φ2f∗2
.

By substituting f∗2 = f∗1
k2
k1

into the first line of system (23) we obtain

k1

f∗1
= ρTγ(f∗1 , f

∗
1

k2

k1
) <

φ1k1 + φ2k2

φ1f∗1 + φ2f∗1
k2
k1

=
k1

f∗1
,

which is a contradiction. Hence, there exists no solution to the system (no interior singularity).

Proposition 3. The function c is decreasing.
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Proof. The function c(x) = 1
x −

1
ex−1 is decreasing if c′(x) is negative. The derivative is

c′(x) =
ex − η(x)2

(ex − 1)2
. (24)

It is negative if ex − η(x)2 < 0, which is equivalent to

h(x) = x2ex − (ex − 1)2

being negative. At the origin h(0) = 0 holds. The derivative of h(x) is

h′(x) = 2ex(1 + x+
x2

2
− ex),

which is negative. Hence, h is negative for all x > 0. Therefore, (24) is negative and c is a
decreasing function.

Proposition 4. The boundary singularity is convergence stable.

Proof. After rewriting Eq. (16), the convergence stability condition is:

−φ1k1ρφ2T
∂c1
∂f∗2
− φ2k2(

1

f∗22

+ ρφ2T
∂c2
∂f∗2

) < 0. (25)

We substitute the singularity condition Eq. (10), use Eq. (14), and rewrite condition (25):

f∗2ρφ2T

2∑
i=1

φiki
(
ci(ci −

1

f∗2ρφ2T
)−Hi

)
< 0. (26)

Since ci < 1/xi and 1/xi < 1/(f∗2ρφ2T ), also ci− 1
f∗2 ρφ2T

< 0 ∀i. Then inequality (26) and hence

inequality (25) are fulfilled and the boundary singularity is convergence stable.

Proposition 5. The singular strategy f∗2 decreases with increased frequency of patches of type
1, φ1.

Proof. The right hand side of Eq. (17) is negative (see proof in main text below Eq. (17)).
Then it follows that −∂2γ(1, f∗2 ) < γ(1, f∗2 ) φ2

(φ1+φ2f∗2 ) . Using this inequality, it is straightforward

to show that f∗2 decreases with increased φ1, i.e., (20) is negative if

k2

f∗2
c2 < k1c1. (27)

The singularity condition Eq. (12) can be rewritten as follows:

c1 =
k2

φ1k1f∗2ρT
− φ2k2c2

φ1k1
.

We substitute c1 in (27) and with some algebra we get:

ρT (φ1 + φ2f
∗
2 )c2 < 1. (28)

Since ρT (φ1 + φ2f
∗
2 ) < x2 and c2 <

1
x2

we conclude that (28) is true, and hence (27) holds and
(20) is negative. The singular strategy f∗2 is decreasing with increased φ1.
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Proposition 6. The singular strategy is a corner singularity if µ1 6= µ2 and all other parameters
are patch-type independent (si = s, ki = k, φi = φ).

Proof. The system of singularity conditions can be written as:
∂w
∂fm1

∣∣∣∣
fm=f=f∗

= φk
uf∗1
− 1

uρφT (φkc1 + φkc2) = 0

∂w
∂fm2

∣∣∣∣
fm=f=f∗

= φk
uf∗2
− 1

uρφT (φkc1 + φkc2) = 0.
(29)

Solving the system (29) we get: f∗1 = f∗2 . In Appendix A Prop. 2 we proved that the singular
strategy can never be in the interior. Hence, independent of the death rates during the dispersal
season the evolved strategy is (1, 1).
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