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We review mechanisms that lead to cyclic evolution with alternating levels of diversity. Such cycles involve di-
rectional evolution towards a so-called evolutionary branching point, where selection becomes disruptive and 
splits the population into two strategies. Coevolution of these strategies eventually leads to the extinction of one 
of them. The remaining strategy evolves back to the evolutionary branching point, and a new cycle begins. There 
are a number of different evolutionary mechanisms that can produce this kind of cycles including chance extinc-
tion, switching between population dynamical attractors, and coevolution with an ecologically distinct species. 
We also present an example for branching-extinction cycles where the direction of evolution changes between 
monomorphic and dimorphic populations solely due to the different levels of diversity. The latter cycles exhibit a 
novel feature: Even though extinction is deterministic in the sense that it is unavoidable and always occurs at the 
same trait values, it is random which of the two coexisting strategies goes extinct. As a result, long and short cy-
cles alternate in a random sequence. 
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1. Introduction 
 

Continual evolution under constant external condi-
tions, called Red Queen dynamics, intrigued biolo-
gists ever since Van Valen (1973) raised the possi-
bility of sustained evolutionary changes. Early lag-
load models of Red Queen evolution (Stenseth and 
Maynard Smith, 1984) soon gave place to models 
with explicit trait dynamics (Rosenzweig et al., 
1987). Since most continuous traits are bounded, 
Red Queen dynamics usually take the form of evo-
lutionary cycles. Many examples of cyclic evolu-
tion are known, for example in predator–prey sys-

tems (Abrams, 1992, 1997; Marrow et al., 1992, 
1996; Dieckmann et al., 1995; Van der Laan and 
Hogeweg, 1995; Abrams and Matsuda, 1997; 
Doebeli, 1997; Gavrilets, 1997; Doebeli and 
Dieckmann, 2000), in competitive coevolution 
(Pease, 1984; Law et al., 1997), in the evolution of 
dispersal in metapopulations (Doebeli and Ruxton, 
1997) or in sexual selection (Iwasa and Po-
miankowski, 1995, 1999; Pomiankowski and 
Iwasa, 1998). 

Khibnik and Kondrashov (1997) classified the 
different mechanisms leading to cyclic Red Queen 
evolution into the categories of ecologically, ge-
netically, and ecogenetically driven systems. In 
ecologically driven systems, the population densi-
ties of the coexisting strategies settle on a nonequi-
librium attractor. If different trait values are fa-
voured at different densities, then the fluctuations 
in population density cause small-amplitude 
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fluctuations in the relatively slowly evolving traits. 
With increasing separation between the ecological 
and the evolutionary time-scales (making the cus-
tomary assumption that evolution is much slower 
than population dynamics), however, these trait 
fluctuations disappear. Most examples of cyclic 
evolution cited above fall in the category of geneti-
cally driven systems, i.e. the coevolution of trait 
values has nonequilibrium dynamics while popula-
tion densities track equilibrium values correspond-
ing to the present trait values. The ecogenetically 
driven systems may simply exhibit a superposition 
of ecologically and genetically driven cycles (and 
hence become genetically driven cycles if ecologi-
cal and evolutionary time-scales are truly sepa-
rated). In some cases, however, coupling of the 
ecological and evolutionary time-scales is essential 
for sustaining the evolutionary cycles (Abrams, 
1992) or even for the persistence of the community 
(Van der Laan and Hogeweg, 1995; Doebeli, 
1997). Other ecogenetically driven cycles involve 
switching between different population dynamical 
attractors such that the direction of evolution 
changes when the population densities settle on a 
different attractor [see Doebeli and Ruxton (1997) 
and Khibnik and Kondrashov (1997) for exam-
ples]. 

In their classification, Khibnik and Kondrashov 
(1997) assumed that the number of coevolving 
strategies (or species) is constant. This, however, 
need not be the case. Strategies may go extinct 
during coevolution. New strategies may also arise 
through the process of evolutionary branching, 
when a single ancestral strategy gradually splits 
into two distinct strategies under disruptive selec-
tion (Metz et al., 1996; Geritz et al., 1997, 1998). If 
evolutionary branching and extinction alternate, 
then evolutionary cycles may result that exhibit 
changing levels of diversity.  

The simplest scenario for such cycles is the fol-
lowing. A monomorphic population evolves to an 
evolutionary branching point, where it experiences 
disruptive selection and splits into two strategies 
(phenotypes) separated by a widening gap. After 
evolutionary branching gave rise to a dimorphic 
population, the two coexisting strategies either 
continue to diverge or undergo parallel coevolution 
opposite to the direction of monomorphic evolu-

tion until one strategy goes extinct. The remaining 
strategy then evolves to the branching point and 
the cycle starts again. 

Evolutionary branching appears to be a ubiqui-
tous phenomenon in models of adaptive dynamics 
(e.g. Metz et al., 1992, 1996; Van der Laan an 
Hogeweg, 1995; Doebeli, 1996; Doebeli and Rux-
ton, 1997; Meszéna et al., 1997; Geritz et al., 1998, 
1999; Boots and Haraguchi, 1999; Jansen and 
Mulder, 1999; Kisdi, 1999; Kisdi and Geritz, 1999; 
Koella and Doebeli, 1999; Parvinen, 1999; Day, 
2000; Doebeli and Dieckmann, 2000; Mathias et 
al., 2001; Mathias and Kisdi, 2002 in press; etc.). 
Even though in many models the diversity pro-
duced by branching is preserved on the evolution-
ary time-scale, deterministic extinction is also 
common. Extinction happens if the evolution of 
coexisting strategies leads out of the domain of 
trait values where the strategies are able to coexist. 
In order to close the branching-extinction cycle, it 
is further necessary that after extinction, the re-
maining strategy is in the basin of attraction of the 
branching point. If this last condition is violated, 
then the monomorphic population left after extinc-
tion does not evolve back to the original branching 
point but for example attains a monomorphic ESS 
(see Geritz et al., 1999; Kisdi, 1999 for examples).  

In this paper, we review mechanisms that  
can lead to branching-extinction cycles under  
the assumption of separate ecological and evolu-
tionary time-scales. In addition, we construct an 
example with two novel features: (i) the direction 
of evolution reverses between monomorphic and 
dimorphic populations solely due to different lev-
els of diversity, and (ii) extinction is deterministic 
in the sense that it occurs with certainty and at 
definite trait values, but it is random which of the 
two strategies goes extinct. As a result, two kinds 
of cycles (one shorter, one longer) occur in a ran-
dom sequence. 

Throughout this paper we assume clonal inheri-
tance, and use the word ‘species’ for ecologically 
distinct entities (such as predator and prey) 
whereas ‘strategies’ stand for ecologically similar 
individuals that differ only in the trait value that 
undergoes evolution. Under appropriate conditions, 
these models also generalise to diploid sexual 
populations (see Discussion). 
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2. Cycles of evolutionary branching  
and extinction 

 
Repeated evolutionary branching and extinction 
have been found in several published models (Van 
der Laan and Hogeweg, 1995; Doebeli and Rux-
ton, 1997; Koella and Doebeli, 1999; Doebeli and 
Dieckmann, 2000; Mathias and Kisdi, in press). 
Unfortunately, most studies provided only simula-
tions, and often the precise evolutionary mecha-
nism cannot be ascertained without a more detailed 
analysis. Here we review various mechanisms 
underlying cycles of evolutionary branching and 
extinction in published models. We also describe 
potential mechanisms of branching-extinction cy-
cles that are analogous to the causes of cycles with 
constant number of coexisting strategies (Khibnik 
and Kondrashov, 1997). 

 
 

2.1. Chance extinction 
 

Consider a population that undergoes evolutionary 
branching and then evolves to an evolutionarily 
stable dimorphism. In a deterministic model, this 
population would not fall back to monomorphism. 
If, however, one of the two resident strategies has 
only a low equilibrium frequency at the stable di-
morphism, then in a population of finite size, this 
strategy will be prone to extinction due to demo-
graphic stochasticity. In many simple models with 
no deterministic extinction, the branching point is 
the only attractor of monomorphic evolution. In 
this case the remaining monomorphic population 
necessarily evolves back to the branching point, 
and repeated cycles of evolutionary branching and 
chance extinction follow. 

As evolution proceeds towards the evolutionar-
ily stable dimorphism and the equilibrium density 
of one resident declines, the probability of extinc-
tion increases. Due to the random nature of extinc-
tion by demographic stochasticity, the cycles have 
variable length: Extinction may happen when the 
population is still relatively far from the stable 
dimorphism, but in other cycles the rare resident 
may avoid chance extinction longer and thus the 
population evolves nearer to the evolutionarily 
stable dimorphism before falling back to mono-
morphism. (In simplified deterministic simulations, 
however, where strategies are considered extinct 

once their density becomes lower than some arbi-
trary extinction threshold, extinction occurs always 
at the same trait values, and the cycles have ap-
proximately the same length.) If chance extinction 
occurs only rarely, then the population can reach 
the evolutionarily stable dimorphism and spend a 
variable length of time there before extinction re-
starts the cycle. 

In stochastic environments, fluctuating popula-
tion numbers can result in chance extinction. In a 
model exhibiting evolutionary cycles of germina-
tion rate with repeated branching and extinction, 
Mathias and Kisdi (in press) found that after 
branching, the population evolved towards an evo-
lutionarily stable dimorphism. The strategy with 
higher germination rate, however, fast declined in 
number during a series of years with unfavourable 
above-ground conditions. In large populations, the 
high-germination strategy died out only after a 
long run of bad years; since this occurred with only 
low probability, extinction happened after a period 
of stasis at the evolutionarily stable coalition. In 
smaller populations, however, a shorter run of 
unfavourable years could kill the high-germination 
strategy, and the population could not reach the 
evolutionarily stable coalition before falling back 
to monomorphism. Chance extinction may easily 
happen also in populations with nonequilibrium 
dynamics without external fluctuations, if the den-
sity of a strategy sometimes becomes very low 
such that extinction occurs due to demographic 
stochasticity (or, in simplified models, density 
crosses the extinction threshold). 

In general, cycles of variable length and extinc-
tion at variable trait values suggest chance extinc-
tion. Extinction after stasis at the evolutionarily 
stable dimorphism (or polymorphism), found for 
example in the individual-based simulations of 
Doebeli and Dieckmann (2000), may also be the 
consequence of chance events. 

 
 

2.2. Multiple attractors of population dynamics  
 

A resident population with the same trait value 
may have multiple population dynamical attractors, 
for example alternative stable equilibria with low 
and high density (e.g. May, 1977; Matsuda and 
Abrams, 1994) or in-phase and out-of-phase cycles 
in coupled subpopulations (Gyllenberg et al., 1993; 
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Hastings, 1993). Populations with the same resi-
dent strategies but at different population dynami-
cal attractors may provide very different biotic 
environments. The success of invasion by a new 
mutant thus depends not only on the trait value of 
the resident but also on the population dynamical 
attractor at which the resident population is found 
(Rand et al., 1994). In particular, the direction of 
evolution may change if the population switches 
from one population dynamical attractor to another 
(Matsuda and Abrams, 1994; Doebeli and Ruxton, 
1997; Khibnik and Kondrashov, 1997; Parvinen, 
1999).  

When can a population switch between alterna-
tive population dynamical attractors? With small 
mutations, the population remains on the same 
attractor during directional evolution as long as the 
attractor exists (see Geritz et al., in press), and 
switches to a new attractor only if, in the course of 
evolution, the original attractor disappears through 
a “catastrophic” (e.g. saddle-node or “fold”) bifur-
cation. Evolutionary branching also preserves the 
population dynamical attractor in the sense of con-
tinuous change in the biotic environment: At the 
very beginning of dimorphic divergence, the two 
coexisting strategies are both still very similar to 
the preceding monomorphic population, and more-
over the sum of their densities nearly equals the 
preceding monomorphic equilibrium density. This 
implies that the biotic environment set by the di-
morphic population is close to the preceding 
monomorphic population, and in this sense the 
population tracks its attractor even after branching 
(Geritz et al., in press). Similarly, extinction 
through a transcritical bifurcation (i.e. when den-
sity declines to zero in a continuous way) does not 
imply discontinuous change in the biotic environ-
ment: If, in a dimorphic population, the density of 
one strategy gradually decreases, then the density 
of the other strategy converges to the monomor-
phic equilibrium, which is attained at the moment 
of extinction. Extinction, however, can cause at-
tractor switching if it occurs through a “catastro-
phic” bifurcation (see also Gyllenberg and Par-
vinen, 2001). 

To see first how attractor switching can lead to 
cyclic evolution of a single strategy, assume, for 
example, that a monomorphic population has two 
attractors, A1 and A2, such that A1 exists for trait 
values x>x1 and A2 exists for x<x2 (with x1<x2). 

The population dynamics are thus bistable for resi-
dent trait values x1<x<x2. If on attractor A1 direc-
tional evolution proceeds towards smaller trait 
values, then the population evolves down to strat-
egy x1 where A1 ceases to exist and the population 
switches to attractor A2. If on A2 the direction of 
evolution is opposite, then the population evolves 
towards larger trait values up to strategy x2, where 
it switches back to attractor A1 and starts to evolve 
downwards again. The switching between popula-
tion dynamical attractors results in cyclic evolution 
of the monomorphic population (Doebeli and Rux-
ton, 1997; Khibnik and Kondrashov, 1997). 

Essentially the same type of cycles may involve 
an ‘excursion’ to dimorphic populations followed 
by extinction. Consider the scenario described in 
the previous paragraph, but assume that while on 
attractor A1, the population undergoes evolutionary 
branching, which is later followed by the extinc-
tion of the large strategy through a transcritical 
bifurcation such that the population is still on at-
tractor A1. As it often happens after deterministic 
extinction (Geritz et al., 1999; Kisdi, 1999), as-
sume that the monomorphic population of the re-
maining small strategy continues to evolve on A1 
towards even smaller trait values. When evolution 
eventually reaches x1, where attractor A1 ceases to 
exist, the population switches to the alternative 
attractor A2. The cycle is closed by directional evo-
lution on A2 upwards to x2, switching back to A1, 
and convergence back to the branching point on 
A1. Notice that even though this scenario features 
recurrent branching and extinction, it is essentially 
similar to the monomorphic cycles based on attrac-
tor switching (hence to the second type of ecoge-
netically driven cycles of Khibnik and Kond- 
rashov, 1997). In particular, the entire excursion to 
dimorphism (branching and extinction) happens on 
one attractor, and the catastrophic bifurcations that 
are essential for reversing the direction of evolu-
tion both occur in monomorphic populations (at x1 
and x2, respectively).  

In other scenarios, however, the dimorphic 
phase may play an essential role in attractor 
switching. For example, the dimorphic population 
may undergo a catastrophic bifurcation whereby 
one strategy goes extinct, and the remaining strat-
egy falls directly on the monomorphic attractor A2. 
In this case cyclic evolution results even if A1 ex-
ists for all monomorphic populations: Since the 
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boundary x1 is never encountered, its existence is 
not necessary for cycles. 

We are not aware of any example where attrac-
tor switching have been rigorously proved to be the 
underlying cause for cycles of evolutionary 
branching and extinction. Although chance extinc-
tion cannot be ruled out, the cycles found in nu-
merical simulations by Doebeli and Ruxton (1997) 
seem to be due to attractor switching; alternative 
attractors are known to exist in their model and 
invading mutants can cause attractor switching (see 
also Doebeli 1998). The abrupt changes in popula-
tion dynamics associated with extinction found by 
Koella and Doebeli (1999, Fig. 7a–b) may hint to 
possible attractor switching. 

 
 

2.3. Coevolution with another species 
 

Evolutionary cycles often occur in coevolving 
species such as predator and prey [‘genetically 
driven’ systems of Khibnik and Kondrashov 
(1997); see e.g. Marrow et al. (1992, 1996), Dieck- 
mann et al. (1995), Abrams and Matsuda (1997), 
Doebeli (1997), Gavrilets (1997) and Law et al. 
(1997) for examples]. Similarly to the case of at-
tractor switching, these coevolutionary cycles may 
also include an ‘excursion’ to dimorphism such 
that e.g. the prey evolves two distinct strategies, 
and exhibits repetitive evolutionary branching and 
extinction. 

Coevolutionary cycles of branching and extinc-
tion might also emerge if an interacting species 
exerts alternating levels of disruptive selection on 
the focal species depending on how diverse the 
strategies within the focal species are. Here we 
propose this possibility only as a highly specula-
tive verbal argument: This kind of coevolutionary 
cycles has not yet been tested or encountered in 
concrete models. As a possible example, one can 
envisage a predator–prey system where predators 
may evolve broad (generalist) or narrow (special-
ist) utilisation capabilities. If predation is inde-
pendent of the strategy of the prey, as in case of a 
very generalist predator, the prey evolves to an 
ESS such that it can best consume the most abun-
dant resource from a continuous resource distribu-
tion. The monomorphic prey favours a specialist 
predator that matches the prey. The specialist 
predator exerts disruptive selection on the prey 

such that the prey undergoes evolutionary branch-
ing (Brown and Vincent, 1992; Doebeli and 
Dieckmann, 2000). As the two prey strategies di-
verge, they select for a more generalist predator. In 
turn, disruptive selection on the prey weakens, and 
the two prey strategies converge back towards the 
monomorphic ESS; the population eventually falls 
back to monomorphism when the ESS (or a very 
similar strategy) takes over the population. Alter-
natively, two prey strategies and the predator utili-
sation width may also stabilise at a joint equilib-
rium; cycles might result if the predator’s evolu-
tion is lagged behind the prey. 

Van der Laan and Hogeweg (1995) found co-
evolutionary cycles of branching and extinction in 
predator–prey systems where the strategy space is 
circular. For example, the strategy of both species 
may be the circadian timing of their activity (very 
late night is indeed very early morning). Predators 
evolve to match the time of activity of the prey, 
whereas the prey tries to avoid matching. One pos-
sible evolutionary scenario is the following. Dis-
ruptive selection from the predator initiates evolu-
tionary branching in the prey, as in case of ordi-
nary linear strategy spaces. Branching in the prey 
then leads to branching in the predator as well 
(Brown and Vincent, 1992; Doebeli and Dieck-
mann, 2000). On the circular strategy space, the 
initially diverging strategies ultimately converge at 
the opposite position of the circle. Both species fall 
back to monomorphism and the cycle starts over 
again [Van der Laan and Hogeweg, 1995, Fig. 1a 
case (i)]. Another possible cycle involves branch-
ing and extinction in only the predator. Initially 
two prey and two predator strategies occupy alter-
nating positions on the circle. This configuration is 
the best for the prey, but the predators are at fitness 
minima and both predator strategies undergo 
branching. One branch from each diverging fork 
converge upon each prey, approaching matching 
strategies that is best for the predator. Upon con-
vergence, one of the two converging predator 
strategies goes extinct, and the prey finds an es-
cape by evolving away from the remaining preda-
tor strategy. This restores the initial pattern with 
alternating strategies [Van der Laan and Hogeweg, 
1995, Fig. 1b (i)]. Still other scenarios are possible 
if the predator is more generalist; e.g. cyclic con-
vergence and divergence of two prey strategies 
chased by two predator strategies may also occur 
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without extinctions and branching events [Van der 
Laan and Hogeweg, 1995, Fig. 1a (ii, iii)]. In all of 
these intriguing patterns, the circularity of the 
strategy space plays an essential role in creating 
closed evolutionary cycles.  

Among the three main types of branching-
extinction cycles reviewed above, the first (chance 
extinction) has no clear analogue in the classifica-
tion of Khibnik and Kondrashov (1997). Cycles 
based on chance extinction occur only in finite 
populations and are stochastic in nature. Concern-
ing the deterministic cycles, those relying on mul-
tiple population dynamical attractors belong to the 
class of ecogenetically driven cycles, whereas the 
coevolutionary cycles are genetically driven. (In 
this paper, we assume strict separation between 
ecological and evolutionary time-scales, hence we 
do not consider purely ecologically driven cycles.) 

A single monomorphic species with a single 
evolving trait can exhibit cyclic evolution only if 
switching between population dynamical attractors 
(ecogenetically driven cycles). Purely genetically 
driven cycles are not possible in one-dimensional 
evolution (i.e. with a single trait in a monomorphic 
species). Indeed, all genetically driven cycles in-
cluded by Khibnik and Kondrashov (1997) involve 
at least two ecologically different species (such as 
a predator and a prey).  

Could a purely genetically driven branching-
extinction cycle occur in only one species, without 
attractor switching and without the periodically 
changing influence of a separate coevolving spe-
cies? The two strategies emerging from evolution-
ary branching represent two dimensions of evolu-
tion, hence the limitations of one-dimensional evo-
lutionary dynamics do not apply. To obtain cyclic 
evolution, the direction of evolution of at least one 
strategy of the dimorphic population must be op-
posite to monomorphic evolution; in absence of 
attractor switching or coevolving species, this re-
versal in the direction of evolution must be brought 
about solely by the changing level of polymor-
phism in the focal species. Second, extinction must 
occur in a deterministic way and such that the re-
maining monomorphic population can evolve back 
to the branching point. Below we argue that this is 
indeed possible, and show an example in a simple 
Lotka–Volterra competition model. Unfortunately, 
our example has no mechanistic underpinning, but 
nevertheless it enables us to investigate the dy-

namical properties of this type of branching-
extinction cycles in detail. 

 
 
3. Genetically driven cycles of evolutionary 
branching and extinction in a single species 
 

In this section, we show that cycles of evolutionary 
branching and extinction within a single species 
represent a generic evolutionary pattern. We use 
the framework of mutation-limited adaptive dy-
namics as developed by Metz et al. (1996) and 
Geritz et al. (1997, 1998). Throughout we assume 
that for each resident strategy x the population has 
a unique population dynamical attractor and that 
mutations occur infrequently such that the resident 
population has settled on its population dynamical 
attractor before the next mutant appears. In this 
case the resident strategy (or strategies) fully speci-
fies the invasion fitness of the mutant.  

We start with constructing a pairwise invasibil-
ity plot (PIP) that indicates which mutant strategy y 
can invade the established population of strategy x 
(Fig. 1). There is no a priori constraint on the 
shape of a PIP other than the resident strategy must 
have zero long-term growth in its established 
population, and therefore the main diagonal y = x 
of the PIP is a border line between ‘invasion’ and 
‘noninvasion’ parts. In the example shown in Fig-
ure 1, directional evolution proceeding by succes-
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FIG. 1. Pairwise invasibility plot (PIP). Shaded area: the mu-
tant can invade; clear area: the mutant cannot invade; arrows: 
directional evolution by invasions and substitutions. The lower 
evolutionary singularity (xrep) is a repellor whereas the higher 
singularity (xbr) is an evolutionary branching point (conver-
gence stable but evolutionarily unstable, see Geritz et al., 
1998). The Lotka–Volterra model yields this PIP with pa-

rameter values α = 4.5, β = 12.12, γ = 11.5 and δ = 1 
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sive invasions and fixations of mutants with small 
phenotypic effect leads to an evolutionary branch-
ing point (xbr) provided that the initial trait value is 
in the basin of attraction (i.e. above xrep; see e.g. 
Geritz et al., 1998). 

Having approached xbr, the population under-
goes evolutionary branching that gives rise to two 
distinct strategies. In order to investigate the evolu-
tion of the dimorphic population, we need a two-
dimensional trait evolution plot (TEP; Fig. 2). As-
suming that all dimorphisms are protected, two 
strategies can coexist if both can invade the estab-
lished population of the other. Accordingly, the set 
of strategy pairs that can form dimorphisms is con-
structed from the PIP as the overlapping parts of 
‘invasion’ areas of the PIP itself and of its mirror 
image taken along the main diagonal (shaded area 
in Fig. 2; see Geritz et al., 1998). The overlapping 
parts of ‘noninvasion’ areas represent strategy 
pairs where neither strategy can invade the other, 
i.e. the rare type always goes extinct (dotted area in 
Fig. 2). Since the labelling of the resident strategies 
(x1, x2) is arbitrary, the TEP is always symmetric 

along the main diagonal. Without loss of general-
ity, we shall assume that x1<x2, i.e. we restrict the 
analysis to the upper left half of the TEP. 

Within the area of coexistence (shaded part of 
Fig. 2), the two coexisting strategies undergo di-
rectional evolution (indicated by arrows in Fig. 
2b). In the vicinity of the branching point 
(x1 = x2 = xbr) selection is always disruptive (Eshel 
et al., 1997; Geritz et al., 1998), and the two strate-
gies diverge from each other. When evolution has 
left the neighbourhood of the branching point, 
however, the direction of evolution may change. 
The area of coexistence consists of parts with dif-
ferent directions of evolution of x1 (x2); the lines 
separating these parts, on which directional evolu-
tion in x1 (x2) ceases, we call the x1- (x2-) isoclines 
(Fig. 2). 

The possible structure of the TEP is constrained 
since the isoclines cannot connect to the boundary 
of the area of coexistence at arbitrary points, but at 
specific points such a connection must exist (see 
Geritz et al., 1999, Appendix for proof). The x1-
isocline must connect to the boundary where x2 
goes extinct vertically above the monomorphic 
singularity (point P1 in Fig. 2). By mirroring, the 
x2-isocline connects to the x1-extinction boundary 
horizontally to the left of the monomorphic singu-
larity (no such point exists in Fig. 2). Moreover, 
the x2-isocline must connect to the x2-extinction 
boundary where the x2-extinction boundary has a 
vertical tangent point (P2 in Fig. 2). Analogously, 
the x1-isocline connects to the x1-extinction bound-
ary where it has a horizontal tangent point (no such 
point in Fig. 2). 

Curiously, the TEP shown in Figure 2 has only 
one regular connection point to the boundary of the 
area of coexistence for each isocline: The isoclines 
must go through these points, but then they must 
stay within the area of coexistence as they may not 
connect to any other regular point of the boundary. 
The intersection of the two extinction boundaries 
(point Q in Fig. 2) is, however, an exceptional 
point. Here both strategies have exactly zero fit-
ness as mutants in each other’s established popula-
tion, and the two strategies x1(Q) and x2(Q) can coex-
ist in a neutrally stable equilibrium at any fre-
quency. To see this, consider different paths lead-
ing to Q within the area of coexistence. The fre-
quencies of the two resident strategies in popula-
tion dynamical equilibrium are different along 
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FIG. 2. Trait evolution plot (a), and the area of coexistence 
enlarged (b). Shaded area: the area of coexistence (x1 and x2 
coexists in a protected dimorphism); dotted area: the rare 
strategy goes extinct whichever it is; thin dashed line: x1-
extinction boundary; thin continuous line: x2-extinction 
boundary; thick dashed line: x1-isocline; thick continuous line: 
x2-isocline; horizontal and vertical arrows: direction of evolu-
tion in x1 and in x2, respectively; P1 and P2: connection of the 
x1- and x2-isoclines to the boundary of the area of coexistence; 
Q: intersection of the extinction boundaries. By evolutionary 
branching the population enters the area of coexistence near 
xbr. Dimorphic evolution first proceeds in the direction up and 
to the left until the population gets inbetween the two iso-
clines; then it goes down and to the left. At point Q, one of the 
two residents dies out and the population falls back to mono-
morphism either at x1(Q) or at x2(Q). The Lotka–Volterra model 

yields this TEP with parameter values as in Figure 1 

a) b) 
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different paths and they also converge to different 
limiting values as the paths approach Q. For exam-
ple, the frequency of x1 is low along a path near the 
x1-extinction boundary whereas it is almost one 
along a path near the x2-extinction boundary. Pro-
vided that the equilibrium frequency is a continu-
ous function of the trait values, any resident fre-
quency is a limiting value for some path when it 
approaches Q. In the point Q thus all frequencies 
represent neutrally stable equilibria of the popula-
tion dynamics. 

Since the resident dimorphic population of x1(Q) 
and x2(Q) does not have a unique population dy-
namical attractor, the fitness of a rare mutant is not 
defined in Q. As the extinction boundaries intersect 
in Q and the isoclines must stay between them, the 
isoclines also converge to Q but are undefined in 
point Q; in other words, Q belongs to the closure 
of both isoclines (see the Appendix for a formal 
proof in the Lotka–Volterra example below). 

Inside the area of coexistence, the shape of the 
isoclines cannot be derived from general con-
straints. For example, the isoclines may intersect 
such that the population converges to a dimorphic 
evolutionary singularity. However, it is also possi-
ble that the isoclines do not intersect and thus there 
is no dimorphic singularity in the area of coexis-
tence (Fig. 2). In this case, the dimorphic popula-
tion evolves as follows. After evolutionary branch-
ing, when the two strategies are still near to 
x1 = x2 =xbr, disruptive selection drives the evolu-
tion of the smaller strategy (x1) downwards 
whereas the larger strategy (x2) evolves upwards. 
As the population approaches the x2-isocline, the 
evolution of x2 slows down because in the vicinity 
of the x2-isocline the invading mutants of x2 have 
only slightly positive growth rate, and therefore are 
easily lost due to demographic stochasticity while 
rare (Dieckmann and Law, 1996). The prevailing 
direction of evolution is thus to the left, whereby 
the population crosses the x2-isocline. Once the 
population is inbetween the two isoclines, both 
strategies evolve towards smaller trait values. Slow 
evolution of x1 (x2) near the x1- (x2-) isocline keeps 
the population inbetween the two isoclines as evo-
lution continues towards the intersection of the 
extinction boundaries (point Q). 

Extinction happens when the population has ar-
rived at the neighbourhood of Q such that the dis-
tance to the extinction boundaries is comparable to 

the size of mutations. The next invading mutant of 
x1, for example, may ‘overshoot’ the x2-extinction 
boundary, i.e. x2 may not be able to coexist with 
the invading mutant. As the mutant substitutes x1, 
it drives x2 extinct. The remaining monomorphic 
population is near x1(Q) and therefore is inbetween 
the monomorphic repellor singularity, xrep, and the 
branching point, xbr (Fig. 2). The monomorphic 
population thus will undergo directional evolution 
towards larger trait values until it reaches the 
branching point again (Fig. 1), starting a new cycle 
of evolutionary branching and extinction. 

It may also happen that an invading mutant of x2 
overshoots the x1-extinction boundary such that x1 
goes extinct, and the remaining monomorphic 
population is near x2(Q). Similarly to the previous 
case, monomorphic evolution leads back to the 
branching point. Since x2(Q) is nearer to the branch-
ing point than x1(Q), it takes less time to reach the 
branching point and complete the cycle. Depend-
ing on the emergence of mutants near Q, it is ran-
dom which strategy goes extinct. As a conse-
quence, long and short cycles follow in random 
order according to which strategy was left after 
extinction. 

 
 

4. A specific example based on a  
Lotka–Volterra competition model 

 
In this section, we construct a specific example for 
the cycles of evolutionary branching and extinction 
described above. Consider the Lotka–Volterra 
competition model 
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where Nxi
 is the population density of strategy xi. 

For simplicity, we assume that the intrinsic growth 
rate and the carrying capacity are independent of 
the trait value such that (after appropriate scaling 
of time and density) 1)( ≡xr  and 1)( ≡xK . Let 

the competitive coefficient between strategy xi and 
xj be of the cubic form 

 )(1),( ijji xxxxa −−=  
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 )( 22 δγβα −+− jjii xxxx . (2) 

For a given set of resident strategies, the Lotka–
Volterra model always has a unique population 
dynamical equilibrium (setting the right-hand side 
of Eq. 1 equal to zero, there is a single solution for 
the equilibrium densities), and consequently all 
polymorphisms are protected (unprotected poly-
morphisms are possible only if there is a second, 
unstable fixed point of population dynamics). As 
a(x,x)=1, the equilibrium density of a monomor-
phic resident population of any strategy x is 

1)(ˆ == xKN x . From Eq. 1, the growth rate of a 
rare mutant strategy y in the equilibrium popula-
tion of strategy x is given by 
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The PIP corresponding to Eq. 3 with parameters 
α = 4.5, β = 12.12, γ = 11.5 and δ = 1 is identical 
to the one shown in Figure 1. The structure of the 
PIP, and hence the qualitative features of the evo-
lutionary process, are robust with respect to chang-
ing the parameters. 

For obtaining the TEP (Fig. 2), we need the 
growth rate of a rare mutant y in the dimorphic 
resident population of strategies x1 and x2. Analo-
gously to Eq. 3, 

[ ]
2121

ˆ),(ˆ),(1)( 21, xxxx NxyaNxyays +−=  (4) 

where the equilibrium densities of the two resident 
strategies are  

[ ] [ ]),(),(1),(1ˆ
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and  
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respectively. The resident strategy xi (i = 1,2)  
can be substituted by its mutant y = xi + ε  
if the mutant’s growth rate, ≈+ )(

21 , εixx xs  
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, , is positive. Since the 

resident strategies have zero growth rate in equilib-
rium ( 0)(

21 , =ixx xs ), a larger mutant (ε > 0) can 

invade if the fitness gradient 
ixy
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∂
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21 ,  is posi-

tive; if the fitness gradient is negative, then a 
greater mutant  (ε > 0) can invade. The direction of 
evolution of strategy xi (i=1,2) in the dimorphic 
population of strategies x1, x2 is thus given by the 
sign of the fitness gradient 
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as indicated by horizontal (i = 1) and vertical 
(i = 2) arrows in Figure 2b. 

Having a specific example enables us to per-
form a direct simulation of the evolutionary proc-
ess independent of the adaptive dynamic analysis 
presented above. The simulation provides a nu-
merical test of the predictions made. In the simula-
tion, we did not constrain the population to be 
strictly monomorphic or dimorphic. Instead, we 
iterated the population dynamics of all strategies 
present by Eq. 1. New strategies were generated by 
small mutations of the residents. Adding new 
strategies to the population involves two kinds of 
stochastic processes (Dieckmann and Law, 1996). 
First, each strategy was allowed to produce a mu-
tant with a probability proportional to its popula-
tion density. The mutant differed from the resident 
by a small mutation stepsize ε = ±0.002 with equal 
probability in either direction. Second, since the 
mutant is present initially in low numbers, it is 
subject to demographic stochasticity. The probabil-
ity of avoiding extinction due to demographic sto-
chasticity is proportional to the growth rate of the 
mutant provided that the growth rate is positive; 
otherwise the mutant dies out with probability 1.  
In the simulation, the mutant xi+ε was added to the 
population at a low initial density with proba- 
bility )(,...,1

ε+ixxx xskN
ni

 (with k=0.333) if 

0)(,...,
1

>+εixx xs
n

. Strategies were considered 

extinct and were removed from the simulation if 
their frequency dropped below the (arbitrarily cho-
sen) extinction threshold of 0.005. This simulation 
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algorithm is the same as in Geritz et al. (1998) 
except that here we took the demographic stochas-
ticity of rare mutants into account. 

During the simulation, we periodically recorded 
which strategies were present in the population. 
The resulting evolutionary tree (Fig. 3a) shows the 
predicted cycles of evolutionary branching and 
extinction. The initial monomorphic population 
first evolves to the branching point at xbr = 0.51 (cf. 
Fig. 1). After evolutionary branching, the two co-
existing strategies undergo parallel evolution to-
wards smaller trait values until they reach the vi-
cinity of point Q in the TEP (Fig. 2), i.e. x1(Q) =  
–0.19 and x2(Q) = 0.19. Here one of the two strate-
gies dies out (the smaller one in the first, second, 
fourth and seventh cycle in Fig. 3a, and the larger 
one in the remaining cycles). After extinction, the 
remaining monomorphic population evolves fast 
towards larger trait values until it reaches the 
branching point again. 

 

FIG. 3. (a) Simulated evolutionary tree (Lotka–Volterra model, 
parameters as in Fig. 1). Strategies present were recorded each 
2⋅105 years; total time span is 1.2⋅109 years. (b) Evolutionary 
trajectory in the area of coexistence superimposed on the 
contour lines of the equilibrium density of strategy x1 (for 
clarity, the density of x2 is not shown). Dashed lines: contour 

lines of 
1xN  at 0, 0.2, 0.4, 0.6, 0.8, and 1; continuous lines: 

evolutionary trajectories in eight cycles (data from the simula-
tion shown in (a)). Dimorphic evolution proceeds from the 
branching point (BP) to point Q. (c) Changes in population 
densities 

1

ˆ
xN  (thick line) and 

2

ˆ
xN   (thin line) during the  

dimorphic part of the first three cycles of the simulation 

In this example, directional evolution in the 
monomorphic population is so fast that the differ-
ence in length between “long” cycles (when the 
smaller strategy is left after extinction) and “short” 
cycles (when the larger strategy is left) is barely 
noticeable. Another source of variability in cycle 
length is the stochastic occurrence of successful 
mutants. The speed of evolution is slowest as well 
as most variable during evolutionary branching 
(Table 1). This is so because fitness differences are 
small near the evolutionary branching point such 
that the advantageous mutants have only a slightly 
positive growth rate and are often lost due to 
demographic stochasticity. The waiting time for 
the next successfully invading mutant has thus 
both a large expected value and a large variance. A 
different cause for low speed (but not for variable 
speed) near the branching point is that the substitu-
tion of the resident by the invading mutant is slow 
due to the small fitness differences, such that it 
takes a long time before the spreading mutant itself 
becomes the source of a new mutation. In mono-
morphic populations the fitness differences are 
large when the population is away from evolution-
ary singularities: Monomorphic evolution is the 
fastest between x1(Q) and x2(Q), the range covered by 
long cycles but missing from short cycles. This 
explains why the average speed of monomorphic 
evolution is greater in the long cycles than in the 
short cycles (Table 1). 

This example was constructed such that popula-
tion density is constant throughout monomorphic 
evolution. In dimorphic populations, however, the 
equilibrium densities of the two residents change 
in a characteristic way as the trait values evolve 
(Fig. 3b, c). Dimorphic evolution proceeds along a 
stochastic broken-line trajectory within the area of 
coexistence: Each invading mutant brings the 
population further by a small but finite step into 
horizontal or vertical direction, depending on 
which resident is being substituted. Stochasticity 
stems from the random order in which the two 
residents produce successful mutants (and, in gen-
eral, from the random size of mutations; in the 
present simulation, however, mutation size was 
constant). Near the branching point the equilibrium 
densities of the two residents are very sensitive to 
the exact trait values (Fig. 3b), therefore the small-
scale stochasticity of the evolutionary  trajectory  

a) b)

c)
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results in wide random changes in the densities at 
the beginning of dimorphic evolution in each cycle 
(Fig. 3c). Before extinction, when the population is 
near point Q, the densities are again sensitive to the 
exact trait values such that they vary strongly along 
the stochastic evolutionary trajectory. These ran-
dom fluctuations of population densities fore-
shadow the random extinction to follow. Since 
there is only one population dynamical attractor, 
there is no isolated abrupt change in population 
densities as in case of attractor switching.  

A tenfold increase in mutation stepsize (from 
ε = 0.002 to ε = 0.02) makes directional evolution 
hundred times faster (simulation data not shown). 
This is due to two effects. First, each substitution 
brings about ten times as large change in pheno-
type. Second, the favourable mutants have larger 
fitness advantage and therefore a higher chance to 
escape extinction due to demographic stochasticity. 
The latter effect is also approximately proportional 
to the size of mutations as long as mutations are 
small and the population is away from evolution-
ary singularities. The effect of increasing mutation 
stepsize on the speed of evolutionary branching is 
even larger, because at the branching point the 
fitness of a mutant attains a minimum as a function  

of the mutant phenotype  (see Geritz et al., 1998)  
and due to the curvature of the fitness function 
larger mutants have an aproportionally larger fit-
ness advantage. Besides the quantitative effect on 
the speed of evolution, increasing the size of muta-
tions also causes a qualitative change in evolution: 
In five out of twenty cycles, the smaller strategy of 
the dimorphic population underwent a second 
branching event yielding three distinct strategies in 
the population. Secondary branching is possible 
near the x1-isocline (Geritz et al., 1998, 1999). Two 
factors may promote secondary branching when 
mutations are large enough. First, the deviations of 
the stochastic evolutionary trajectory from the 
expected mean path laying inbetween the two iso-
clines increase when the individual mutational 
steps are larger, and hence there is a higher prob-
ability that the actual trajectory comes near to the 
x1-isocline. Second, when the size of mutations is 
increased, evolutionary branching speeds up rela-
tive to directional evolution, which makes it more 
likely that branching can take place before the 
evolution of x2 moves the population away from 
the x1-isocline (cf. Fig. 2). After the detour to tri-
morphic states, the population falls back to mono-
morphism and cyclic evolution continues. 

 
 

TABLE 1  

The speed of evolution during monomorphic directional evolution, evolutionary branching,  

and dimorphic directional evolution 

 

 Evolutionary time (105 years) 

 Monomorphic evolution 

 in short cycles in long cycles 

Evolutionary 

branching 

Dimorphic 

evolution 

Average 14 24 54 69 

Standard deviation  0  1 12  4 

 Time / unit trajectory length 

Average 43 27 468 84 

Standard deviation  4  1 111  5 

 
Data from the simulation shown in Figure 3, time resolution 2·105 years. Trajectory length is measured on the TEP; branching 
includes evolution within a distance of 0.05 from the branching point on the main diagonal of the TEP (monomorphic evolution, 
x = x1 = x2) or inside the area of coexistence (dimorphic evolution) 
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5. Discussion 
 

Cycles of evolutionary branching and extinction 
may occur due to a number of different underlying 
mechanisms including random extinction, switch-
ing between population dynamical attractors (eco-
genetically driven cycles), coevolution with an-
other, ecologically distinct species such as predator 
and prey (genetically driven cycles), and even 
solely due to changing evolution at different levels 
of polymorphism within a species or different lev-
els of diversity within a guild containing ecologi-
cally very similar species (genetically driven cy-
cles). A number of different scenarios have been 
considered within each category; we do not claim 
the list of mechanisms to be exhaustive.  

The example we showed for the last mechanism 
in this paper also exhibits the peculiar feature that 
even though extinction occurs deterministically at 
specific trait values, it is random which of the two 
strategies goes extinct, and consequently short and 
long cycles occur in random order. Our example is 
not mechanistic (i.e. Eq. 2 is not derived from un-
derlying ecological assumptions), but it demon-
strates that these cycles are possible under fre-
quency-dependent selection.  

Throughout the paper we considered examples 
where cycles involve monomorphic and dimorphic 
stages. Similar cycles are conceivable between 
higher levels of diversity as well, perhaps even 
with repeated branching building up a high level of 
diversity followed by mass extinction. 

Most models of evolutionary branching assume 
clonal inheritance, but the results can be general-
ised to diploid sexual populations as well. Consider 
first a trait controlled by a single locus with a con-
tinuum of potential alleles or by a number of 
tightly linked loci inherited effectively as a single 
locus. Though in sexual populations phenotypes 
are not transmitted from parents to offspring as in 
case of clonal inheritance, alleles are: The adaptive 
dynamics of alleles can be analysed similarly to the 
adaptive dynamics of clonal strategies (Kisdi and 
Geritz, 1999). In particular, evolutionary branching 
in allele space results in two distinctly different 
alleles, and hence in genetic polymorphism, in an 
initially monomorphic population. When evolu-
tionary cycles of branching and extinction occur in 
allele space, then the population is alternating be-

tween genetic polymorphism and genetic mono-
morphism. 

If heterozygotes are intermediate in phenotype, 
then they are selected against during evolutionary 
branching (Geritz et al., 1998). This favours the 
evolution of assortative mating between the emerg-
ing branches (Dieckmann and Doebeli, 1999; 
Geritz and Kisdi, 2000) or the evolution of domi-
nance (Van Dooren, 1999). With reproductive 
isolation between the branches or with full domi-
nance (e.g. if alleles for larger trait values are al-
ways dominant over alleles for smaller trait values) 
adaptive dynamics exactly coincide with the clonal 
model. 

Most quantitative traits of course are controlled 
by many, more or less independent loci with small 
allelic effects in each. Multi-locus genetic models 
of trait evolution are largely compatible with the 
clonal models of adaptive dynamics as long as 
directional evolution is concerned (Taper and 
Case, 1992; Abrams et al., 1993a; Dieckmann and 
Law, 1996). Evolutionary branching is, however, 
strongly hindered by recombination between loci 
such that in randomly mating populations, evolu-
tion gets stuck at the branching point (Abrams et 
al., 1993b).  

Evolutionary branching happens readily in 
multi-locus simulations if mating is assortative 
(Doebeli, 1996; Dieckmann and Doebeli, 1999; 
Doebeli and Dieckmann, 2000). There is a growing 
number of empirical studies that demonstrate dis-
ruptive natural selection on traits that are ecologi-
cally relevant and that also provide cues for mate 
choice (e.g. Ratcliffe and Grant, 1983; Schluter 
and Nagel, 1995; Wood and Foote, 1996; Macnair 
and Gardner, 1998; Feder, 1998; Nagel and 
Schluter, 1998; Grant et al., 2000). Whenever mat-
ing is assortative with respect to the ecological 
trait, evolutionary branching splits the population 
into two reproductively at least partially isolated 
groups, i.e. incipient species. Moreover, assortative 
mating often evolves in the multi-locus simulations 
if not yet in place when the population arrives at 
the branching point (Doebeli, 1996; Dieckmann 
and Doebeli, 1999; Doebeli and Dieckmann, 
2000). The evolution of reproductive isolation by 
assortative mating converts within-species genetic 
polymorphism arisen by branching in allele space 
into two separate species. Evolutionary cycles of  
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branching and extinction thus represent cycles with 
alternating level of species diversity within a guild 
of species that are ecologically very similar except 
for the trait under selection. 

In many aspects, cycles of evolutionary branch- 
ing and extinction are related to taxon cycles 
(Rummel and Roughgarden, 1985; Taper and Case, 
1992, 1993). In taxon cycles, the first species 
evolves to a trait value where evolution stops, but 
the population can be invaded by a second species 
that has a different trait value but is otherwise 
ecologically very similar to the first species. Such 
a trait value may be an evolutionary branching 
point if assortative mating does not evolve and thus 
evolutionary branching is prevented by multi-locus 
inheritance (Abrams et al., 1993b), or may be a 
local (but not global) ESS. Following invasion, the 
coevolution of the two species leads to extinction 
and the remaining species eventually evolves to the 
trait value where the cycle started. Invasion-
extinction cycles may be very variable if the invad-
ing species is different each time or if invasion 
happens before the population has reached the 
branching point or local ESS. If, however, inva-
sions are rare on an evolutionary time-scale, and 
always the same species invades (that is evolution-
arily stable in some source area), then regular cy-
cles of invasion and extinction follow. 

Might cycles of evolutionary branching and ex-
tinction be ubiquitous not only in models but also 
in the fossil record? Unfortunately, this question is 
not easy to answer. On a geological time-scale, 
directional evolution is often very fast (Hendry and 
Kinnison, 1999). Simple models of mutation-
limited evolution (such as Fig. 3a) are misleading 
with respect to the real evolutionary time scale: 
Selection operating on standing genetic variation 
proceeds orders of magnitude faster than mutation-
limited evolution. Due to the haphazard nature of 
fossilisation, cycles of branching and extinction 
may appear in the fossil record merely as trait val-
ues scattered over a range in a seemingly random 
fashion, and thus may be indistinguishable from a 
rather wide, temporally constant within-species 
distribution of the trait.  
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APPENDIX 
 

In this Appendix we show that the intersection of 
the two extinction boundaries (point Q in Fig. 2) 
necessarily belongs to both the x1- and x2-isoclines 
extended to the closure of the area of coexistence 
in the Lotka–Volterra competition model with an 
arbitrary smooth function a(xi,xj). 

For (x1, x2) in the closure of the area of coexis-
tence let us define 

)(),(),()(
~

1121, 221
xsxyaxxDyS xxx −=  

 ).(),( 22 1
xsxya x−  (A1) 

where ),(),(1),( 122121 xxaxxaxxD −=  denotes the 

determinant of the matrix of competitive coeffi-
cients. Using Eqs 3, 4 and 5 we can rewrite the 
growth rate of a mutant in a dimorphic population 
in the form 
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Inside the area of coexistence D(x1, x2) is positive; 
at the intersection of the two extinction boundaries 
(point Q in Fig. 2), however, D(x1(Q), x2(Q)) = 0. To 

see this, notice that 0)(
~

)(
~

2,1, 2121
== xSxS xxxx  for 

all (x1, x2) in the closure of the area of coexistence 
because 0)()( 2,1, 2121

== xsxs xxxx  for all (x1, x2) 

inside the area of coexistence and )(
~

21 , yS xx  as 

defined by (A1) is smooth. At point Q, which is on 
the extinction boundary of both x1 and x2, 

)( )(2)(1 Qx xs
Q

= 0 and )( )(1)(2 Qx xs
Q

= 0; taking either  

y = x1(Q) or y = x2(Q) in Eq. (A1) implies that D(x1(Q), 
x2(Q)) = 0. 

The points of the xi-isocline (i=1,2) are given by 
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i.e. the line that satisfies 0
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cides with the xi-isocline inside the area of coexis-
tence and extends the isocline to the extinction 
boundary. From Eq. (A1) we get 
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Since in point Q both s xx QQ1 2( )
( )( ) = 0 and 

s xx QQ2 1( )
( )( ) = 0, 0
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for i = 1,2. This point thus belongs to both iso-
clines extended to the closure of the area of coexis-
tence. 
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