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Abstract
Evolutionary suicide is a riveting phenomenon in which adaptive evolution drives

a viable population to extinction. Gyllenberg and Parvinen (Bull. Math. Biol. 63:
981-993, 2001) showed that, in a wide class of deterministic population models, a dis-
continuous transition to extinction is a necessary condition for evolutionary suicide.
An implicit assumption of their proof is that the invasion fitness of a rare strat-
egy is well-defined also in the extinction state of the population. Epidemic models
with frequency-dependent incidence, which are often used to model the spread of
sexually transmitted infections or the dynamics of infectious diseases within herds,
violate this assumption. In these models, evolutionary suicide can occur through
a non-catastrophic bifurcation whereby pathogen adaptation leads to a continuous
decline of host (and consequently pathogen) population size to zero. Evolutionary
suicide of pathogens with frequency-dependent transmission can occur in two ways,
with pathogen strains evolving either higher or lower virulence.
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1 Introduction

A naive view of evolution holds that natural selection, ‘the survival of the fittest’, will
always improve a species, making it ever better adapted to its environment. This naive
view is however false. As highlighted by Gyllenberg (2008), evolutionary suicide, the
phenomenon of natural selection leading to the very extinction of the population, starkly
proves that natural selection is not for the best of the species.

Gyllenberg et al. (2002) showed that in a structured metapopulation model with evolv-
ing dispersal, a bifurcation leading to a discontinuous transition to extinction is a nec-
essary condition for evolutionary suicide to occur. In a follow-up paper, Gyllenberg and
Parvinen (2001) extended this result to a wide class of deterministic models. It is now
widely accepted that evolutionary suicide cannot happen through a continuous transition
to extinction at a finite trait value (Parvinen and Dieckmann (2013); Rankin and López-
Sepulcre (2005); Webb (2003)), although examples are known of gradual decline towards
extinction as the trait value becomes infinite (Matsuda and Abrams (1994); Webb (2003)).

It is well known that an epidemic can drive the host population extinct if incidence
is frequency-dependent (i.e. if the rate of contacts a specific host individual has with
other hosts is constant) (Getz and Pickering (1983); Boots and Sasaki (2003); Diekmann
et al. (2012)). By contrast, epidemic models with density-dependent incidence (where
the contact rate is assumed to be proportional to the host population size) typically do
not predict deterministic disease-driven population extinctions (but such extinctions are
possible when Allee effects are considered (Hilker et al. (2009); Gandon and Day (2009)).
Frequency-dependent incidence (also called standard incidence (Allen (2007))) is a good
approximation of the spread of sexually transmitted diseases, because mates seek each
other out even if population density is low and therefore random encounters are rare
(Getz and Pickering (1983)). It is also believed to be a suitable description of infection
process in vector-borne diseases (where relatively large vector populations and changes in
vector behaviour may compensate for variations in host density (Antonovics et al. (1995);
Thrall et al. (1995))) and for infections among animals in herds (which occupy an area
proportional to the number of individuals, such that small herds concentrate in a small
area keeping the contact rate constant (de Jong et al. (1995); Diekmann et al. (2012))).

The question we pose here is simple: starting with a viable host-pathogen system in
which transmission is frequency-dependent, can the pathogens evolve in such a way that
they drive their hosts (and therefore themselves) to extinction? If so, what is the nature
of the bifurcation leading to evolutionary suicide?

Boots and Sasaki (2003) investigated the evolution of pathogen transmission and vir-
ulence under frequency-dependent incidence in a simple optimization model, and found
that the pathogen may evolve such that it drives the system extinct. Their study did
not focus on the type of bifurcation leading to extinction, but the simple structure of the
model suggests that extinction happens as population size declines to zero continuously.
This is in apparent contradiction with the results of Gyllenberg and Parvinen (2001);
Gyllenberg et al. (2002).

In this paper, we show that adaptive dynamics of pathogen virulence can lead to

2



evolutionary suicide through a non-catastrophic bifurcation in a rather general family
of SI models with frequency-dependent incidence. For didactical purposes, we start by
introducing a relatively simple family of autonomous SI models, determine the condition
for evolutionary suicide with evolving pathogen virulence and argue that, if evolutionary
suicide occurs, it occurs via a continuous transition to extinction. We reconcile this with
the results of Gyllenberg et al. (2002); Gyllenberg and Parvinen (2001) by arguing that
epidemic models with frequency-dependent incidence violate an implicit assumption of
Gyllenberg et al. (2002); Gyllenberg and Parvinen (2001), thereby allowing for a new
route to evolutionary suicide. We proceed by analyzing in more detail two specific toy
models. These models show that evolutionary suicide can occur via two different routes:
extinction may be the consequence of evolution towards either more or less virulent strains.
The latter, less intuitive route may happen because as the infectious lifetime of an infected
host is prolonged with decreased virulence, the prevalence of the disease increases and the
host population birth rate may decline to the extent that the population is no longer
viable. Evolution to self-extinction may in fact occur in more involved systems that
include arbitrary population dynamics, pathogens with arbitrary effects on the birth and
death rates of the host and on the way the host interacts with its environment, and non-
autonomous dynamics where the birth and death rates fluctuate in time. We demonstrate
this in Appendix A, thereby generalizing the results of Boots and Sasaki (2003). We
conclude the main part of the paper with a discussion.

2 SI epidemics with frequency-dependent transmis-

sion

We consider an SI model with frequency-dependent incidence described by the differential
equations

dS

dt
= bS(N, x)S + bI(N, x)I − µ(N)S − β(α)

SI

N
dI

dt
= β(α)

SI

N
− µ(N)I − αI.

(1)

Here S and I denote, respectively, the density of susceptible and infected (as well as
infectious) hosts. N = S + I is the total host population density, and x = S/N is the
fraction of susceptible hosts. The per capita birth rates of susceptibles and infecteds, bS
and bI , respectively, depend on the fraction of susceptibles or on the total population
density (see details below in Model I and Model II). The per capita background mortality
rate is denoted by µ. We assume that µ is a non-decreasing function of N ; for example,
when population densities become higher the resources become more scarce, leading to
increased host mortality. The transmission rate β(α) increases with virulence (i.e. the
disease-induced death rate), α, according to the classic transmission-virulence trade-off
hypothesis (Anderson and May (1982)). In Appendix A, we consider a much more general
model and show that evolutionary suicide can happen independently of many details
incorporated in (1).
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The important assumption of this model in view of evolutionary suicide is that inci-
dence is frequency-dependent, i.e., a susceptible host encounters a fixed number of other
hosts per unit of time, the fraction I/N of them being infected. Frequency-dependent
incidence is routinely assumed for sexually transmitted diseases (e.g. Thrall et al. (1993);
Thrall and Antonovics (1997); Boots and Sasaki (2003); Berec and Maxin (2013); Bern-
hauerová and Berec (2015)). It is also believed to be a suitable description of infection
process among animals in herds (Diekmann et al. (2012); de Jong et al. (1995)) and in
vector-borne diseases (Thrall et al. (1993); Antonovics et al. (1995); Thrall et al. (1995)).
We elaborate more on this assumption in the Discussion.

Due to the singularity of (1) at S = I = 0, we rewrite the system in terms of the total
population density N and the fraction of susceptible hosts x as

dN

dt
= N [xbS(N, x) + (1− x)bI(N, x)− µ(N)− α(1− x)] (2a)

dx

dt
= (1− x) [xbS(N, x) + (1− x)bI(N, x)− β(α)x+ αx] . (2b)

Assume that, in the absence of pathogens, the host population settles at a nontrivial
equilibrium, say N∗. In the deterministic setting, a pathogen strain with virulence α is
able to invade a naive host population precisely when its basic reproduction ratio

R0(α) =
β(α)

µ(N∗) + α
(3)

exceeds one. From now on we assume that R0(α) > 1, i.e. we consider only strains that
can invade a naive host population.

Suppose now that the pathogen is endemic and focus on the viability of the host
population. According to (2), the fraction of susceptible hosts x changes faster than the
total population density N whenever N is in a vicinity of zero. For N close to zero we can
therefore assume that x attains a quasi-equilibrium x0 implicitly defined by the equation

x0bS(0, x0) + (1− x0)bI(0, x0)− (β(α)− α)x0 = 0 (4a)

and approximate the changes in N with the equation

dN

dt
= N [x0bS(0, x0) + (1− x0)bI(0, x0)− µ(0)− α(1− x0)] . (4b)

The host population goes extinct if the expression in the brackets of (4b) is negative;
using (4a), this is equivalent to

V (α) := β(α)x0 − µ(0)− α (5)

being negative (note that x0 also depends on α).
Consider α as a bifurcation parameter for the dynamical system in (2). This system

undergoes a transcritical bifurcation at α = αext when V (αext) = 0 holds together with

4



(4a) (provided that V ′(αext) 6= 0). If this bifurcation is of the forward type (as it is in both
models we study below; (Boldin (2006))), then it corresponds to the transition between
host persistence and extinction. If extinction occurs, it occurs via a continuous decline of
host population density N to zero. In the context of system (2), which assumes a closed
population and frequency-dependent incidence, this bifurcation is of codimension 1. In
the original model (1), however, x is not defined when N = 0 (but is defined in the limit
N → 0). If V ′(αext) < 0, then extinction occurs when α increases beyond αext, whereas
if the opposite holds, then extinction occurs as α decreases. Extinction may happen due
to increasing or decreasing virulence depending on how strongly the transmission rate β
increases with virulence and how x0 changes with changing α.

Suppose now that we have a viable host-pathogen system. Can virulence evolve in
such a way that the system is driven to extinction?

3 Adaptive dynamics of virulence with a continuous

transition to extinction: a tale of two models

Assume that a strain α is resident in the population and that the system settles at the
equilibrium (N̂ , x̂) (note that N̂ and x̂ depend on α). Assuming that multiple infections
cannot occur, the initial growth of a mutant strain with virulence αmut is given by

dImut

dt
=
[
β(αmut)x̂− µ(N̂)− αmut

]
Imut

and therefore the mutant invades successfully if its long-term growth rate

r(αmut, α) = β(αmut)x̂− µ(N̂)− αmut (6)

is positive. If mutations are of small effect (|αmut−α| is small) and are infrequent such that
the ecological and evolutionary time scales are separated, then virulence evolves towards
higher or lower values depending on whether the selection gradient

D(α) =
∂r

∂αmut

∣∣∣∣
αmut=α

= β′(α)x̂− 1 (7)

is, respectively, positive or negative (Geritz et al. (1998)).
Let now αext be a bifurcation point given by V (αext) = 0. If the selection gradient

D(αext) = β′(αext)x0(αext)− 1 (8)

is positive, then evolutionary suicide occurs at α = αext whenever traits α < αext are
viable and traits α > αext are not viable. If D(αext) is negative, then evolutionary suicide
occurs at α = αext whenever traits α > αext are viable and traits α < αext are not viable.
In other words, evolutionary suicide occurs at α = αext if and only if D(αext) and V ′(αext)
have opposite signs. We have now arrived at the following
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Theorem 1. Let the dynamics of the host-pathogen system be described by the system
of differential equations in (2) and let x0(α) be a quasi-equilibrium corresponding to the
extinction state N = 0, i.e. a solution of (4a). Let V (α) be as in (5) and let αext satisfy
V (αext) = 0. Furthermore, let the selection gradient in αext, D(αext), be as in (8). If
x0(αext) is a stable equilibrium of (2b) corresponding to the extinction state N = 0 then
evolutionary suicide occurs at α = αext if and only if

sign(D(αext)) 6= sign(V ′(αext)). (9)

In agreement with Boots and Sasaki (2003) and Bernhauerová and Berec (2015), we
demonstrate below that the adaptive dynamics of α can indeed make the system cross a
bifurcation point αext given by V (αext) = 0. By considering two special cases of (2) we
show that evolutionary suicide can occur in two different ways, either by pathogen evolv-
ing towards higher virulence or (less intuitively) towards lower virulence, and explicitly
demonstrate that evolutionary suicide occurs via a continuous decline of host population
density towards zero.

Gyllenberg and co-workers proved that in the context of local bifurcations of the pop-
ulation dynamics (and with the evolving trait considered as the bifurcation parameter),
a discontinuous transition to extinction is a necessary condition for evolutionary suicide
to occur in a wide class of models under mild assumptions (Gyllenberg et al. (2002);
Gyllenberg and Parvinen (2001)). One of these assumptions is that invasion fitness is
well defined also in the extinction state of the population. This assumption holds in
most models of ecology, but does not hold in the present model. When the pathogen has
driven the host population extinct so that S = N = 0, the fraction of susceptible hosts,
x = S/N , is undefined, and therefore the invasion fitness in (6) does not exist. The limit
of x at the point of extinction (x0 in (4)) however does exist, and determines the direction
of evolution according to the selection gradient in (7) when α→ αext in a viable system.

3.1 Model I

We first investigate a toy model in which the per capita birth rates of susceptible and
infected hosts, bS and bI , respectively, depend only on the fraction of susceptible hosts x,
i.e.

dN

dt
= N

[
xbS(x) + (1− x)bI(x)− µ(N)− α(1− x)

]
(10a)

dx

dt
= (1− x)

[
xbS(x) + (1− x)bI(x)− β(α)x+ αx

]
. (10b)

The system in (10) is a generalization of the model considered in Berec and Maxin (2013).
In Berec and Maxin (2013), the authors investigate an epidemiological model of a partially
sterilizing, sexually transmitted disease in which they take into account the fact that
in sexually transmitted diseases, host population birth rates and the rate of infection
transmission are both mediated by the mating process. Assuming that σ ∈ [0, 1] is the
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probability of not becoming sterile upon infection and that both partners must be fertile
to produce offspring, they arrive at

bS(x) = b[x+ σ(1− x)]

bI(x) = σbS(x)
(11)

for some positive constant b. In general, we expect bS and bI to be increasing functions of
x as the number of fertile matings can decrease if the pathogen (partially) sterilizes the
host.

3.1.1 Resident population dynamics

When the disease is not present in the population, the host population density changes
according to the equation

dN

dt
= N [bS(1)− µ(N)] .

We assume that bS(1) > µ(0) such that the trivial equilibrium N = 0 is unstable. When
µ is an increasing function of the population density N , the condition bS(1) > µ(0)
guarantees the existence of a unique, globally stable positive equilibrium N∗ whenever
limN→∞ µ(N) > bS(1). We assume that such an equilibrium exists and determine N∗ as
the solution of µ(N) = bS(1). Since by assumption R0 > 1, the disease-free equilibrium
(N∗, 1) of (10) is unstable (see Appendix B for details).

The total population density, N , does not feature in (10b). Endemic equilibria of
(10b) are found as solutions of xbS(x) + (1 − x)bI(x) − β(α)x + αx = 0 or, equivalently,
as solutions of G(x) = x where

G(x) :=
bI(x)

bI(x)− bS(x) + β(α)− α
. (12)

If R0 > 1 then

1. −bS(1) + β(α) − α > 0 and since bS is an increasing function of x it follows that
−bS(x) + β(α)−α > 0 for every x ∈ [0, 1]. If bI(x) 6= 0 on [0, 1] (as is the case with
bI in (11)) then 0 < G(x) < 1 for every x ∈ [0, 1].

2. x 7→ G(x) is an increasing function.

Hence, equation G(x) = x has at least one solution in (0, 1). The number of biologically
meaningful equilibria depends on the precise form of the functions bS and bI . With bS
and bI in (11), there is a unique positive equilibrium x̂, which is globally stable (Berec
and Maxin (2013)).

Let now x̂(α) denote a stable equilibrium of (10b). Remember that x̂ is independent
of N . The asymptotic equation for the total host population density becomes

dN

dt
= N [β(α)x̂(α)− µ(N)− α] (13)
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whereas V in (5) becomes

V (α) = β(α)x̂(α)− µ(0)− α. (14)

If V (α) < 0 then N = 0 is the only non-negative equilibrium of (13) and successful
pathogen invasion drives the host-pathogen system to extinction. If, on the other hand,
V (α) > 0, the equilibrium N = 0 is unstable. Whenever limN→∞ µ(N) > β(α)x̂(α)− α,
there exists a unique positive equilibrium N̂ which is globally stable.

The virulence of a strain that separates population persistence from population ex-
tinction, αext, therefore satisfies V (αext) = 0. To demonstrate evolutionary suicide, we
shall assume that R0(αext) > 1.

3.1.2 Evolutionary suicide

For a resident strain α at the endemic equilibrium (N̂ , x̂), the selection gradient is given
by (7). Evolutionary suicide occurs at α = αext when D(αext) and V ′(αext) have opposite
signs. Note that

V ′(α) = D(α) + β(α)x̂′(α). (15)

The equilibrium value x̂ satisfies G(x̂) = x̂ with G given in (12). To simplify the
argument we consider birth rates of infected individuals of the form bI(x) = σbS(x) for
some σ ∈ [0, 1] (the birth rates used in numerical examples that follow have such a
form; this assumption is however not necessary for evolutionary suicide). From implicit
differentiation of G(x̂)− x̂ = 0 we obtain

x̂′(α) =
(1− β′(α))x̂2

σbS(x̂)− b′S(x̂)(σx̂(1− x̂) + x̂2)
, (16)

to be substituted in (15). Let us show that evolution to self-extinction can occur by
adaptation towards either more or less virulent strains.

Evolutionary suicide caused by adaptation towards higher virulence. We can demonstrate
evolutionary suicide at α = αext assuming that b′S(x̂(αext)) is sufficiently small for the
denominator of x̂′(α) in (16), evaluated at α = αext, to be positive. Consider first the
degenerate situation where D(αext) = 0, i.e., β′(αext) = 1

x̂(αext)
. In this degenerate case,

by (15), the sign of V ′(αext) is given by the sign of x̂′(αext), which, according to (16), is
negative since 1−β′(αext) = 1− 1

x̂(αext)
< 0. By continuity, V ′(αext) remains negative also

when β′(αext) slightly exceeds 1
x̂(αext)

, i.e. when D(αext) is slightly positive. A suitable

value of β′(αext) therefore guarantees that strains in a vicinity of αext increase beyond
the critical virulence αext into the extinction zone. When strains evolve higher virulence,
infected hosts die faster, but also cause more secondary infections; in addition, changes in
birth rates and in the density-dependent background mortality rate shift the equilibrium
prevalence of the disease. If the infection prevalence increases (i.e., x̂ decreases), then the
average per capita death rate can increase (due to the disease-induced deaths) and the
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average per capita birth rate can decrease (due to the lower birth rate of infected hosts
as well as the dependence of the individuals’ birth rates on the prevalence) to the extent
that the population can no longer be sustained.

Evolutionary suicide caused by adaptation towards lower virulence. Suppose now that
β′(αext) = 0 so that D(αext) = −1, i.e., the selection gradient is strongly negative. In
this case, V ′(αext) > 0 (and evolutionary suicide happens) when β(αext)x̂

′(αext) > 1 (cf.
(15)). When substituting x̂′(αext) from (16) (with β′(αext) = 0) into this last inequality,
we distinguish two cases:

1. When σbS(x̂(αext)) < β(αext)x̂
2(αext), then β(αext)x̂

′(αext) > 1 holds if b′S(x̂(αext)) =
0. In this case, evolutionary suicide can occur without the infection prevalence
affecting the per capita birth rates of the hosts. When the (locally constant) birth
rate of infected individuals, σbS, is sufficiently low, a constant transmission rate
leads to evolutionary suicide at αext. By continuity, the same holds also if the
transmission rate increases sufficiently slowly with virulence.

2. When σbS(x̂(αext)) > β(αext)x̂
2(αext), then evolutionary suicide via decreasing vir-

ulence cannot occur with (locally) constant birth rates, but may still occur if the
birth rates change with infection prevalence. For β′(αext) = 0, β(αext)x̂

′(αext) > 1
holds when the denominator of (16) is positive and sufficiently small, more precisely
when

σbS(x̂(αext))− β(αext)x̂
2(αext)

σx̂(αext)(1− x̂(αext)) + x̂2(αext)

< b′S(x̂(αext)) <
σbS(x̂(αext))

σx̂(αext)(1− x̂(αext)) + x̂2(αext)
.

Starting with a strain in a vicinity of αext, evolution decreases virulence beyond αext. As
the rate of pathogen transmission does not decrease significantly by decreased virulence
and infected individuals live longer, infection prevalence increases for constant or mod-
erately prevalence-dependent birth rates (cf. (16)). If infected individuals either have
sufficiently low birth rates, or the birth rates decrease quickly enough with increasing
prevalence, evolution to self-extinction occurs.

3.1.3 Numerical examples

We demonstrate the two pathways to evolutionary suicide by two numerical examples.
We take the birth rates bS and bI as given by (11) with b = 2 and σ = 0.7. We fur-
thermore assume that the background mortality is of the form µ(N) = µ0e

0.01N and the
transmission-virulence trade-off is β(α) = 10α

β0α+1
for some constants µ0 and β0.

Example 1. Let β0 = 0.1, µ0 = 0.5.
In this caseR0(α) > 1 for α ∈ [0.23, 87.77]. Starting with mild initial strains, evolution

increases virulence past the critical point αext = 1.18 (denoted by the red dot in the pairwise
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(a)

(b) (c)

Figure 1: Example 1: (a) Pairwise invasibility plot (PIP): white and black regions corre-
spond to, respectively, positive and negative invasion fitness; in light grey region strains
cannot invade a naive host population; in dark grey region, pathogens drive the host
population to extinction. To increase visibility, we restrict the maximal virulence to 2.
The red dot depicts the point of extinction, αext. (b) Graph of α 7→ N̂(α). Arrows depict
the direction of evolution. (c) Graph of α 7→ 1 − x̂(α). Arrows depict the direction of
evolution.

invasibility plot in Figure 1a), beyond which the pathogen drives its host (and itself) to
extinction. As virulence increases towards the extinction point αext, the corresponding
equilibrium values of the host population density, N̂(α), decrease continuously to zero (cf.
Figure 1b). With adaptation towards higher virulence the prevalence 1 − x̂(α) increases
(cf. Figure 1c).

Example 2. Let now β0 = 1, µ0 = 0.1.
Here, R0(α) > 1 for α ∈ [0.29, 6.70]. When starting with a highly virulent strain,

evolution decreases virulence past the critical point αext = 6 (depicted by the red dot in
Figure 2a), beyond which the pathogen drives the host and itself to extinction. As infected
hosts live longer when virulence decreases, the prevalence 1− x̂(α) increases (cf. the right
end of Figure 2c). Again, the host population density continuously declines to zero as
virulence approaches the critical value αext (cf. the right end of Figure 2b).

Note however that, in this example, the host-pathogen system is protected from extinc-
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(a)

(b) (c)

Figure 2: Example 2: (a) PIP: white and black regions correspond to, respectively, positive
and negative invasion fitness; in light grey region strains cannot invade a naive host
population; in dark grey region, the pathogen drives the host population to extinction.
The red and the blue dot depict, respectively, the extinction point αext and the CSS
virulence αCSS. (b) Graph of α 7→ N̂(α). Arrows depict the direction of evolution when
initial virulence exceeds αext. (c) Graph of α 7→ 1− x̂(α). Arrows depict the direction of
evolution when initial virulence exceeds αext.

tion when relatively mild strains are circulating in the population. When initial strains
have low virulence, pathogens evolve to a CSS close to α = 1 (depicted by the blue dot in
Figure 2a).

3.2 Model II

We now look at a model where per capita birth rates of susceptible and infected hosts, bS
and bI respectively, depend only on the total population density and consider the system

dN

dt
= N

[
bS(N)x+ bI(N)(1− x)− µ(N)− α(1− x)

]
(17a)

dx

dt
= (1− x)

[
bS(N)x+ bI(N)(1− x)− β(α)x+ αx

]
. (17b)

We assume that bS and bI are decreasing functions of N such that bI(N) ≤ bS(N).
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3.2.1 Resident population dynamics

In the absence of the disease, equation

dN

dt
= N

[
bS(N)− µ(N)

]
describes the dynamics of host population density in time. We assume that bS(0)−µ(0) >
0 so that the trivial equilibrium N = 0 is unstable. Nontrivial equilibria are solutions of
bS(N)−µ(N) = 0. If bS and µ are such that a unique nontrivial solution, N∗, exists, then
the population stabilizes at N∗ in absence of the disease. We assume that this is indeed
the case. Since by assumption R0 > 1, the disease-free equilibrium (N∗, 1) is unstable
(see Appendix C for details). In order to analyse the existence of endemic equilibria of
(17) and their stability, we observe from (17) that nontrivial equilibrium values of N (if
they exist) are solutions of

F (N) = R(N)x̂(N) = 1 (18)

where

R(N) =
β(α)

µ(N) + α
, (19a)

x̂(N) =
bI(N)

bI(N)− bS(N) + β(α)− α
. (19b)

If N̂ is a biologically meaningful solution of (18), the corresponding x̂ is calculated from
(19b). An endemic equilibrium (N̂ , x̂) is therefore such that the expected number of
secondary infections caused by one newly infected individual in the environment (N̂ , x̂)
in all of its infectious life is equal to one. We observe the following:

1. N 7→ R(N) is a non-increasing function of N with R(N∗) = R0 > 1.

2. x̂(N) is biologically meaningful (0 ≤ x̂(N) ≤ 1) precisely when f(N) := −bS(N) +
β(α)−α ≥ 0. Since f is an increasing function of N with f(N∗) = (µ(N∗)+α)(R0−
1) > 0, the range of meaningful values of N is some interval [N0, N

∗] (which may,
or may not contain 0).

3. N 7→ x̂(N) is a decreasing function of N in the region where f(N) ≥ 0. Hence, F
is a decreasing function of N in the region where f(N) ≥ 0.

4. F (N∗) = R0bI(N
∗)

bI(N∗)+(µ(N∗)+α)(R0−1) < 1 since bI(N
∗) ≤ bS(N∗) = µ(N∗) < µ(N∗) + α.

We distinguish two cases:
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Case I. f(0) = −bS(0) + β(α)− α < 0

There exists a unique positive value N0 such that f(N0) = 0 and we focus on the in-
terval [N0, N

∗]. Note that F (N0) = R(N0) > 1 since R(N) is decreasing in N and
R(N∗) = R0 > 1. In this case, there exists a unique N̂ ∈ (N0, N

∗) that solves F (N) = 1.
The corresponding x̂ = x̂(N̂) is biologically meaningful, which gives a unique endemic
equilibrium (N̂ , x̂) of (17). The equilibrium (N̂ , x̂) is locally stable (see Appendix C for
details). The only other (meaningful) equilibria of (17) are (0, 1) and (N∗, 1), which are
both unstable.

Case II. f(0) = −bS(0) + β(α)− α > 0

The range of biologically meaningful values of N is [0, N∗]. We conclude:

1. if F (0) > 1 there exists a unique positive N̂ that solves F (N) = 1. The correspond-
ing x̂ = x̂(N̂) is biologically meaningful, which gives a unique endemic equilibrium
(N̂ , x̂) of (17). Again, this equilibrium is locally stable. In addition to the endemic
equilibrium, there exists the steady state (0, x0) with

x0 =
bI(0)

bI(0)− bS(0) + β(α)− α
. (20)

The equilibrium (0, x0) is unstable (see Appendix C for details).

2. Whenever F (0) < 1, there is no positive solution of F (N) = 1. It is straightforward
to check that in this case, the equilibrium (0, x0) with x0 in (20) is locally stable
(cf. Appendix C).

The only remaining equilibria of (17) are (0, 1) and (N∗, 1), which are both unstable.
It is worth pointing out that, when µ(0) increases, the value of F (0) is pushed below

one and the stable endemic equilibrium disappears. Hence, when background mortality
rates are high enough, a successful invasion of the pathogen results in extinction of the
whole system.

Suppose that a resident strain α settles at an endemic equilibrium (N̂ , x̂) where N̂ is
the solution of (18) and the corresponding x̂ is obtained from (19b). Inserting the thus
obtained x̂ in (7) yields the selection gradient for the current model. Note that, if in the
course of pathogen evolution virulence α and transmission rate β(α) are such that the
assumption of Case I holds, then host population densities remain bounded away from
zero and evolutionary suicide is not possible. Evolution towards extinction is possible
only when virulence and transmission rates are such that the condition of Case II is
satisfied. Observe also that the unique positive equilibrium (N̂ , x̂) depends continuously
on the evolving parameter α. Evolutionary suicide, if it occurs, is therefore necessarily
non-catastrophic.
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3.2.2 Evolutionary suicide

We focus on virulence values α and transmission rates β(α) such that β(α) − α >
max{µ(N∗), bS(0)}. This guarantees that (i) R0 > 1 and (ii) the interval of meaning-
ful population densities is [0, N∗] (i.e. we consider Case II in which evolutionary suicide
is possible).

The preceding analysis reveals that the critical value of virulence αext, which separates
population extinction from population persistence, satisfies F (0)|α=αext = 1 (again, we
assume that R0(αext) > 1). Hence, evolutionary suicide occurs at α = αext whenever

sign D(αext) 6= sign
d

dα
F (0)

∣∣∣
α=αext

. (21)

Note that, with V defined in (5) and x0 as in (20), we have

sign
d

dα
F (0)

∣∣∣
α=αext

= sign V ′(αext),

and therefore the condition in (21) is equivalent to the condition for evolutionary suicide
given in (9) .

From implicit differentiation of (18) evaluated at N = 0, we obtain

bI(0)β(αext)
d

dα
F (0)|α=αext

= β′(αext)
[
bI(0)− (µ(0) + αext)

]
+
[
(µ(0) + αext)−

bI(0)β(αext)

µ(0) + αext

] (22)

and so the sign of d
dα
F (0)|α=αext coincides with the sign of the right-hand side of (22).

Let us show that evolution to self-extinction can occur by increasing as well as decreasing
virulence.

Evolutionary suicide caused by adaptation towards higher virulence. When β′(αext) =
1

x̂(0)
= β(αext)

µ(0)+αext
(i.e. when D(αext) = 0) equation (22) simplifies to

bI(0)β(αext)
d

dα
F (0)|α=αext = −(µ(0) + αext)

[ β(αext)

µ(0) + αext

− 1
]
< 0 (23)

and so d
dα
F (0)|α=αext < 0. Hence, d

dα
F (0)|α=αext is negative also when β′(αext) is slightly

above β(αext)
µ(0)+αext

, i.e. when D(αext) is slightly positive. Evolutionary suicide occurs at
α = αext such that evolution increases virulence beyond the point where the population
is no longer viable.

Evolutionary suicide caused by adaptation towards lower virulence. We distinguish two
cases.

1. If bI(0) > µ(0) + αext (i.e. if the birth rate of infected hosts is high enough so
that even a fully infected host population is viable) then evolutionary suicide is not
possible. In this case, d

dα
F (0)|α=αext < 0 whenever β′(αext) = 1

x̂(0)
(see (23)) and

therefore also whenever β′(αext) <
1

x̂(0)
such that D(αext) < 0 (see (22)).
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2. If bI(0) < µ(0) + αext evolutionary suicide becomes possible if in addition (µ(0) +

αext)− bI(0)β(αext)
µ(0)+αext

> 0. Indeed, d
dα
F (0)|α=αext is then positive for β′(αext) = 0, which

implies D(αext) < 0. By continuity, the same holds also when β′(αext) is slightly
above zero.

When virulence decreases and transmission rates remain practically unchanged, a higher
fraction of the population is infected. If the birth rate of infected hosts is sufficiently low,
then the population can no longer persist and evolutionary suicide occurs.

3.3 Numerical examples

In the examples that follow, we assume that bS = b
(
1− N

K

)
with b = 2, K = 1000 and that

bI = σbS with σ = 0.5. We furthermore assume the per capita background host mortality
to be of the form µ(N) = 0.01(N +µ1) for some positive µ1. Lastly, the trade-off between
transmission and virulence is assumed to be β(α) = 10α

1+α
.

Example 3. Let µ1 = 1.
In this case, R0(α) > 1 for α ∈ [0.24, 7.10]. Pathogens evolve towards an intermediate

level of virulence αCSS = 0.84 (depicted by the blue dot in Figure 3a) when initial strains
are mild. When the initially introduced strain is highly virulent, however, evolution drives
the pathogen towards lower virulence and past the critical point αext = 6.25 (depicted
by the red dot in Figure 3a) beyond which the host population, along with the pathogens,
becomes extinct. As this happens, the host population density declines to zero continuously
(cf. the right end of Figure 3b).

Example 4. Let µ1 = 80.
With this example, we demonstrate the devastating effect of increased background mor-

tality. When the natural death rate of a host is low then mild initial strains evolve towards
some intermediate level of virulence (cf. Figure 3a), keeping the host population and itself
viable. When some factors unrelated to the disease (such as food availability or tempera-
ture) sufficiently increase the host’s natural mortality rate, then even mild strains might
drive the population towards extinction. As µ1 increases, the CSS increases beyond αext.
When relatively harmless initial strains evolve higher virulence they pass the critical value
αext = 0.845 (depicted by the red dot in Figure 4a) and the whole system becomes extinct
(cf. Figure 4b). With adaptation towards higher virulence and therefore towards higher
transmission, the prevalence 1− x̂ increases (cf. Figure 4c).
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(a)

(b) (c)

Figure 3: Example 3: (a) PIP: white and black regions correspond to, respectively, positive
and negative invasion fitness; in light grey region strains cannot invade a naive host
population in dark grey region, the pathogen drives the host population to extinction.
The red and the blue dot depict, respectively, the extinction point αext and the CSS αCSS.
(b) Graph of α 7→ N̂(α). Arrows depict the direction of evolution when initial virulence
exceeds αext. (c) Graph of α 7→ 1− x̂(α). Arrows depict the direction of evolution when
initial virulence exceeds αext.
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(a)

(b) (c)

Figure 4: Example 4: (a) PIP: white and black regions correspond to, respectively, positive
and negative invasion fitness; in grey region, the pathogen drives the host population to
extinction. In this case R0(α) > 1 for α ∈ [0.26, 6.94]. For better viewing, we plot the
PIP for αres, αmut ∈ [0.7, 1.1]. The red dot depicts the extinction point αext. (b) Graph of
α 7→ N̂(α). Arrows depict the direction of evolution. (c) Graph of α 7→ 1− x̂(α). Arrows
depict the direction of evolution.
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4 Discussion

Evolutionary suicide, i.e., evolution to self-extinction, is an intriguing phenomenon that
has been found in a number of models of various ecological systems (Matsuda and Abrams
(1994); Gyllenberg and Parvinen (2001); Gyllenberg et al. (2002); Parvinen (2007, 2010);
Parvinen and Dieckmann (2013)). The notion itself is similar to the idea of the tragedy of
the commons, originally put forward by Hardin (1968) (but see also Rankin et al. (2007)).
In the context of pathogen evolution, Gandon and Day (2009) showed an example of
evolutionary suicide via a catastrophic saddle-node bifurcation owing to an Allee effect
in the host population dynamics. In all examples of evolution-driven extinctions cited
above, evolutionary suicide happens via a discontinuous transition to extinction.

In this paper we consider a family of SI models for evolving pathogen virulence under
frequency-dependent incidence. Here evolutionary suicide happens when the pathogen
drives the entire host population extinct, including all infected hosts that carry the
pathogen. Because the transmission rate of the pathogen is proportional to the fre-
quency of susceptible hosts relative to the total host population size, the extinction state
corresponds to a singularity in population dynamics and the invasion fitness is undefined
in the extinction state. This violates the assumptions of Gyllenberg et al. (2002) and
Gyllenberg and Parvinen (2001) and evolutionary suicide becomes possible also via a
non-catastrophic transcritical bifurcation, i.e., such that the population density declines
to zero continuously. We demonstrate this possibility with examples in Figures 1-4.

In absence of Allee effects, the assumption of a constant contact rate (i.e. frequency-
dependent incidence) is crucial for evolutionary suicide. To see this, let C(N) denote
the contact rate as a function of population density. Generalizing the model in (2), the
system

dN

dt
= N [xbS(N, x) + (1− x)bI(N, x)− µ(N)− α(1− x)]

dx

dt
= (1− x) [xbS(N, x) + (1− x)bI(N, x)− β(α)xC(N) + αx]

(24)

describes the dynamics of the host population density and the fraction of susceptible hosts.
In frequency-dependent transmission we have C(N) = 1 for all population densities,
whereas the classical mass-action assumption C(N) = N yields the density-dependent
incidence. Heesterbeek and Metz (1993) and Antonovics et al. (1995) use a Holling II -
like argument to derive the rate of contacts C(N) in a mechanistic manner. This leads to
incidence functions that resemble density-dependent transmission at very low population
densities and approximate frequency-dependent transmission when population density is
sufficiently high. With mass-action description and the mechanistically derived contact
rates in Heesterbeek and Metz (1993) and Antonovics et al. (1995) we have C(0) = 0. In
such a case, the extinction state in (24) corresponds to the trivial equilibrium (0, 1) (cf.
the only negative term in the right hand side of the second equation in (24) vanishes so
that in equilibrum, x must go to 1 as N goes to zero), and (0, 1) is unstable in absence of
Allee effects. Evolutionary suicide is therefore not possible in such models.
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Frequency-dependent incidence is nevertheless a very popular model for sexually trans-
mitted diseases, since due to the individuals actively searching for mates, the mating rate
(which is the contact rate) can be constant for all but the lowest population densities.
C(N) saturates already at low densities also because of the long handling times, which
include e.g. gestation and parental care (Antonovics et al. (1995)). Our model there-
fore properly describes the evolution of the pathogen until the host population density
becomes very low. At small population sizes, the population dynamics is no longer deter-
ministic, and there is a high risk of extinction due to demographic stochasticity (Boots
and Sasaki (2003); Matsuda and Abrams (1994)). With a Holling II - like contact rate,
therefore, evolutionary suicide may occur in the sense that the evolving pathogen drives
the host below the minimum viable population size necessary for persistence in face of
demographic stochasticity (Nunney and Campbell (1993)). This is similar to the runaway
evolution found by Matsuda and Abrams (1994) and to the “gradual extinctions” exam-
ples of Webb (2003), but, importantly, in our models extinction occurs without the trait
(here virulence) evolving unboundedly. Frequency-dependent incidence is also an accu-
rate model for animals in herds; since the area the herd occupies shrinks in proportion to
the decreasing number of individuals, the contact rate remains constant (de Jong et al.
(1995)).

The majority of pathogens in nature utilize multiple transmission routes (e.g. di-
rect host-to-host, vector-borne, environmental, vertical) (Antonovics et al. (1995); Ryder
et al. (2007); Boldin and Kisdi (2012); Bernhauerová and Berec (2015)), thus making the
traditional density-/frequency-dependent incidence dichotomy too simplistic. Instead, to
realistically account for the richness in contacts leading to infection transmission, we might
incorporate in our models a combination of density- and frequency-dependent transmis-
sion. As observed in Bernhauerová and Berec (2015), including vertical transmission to a
model with frequency-dependent incidence does not remove the possibility of evolution-
ary suicide. Similarly, Ryder et al. (2007) reveals that evolution to self-extinction may be
possible when density-dependent transmission is included into a model with frequency-
dependent transmission (however, the scope for parasite-driven population extinctions
narrows).

In our models, the host population goes extinct if the prevalence of the disease (1− x̂)
is sufficiently high and the disease is harmful, in the sense that the birth rate of infected
hosts is sufficiently low and/or their death rate is sufficiently high. Since a high death
rate of the infecteds may lead to a low prevalence of the disease, evolutionary suicide
may happen via two different routes, depending on how the disease-induced mortality
(virulence) is linked to transmission and therefore to prevalence. We now discuss these
two routes in turn.

Our general model in Appendix A demonstrates that if virulence is independent of
transmission, the pathogen always evolves towards high transmission rates. This is in
agreement with Boots and Sasaki (2003), but extended to the case where increasing
transmission is not without any harm to the host: if the damage caused to the host by a
more aggressively infectious pathogen is felt only in a reduced birth rate of the host, then
the damage does not influence the evolution of transmission. From the pathogen’s point
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of view, producing new susceptibles via birth is akin to producing common goods for the
pathogen. When shared with many individuals in a large population, the production of
common goods provides no benefit to the individual and hence damaging the production
does not influence individual fitness (Sigmund (2010)). As the pathogen evolves towards
high transmission, the prevalence of the disease increases so that more hosts suffer from a
low birth rate and from the (transmission-independent) disease-induced mortality, which
may lead to the extinction of the host population.

Under the transmission-virulence trade-off, a similar route to evolutionary suicide
exists. Evolution towards high transmission then amounts to evolution towards high
virulence (as in Figures 1 and 4) and therefore to short-lived infections. If transmission
increases fast enough, then prevalence still increases or at least remains sufficiently high,
and the host population may go extinct if infected individuals have too low a birth rate
and/or too high a mortality.

An alternative route to evolutionary suicide is when the pathogen evolves towards
lower virulence (Figures 2 and 3). Infected individuals then live longer, and can infect
more susceptibles provided that the transmission rate does not decrease too fast with
decreasing virulence. As the prevalence of the disease increases, more hosts suffer from a
low birth rate and from the disease-induced mortality, which may lead to the extinction
of the host.

The second route to evolutionary suicide is particularly worrisome when considering
pathogens jumping to new host species. A pathogen not yet adapted to its host may
cause considerable harm, so that it has high initial virulence. As the pathogen evolves to
reduce its virulence and hence to extend the infectious lifetime of its host, its prevalence
increases and thereby it can drive its host to extinction.

It is well known that increasing background mortality triggers the evolution of higher
transmission despite the cost of higher virulence (Lenski and May (1994)). Under frequency-
dependent incidence, this effect can be rather dangerous, because increasing transmission
can lead to evolutionary suicide and therefore to the loss of the host population. We
illustrate this possibility with Model II, where initially mild pathogens evolve to an evo-
lutionarily stable strain, but an increase of host background mortality selects for more
transmissible strains until evolutionary suicide happens (Figures 3 and 4).

In adaptive dynamics, optimization models represent the special case that closest
resembles the simple scenario of the ‘survival of the fittest’. In particular, strategies cannot
coexist when selection is optimizing (excluding the degenerate case of neutral coexistence),
and adaptive dynamics leads to the maximization of a suitably chosen function of trait
values, hence in this sense to the ‘best’ phenotype (Metz et al. (2008); Gyllenberg and
Service (2011); Gyllenberg et al. (2011); Gyllenberg and Parvinen (2001)). Gyllenberg
and Parvinen (2001) proved that in a wide class of optimization models, evolutionary
suicide cannot occur via the typical route of a saddle-node bifurcation of population
dynamics. Recently, Parvinen and Dieckmann (2013) showed by way of examples that
evolutionary suicide is possible also in optimization models, via global bifurcations; a
similar model was analyzed earlier by Webb (2003). The model of Boots and Sasaki
(2003) is an optimization model predicting evolutionary suicide. In our extension of
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this model, selection is generally frequency-dependent, but in some special cases, it is
optimizing. The latter is the case if, in equation (1), the background mortality rate does
not depend on population density (or, in the general model (25), the background mortality
rate and the virulence do not depend on the environmental feedback variables) and the
host population is regulated only via the birth rates, so that the invasion fitness of a
mutant is a monotonic function of the single environmental feedback variable x (or 〈x〉),
which implies optimization (Metz et al. (2008)). Whether or not selection is optimizing
makes no qualitative difference for evolutionary suicide in these models. Note that this
is possible because frequency-dependent incidence violates the assumptions of Gyllenberg
and Parvinen (2001).

In the examples presented in this paper, evolutionary suicide occurs with evolving
monomorphic pathogen populations. However, our models in general include more than
one environmental feedback variable, thus allowing for coexistence of pathogen strains;
this is true also for models including multiple transmission routes (see e.g. Boldin and
Kisdi (2012); Bernhauerová and Berec (2015)). Evolutionary suicide may therefore be
possible also via polymorphic evolution, with multiple coexisting strains driving the host-
pathogen system to extinction. Evolutionary suicide in polymorphic populations has
earlier been observed by Ferriere and Legendre (2013) in a model of cooperation (cf.
Figure 7 in their paper). It remains to be seen whether such evolution-driven extinctions
occur in host-pathogen systems with coexisting pathogen strains.
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A Appendix: General model

Here we consider a rather general family of SI models given by

dS

dt
= bS(Ẽ(S, I, z), t)S + bI(Ẽ(S, I, z), z, t)I − µ(Ẽ(S, I, z), t)S − β(z)

SI

N
dI

dt
= β(z)

SI

N
− µ(Ẽ(S, I, z), t)I − α(Ẽ(S, I, z), z, t)I.

(25)

As in the main text, S and I are the density of susceptible and infected hosts, respectively,
and N = S + I is the total host population density. z is a trait that characterizes the
infecting strain of the pathogen (e.g. its intra-host proliferation rate, see e.g. Boldin
and Diekmann (2008)). For the population dynamics of a given strain in (25), z is the
parameter of interest for the bifurcation through which extinction happens. For the
adaptive dynamics, z is the evolving trait. We assume that z determines the transmission
rate β(z) and also influences other demographic parameters (see below). In the models
considered in the main text, we assumed that α, the virulence, is a pathogen-specific
constant (i.e., independent of Ẽ and time) and took z = α.
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The vector Ẽ contains environmental feedback variables, such as the densities of avail-
able resources, which depend on the number of hosts who exploit these resources. Sus-
ceptible and infected hosts may exploit the resources differently (for example, infected
hosts may be less efficient foragers), and the exploitation of infected hosts may depend
on the trait value z of the infecting strain (for example, the more the strain damages
the hosts, the less efficiently they forage), so that Ẽ depends on S, I and z. The per
capita birth rates of susceptibles and infecteds, bS and bI , respectively, depend on the
environmental feedback variables and, in the case of bI , also on the infecting strain; with
this latter assumption, we allow for a partially sterilizing pathogen whose degree of ster-
ilization depends on its trait value z. Similarly, the background mortality rate (µ) and
the virulence (α) depend on the environmental feedback variables, and, in the case of α,
on the infecting strain. Finally, all birth and death rates may depend explicitly on time,
i.e., they may be affected by external factors.

This model subsumes a wide variety of ecological assumptions (how the demographic
rates depend on population density via resources etc.) and also a variety of possible effects
of the pathogen on its host’s demography, but retains the crucial assumption of frequency-
dependent pathogen transmission. The model of Boots and Sasaki (2003) is a special case
of (25) with bS(Ẽ(S, I, z), t) = b − h(S + I), µ(Ẽ(S, I, z), t) = u, α(Ẽ(S, I, z), z, t) = ᾱ
(where b, h, u and ᾱ are positive numbers), and either bI(Ẽ(S, I, z), z, t) = 0 (the disease
is fully sterilizing) or bI(Ẽ(S, I, z), z, t) = b− h(S + I) (the infected hosts have the same
birth rate as the susceptibles).

As in the main text, we rewrite the system in terms of the total population density N
and the fraction of susceptible hosts x = S

N
as

dN

dt
= N [xbS(E, t) + (1− x)bI(E, z, t)− µ(E, t)− (1− x)α(E, z, t)]

dx

dt
= (1− x) [xbS(E, t) + (1− x)bI(E, z, t)− xβ(z) + xα(E, z, t)]

(26)

where E = E(N, x, z) = Ẽ(xN, (1− x)N, z). The invasion fitness of a mutant strain zmut

is given by

ρ(zmut, z) = β(zmut)〈x〉 − 〈µ(E(N, x, z), t)〉 − 〈α(E(N, x, z), zmut, t)〉 (27)

where the angle brackets 〈·〉 denote the time-averages on the ecological timescale of equa-
tion (26) (Metz et al. (1992)); we assume that these expectations exist. If the resident
dynamics in (26) are autonomous (i.e., if the birth and death rates do not depend explic-
itly on time) and the system attains an equilibrium, then the time-averages reduce to the
values at the resident equilibrium. In this case, the environmental feedback variables that
determine the invasion fitness of a given mutant are the fraction of susceptibles, x, and
the elements of E at the resident equilibrium.

The adaptive dynamics of the pathogen trait z is governed by the selection gradient

D(z) = [∂ρ(zmut, z)/∂zmut]zmut=z

= β′(z)〈x〉 −
〈
∂α(E(N, x, z), zmut, t)

∂zmut

∣∣∣∣
zmut=z

〉
.

(28)
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Following Boots and Sasaki (2003), assume first that the disease-induced death rate is
independent of the strain infecting the host, i.e., that α(E(N, x, z), zmut) does not depend
on zmut (but it may still depend on z via the environmental feedbacks). In other words,
different strains zmut of the pathogen differ in their transmission rate β(zmut) and may
also differ in their effect on the birth rate of an infected host, bI(E(N, x, z), zmut, t) so that
a strain with a higher transmission rate may be more damaging to host fecundity. With
this assumption, the selection gradient reduces to D(z) = β′(z)〈x〉, which has the same
sign as β′(z). The pathogen therefore evolves to maximize its transmission rate. Assume
further that the transmission rate can increase without bound, and β(z)→∞ as z → z0.
Let the initial strain be such that the solution of dz

dt
= β′(z) tends to z0 (if the function

z 7→ β(z) does not have finite local maxima, then this is true for any initial value z). In
this case, z evolves towards z0.

If a strain z is viable, i.e., if in its resident population the density of infected hosts, I,
is bounded and also bounded away from zero, then

〈
1
I
dI
dt

〉
= 0 must hold (cf. Metz et al.

(1992)). By the second equation of (25), this is equivalent to

β(z)〈x〉 = 〈µ(E(N, x, z), t) + α(E(N, x, z), z, t)〉. (29)

Since µ and α are bounded, we have 〈x〉 → 0 as z → z0; a very highly transmissible
disease infects all hosts. The dynamics of the total population density then converges to
the orbit of

dN

dt
= [bI(E(N, 0, z0), z0, t)− µ(E(N, 0, z0), t)− α(E(N, 0, z0), z0, t)]N. (30)

If (30) has no other attractor than the trivial equilibrium N = 0, then the entire host
population goes extinct. In absence of Allee-effects, the birth and death rates are mono-
tonic functions of the elements of E, which, in turn, are monotonic in N . In this case,
the trivial equilibrium is the only attractor of (30) if

〈bI(E(0, 0, z0), z0, t)− µ(E(0, 0, z0), t)− α(E(0, 0, z0), z0, t)〉 < 0. (31)

As z evolves towards z0, the entire host population goes extinct when (31) holds. The
evolution of the pathogen thus results in its own extinction, i.e., in evolutionary suicide.
In absence of Allee-effects, evolutionary suicide occurs as the host population density
declines to zero continuously during the course of evolution. In autonomous systems, this
happens via a local non-catastrophic bifurcation of population density.

In this Appendix, we assumed that the transmission rate can evolve to arbitrarily
high values. In reality, the transmission rate is bounded by the rate of contacts between
host individuals, and increasing the transmission rate may be possible only at the cost of
increasing virulence (Alizon et al. (2009)). This model nevertheless shows, along the lines
of Boots and Sasaki (2003) but in a much more general model, that with a sufficiently
high contact rate and for some trade-off functions linking transmission and virulence,
evolutionary suicide must be possible. In the main text of this article, we show that
evolutionary suicide does happen through a non-catastrophic bifurcation also in models
with bounded transmission traded off with virulence.
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B Appendix: (In)stability of the disease-free equilib-

rium of Model I

The aim of this Appendix is to verify that the disease-free equilibrium of (10) is unstable
whenever R0 > 1 and locally stable when R0 is below 1. The linearization of (10) around
(N∗, 1) gives [

−N∗µ′(N∗) ∗
0 −bS(1) + β(α)− α

]
.

The upper left element of the Jacobian at (N∗, 1) is negative. Since −bS(1) + β(α)−α >
0 ⇐⇒ R0(α) > 1, the disease-free equilibrium (N∗, 1) is unstable when R0(α) > 1 and
locally stable whenever R0(α) < 1 .

C Appendix: Local stability of equilibria of Model II

In this Appendix we discuss stability of equilibria of Model II.
The linearization of (17) takes the form

J(N, x)

=


(bS(N)x+ bI(N)(1− x)− µ(N)− α(1− x)) N(bS(N)− bI(N) + α)

+N(b′S(N)x+ b′I(N)(1− x)− µ′(N))

(1− x)(b′S(N) + b′I(N)(1− x)) (1− x)(bS(N)− bI(N)− β(α) + α)
−(bS(N)x+ bI(N)(1− x)− β(α)x+ αx)

 .
The assumption bS(0) > µ(0) implies that the equilibrium (0, 1) is unstable. If we further
assume that R0 > 1, the disease-free steady state (N∗, 1) is unstable.

If an endemic equilibium (N̂ , x̂) exists then the Jacobian evaluated in (N̂ , x̂) has the
form

J((N̂ , x̂)) =

[
N̂(b′S(N̂)x̂+ b′I(N̂)(1− x̂)− µ′(N̂)) N̂(bS(N̂)− bI(N̂) + α)

(1− x̂)(b′S(N̂)x̂+ b′I(N̂)(1− x̂)) (1− x̂)(bS(N̂)− bI(N̂)− β(α) + α)

]
which has the sign structure [

− +
− −

]
,

implying that (N̂ , x̂) is locally stable whenever it exists.
If the assumption of Case I holds, then there are no other equilibria of (17). The same

conclusions holds in Case II (i). When the assumption of Case II (ii) holds, there is no
endemic equilibrium of (17). There exists however an equilibrium (0, x0) with 0 < x0 < 1.
We have

J((0, x0)) =

[
β(α)x0 − µ(0)− α 0

∗ (1− x0)(bS(0)− bI(0)− β(α) + α)

]
.

Since both diagonal elements are negative, the equilibrium (0, x0) is locally stable.
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