
Mathematical Methods in Biology

Part 3

Exercises

Eva Kisdi
Department of Mathematics and Statistics

University of Helsinki

c© Eva Kisdi.

Any part of this material may be copied or re-used only with the explicit permission of the author.



EXERCISES 1-7: CONSTRUCTION OF MATRIX MODELS

Exercise 1. Spatial movement. Suppose that individuals can move between two loca-
tions. Reproduction and death (other than the mortality risk in (c) and (d)) are negligible
during the time frame of interest, so that the numbers of individuals in locations 1 and
2, denoted respectively with N1 and N2, change only due to movement. We monitor the
population on a daily basis. Build matrix models to project N1 and N2 for the following
situations:

(a) Symmetric movement with probability m (the probability to go from location 1 to 2
in one day is the same as to go from 2 to 1)
(b) Unidirectional movement: it is possible to go from location 1 to 2 but not the other
way
(c) Symmetric movement at a survival cost: migrating individuals survive the transfer
with probability s (which is less than 1)
(d) Symmetric movement with asymmetric cost: the probability to go from location 1 to
2 is the same as to go from 2 to 1, but the probability of surviving the transfer is different
(s1 when moving out of location 1 and s2 when moving out of location 2).

Exercise 2. Stage-structured populations in discrete time. We count (”census”) the pop-
ulation at the beginning of spring, just before reproduction. Let N1 and N2 respectively
denote the number of juveniles and adults. Till the next census time at the beginning of
next spring, the following events take place:

• Juveniles die during the year with probability ∆. Those juveniles who stay alive
mature with probability M and remain juveniles with probability 1−M .

• Each adult produces B offspring and subsequently a fraction D of the adults die. Of
the newborns, a fraction ∆ dies during the year (so that it is never seen at census).
The surviving newborns become juveniles by the next census.

This life cycle is summarized in the graph below, where each arrow represents a full
year’s time. (Note that it takes at least two years to get from adults to adults, i.e.,
offspring can become adults by their second census at the earliest. The dotted arrows
could be omitted.)
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(a) Construct the projection matrix A that corresponds to this life cycle.
(b) Modify the model such that instead of maturing with probability M every year, all
juveniles mature exactly by their second census.
(c) Modify the model such all juveniles mature exactly by their third census.

Exercise 3. Membrane channels. Suppose that a membrane channel can open only if it
has bound an agonist (helper) molecule. The chemical reactions that lead to the opening
of the channel are thus

X1 + A
ak21


k12

X2

k32


k23

X3

where X1 denotes the channel without the agonist (and hence closed), X2 denotes the
channel with the agonist A bound but still closed, and X3 is the open channel. X1 binds
the agonist molecule A at a rate ak21 (note that according to mass action, this rate is
proportional to the concentration of the agonist, a; we assume that a is kept constant).
The channel-agonist complex X2 either dissociates (at a rate k12) or opens (at a rate k32).
The open channel cannot release the agonist before closing, and closes at a rate k23.

Let the vector

n =

 n1

n2

n3


contain the number of channels in states X1, X2 and X3 (with n1 + n2 + n3, the total
number of channels, being constant over time). Determine the matrix K such that the
dynamics of the channels is given by

dn

dt
=

 dn1/dt
dn2/dt
dn3/dt

 = Kn

Exercise 4. Age-structured populations. Modify or apply the Leslie matrix to model a
population of

(a) a strictly biennial plant (it reproduces only at age 2 and dies after reproduction);
(b) an organism that has no upper limit of lifetime, but from age 3 years onwards, its
effective fecundity is F and its probability of survival is P in every year;
(c) a hitherto unknown species of Magicicada, which reproduces at age 7, dies immediately
afterwards, and the offspring have the same probability of survival each year until they
become 7 years old and reproduce (real Magicicada is similar but with 13 or 17 years).

Exercise 5. Order of life history events. Consider an annual species in a metapopulation
of 4 local populations. Let Fi and si denote respectively the number of offspring pro-
duced per parent and the probability that an offspring survives in habitat i = 1, 2, 3, 4.
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During dispersal, a fraction m of individuals leave their habitat and enter a dispersal
pool; from the dispersal pool, the individuals get into any of the four habitats with equal
probabilities (”global dispersal”). Construct the projection matrix if the order of events is

(a) (census - ) reproduction - survival - dispersal (- census)
(b) (census - ) reproduction - dispersal - survival (- census).

Exercise 6. Size-structured populations. For many organisms, fecundity and survival
depend on body size rather than on age. The life cycle graph below shows a size-structured
population with three size classes (small, medium, large). After one year, a surviving
individual may have grown one class larger or may stay in the same class as before; nobody
shrinks in size. Death means that some individuals do not appear in any class after one
year: For example, 10% of the smallest class remains in the smallest class, 50% grows,
and the remaining 40% dies (does not go anywhere). Only the largest class reproduces,
and all offspring enter the smallest class. Construct the corresponding projection matrix
and compare its structure with the Leslie matrix of age-structured populations.

Exercise 7. Biennial plants with seed bank. Consider a population of biennial plants.
Each year, half the seeds in the soil seed bank germinate in March. 10% of the germinat-
ing seeds survive till March next year and become a 1-year-old rosette (vegetative plant;
in early March, it is mainly an underground storage of nutrients e.g. in a thick root, as a
carrot). 80% of the surviving rosettes will start flowering in May and produce on average
100 seeds. 40% of the seeds fall in suitable soil and survive from seed production till next
March. Seeds in the soil seed bank that do not germinate in March survive till next March
with 90% probability. Draw the life cycle graph and construct the projection matrix for
census at the beginning of March.
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EXERCISES 8-11: MATRIX MULTIPLICATION

Exercise 8. Important patterns in matrix multiplication. Do the following multiplica-
tions and observe the resulting patterns:

(a)  3 8 9
1 2 7
6 4 5

 3 1 6
8 2 4
9 7 5


The result is a symmetric matrix: The element in the first row second column is the same
as the element in the second row first column, etc., such that for all i, j we have that the
number in the ith row, jth column is the same as in the jth row, ith column. Do you see
why?

(b) The following is a very common structure: a matrix ”sandwiched” between two vec-
tors. The result is a number:

[
5 2

] [ 3 4
2 0

] [
6
3

]

(c) Pre-multiplying a column vector with a row vector of 1’s calculates the sum of the
vector’s elements:

[
1 1 1

]  x1
x2
x3



(d) This 4× 4 matrix ”falls apart” into two matrices of size 2× 2:
a11 a12 0 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 a44



x1
x2
x3
x4


in the sense that the result of the multiplication above looks like the results of[
a11 a12
a21 a22

] [
x1
x2

]
and

[
a33 a34
a43 a44

] [
x3
x4

]
”glued” together into one vector. The 4× 4

matrix is block-diagonal.
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Exercise 9. Diagonal matrix. A matrix of the form

Λ =

 λ1 0 0
0 λ2 0
0 0 λ3


is called a diagonal matrix because the only non-zero elements are in its diagonal.

(a) Investigate the emerging pattern when you pre- or post-multiply an arbitrary matrix
A by a diagonal matrix Λ. Let thus A be the arbitrary matrix

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


and compute both ΛA and AΛ.

(b) Calculate the square of the diagonal matrix Λ. The square of a matrix is the product
with itself: Λ2 = ΛΛ.

Exercise 10. Exercises to practice matrix multiplication Perform the following multipli-
cations when possible:

(a)

[
4 −1
0 2

] [
3
5

]

(b)

[
4 −1
0 2

] [
2
1

]

(c)

[
4 −1
0 2

] [
3 2
5 1

]

(d)

 −3 2 −1
6 0 1
0 5 −2

 7 1 3
6 4 −2
−3 −1 1


(e)
[
−1 1

] [ 2 4
6 8

]

(f)
[
−1 1

]  −3 2 −1
6 0 1
0 5 −2


(g)

[
−2 0
1 8

]2
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(h)

[
1 2
3 4

] [
5 6
7 8

] [
9 10
11 12

]

Exercise 11. Find out the matrix Construct the matrix A such that the following holds
true for every vector x:

(a) A

[
x1
x2

]
=

[
2x1
2x2

]
(b) A

[
x1
x2

]
=

[
x1
0

]
(c) A

[
x1
x2

]
=

[
x1
−x2

]

(d) A

 x1
x2
x3

 =

 −x12x2
0



EXERCISES 12-15: ANALYSIS OF MATRIX MODELS

Exercise 12. Long-term dynamics of age-structured populations. For simplicity, in this
exercise we consider an age-structured population with maximum age of only 2, i.e., a
population described with a 2× 2 Leslie-matrix

L =

[
F1 F2

P1 0

]
Larger matrices would behave similary.

(a) Take the parameter values F1 = 2, F2 = 5, P1 = 0.25, and the initial population
vector

N(0) =

[
0
1

]
Calculate N(1), N(2),... for a number of generations and observe the behaviour of the
population vector. It is a good idea to monitor total population size (the sum of the
elements of N) and the fraction of the population belonging to different age classes. Hint:
You may want to use Excel, MatLab or any other suitable software to do the calculations,
but it is also feasible by hand as it is sufficient to calculate N(t) for 5-6 years.

(b) Experiment with the long-term dynamics of strictly biennial plants, which have the
Leslie matrix

L =

[
0 F
P 0

]
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(see exercise 4a above). Assume values for the parameters F and P as you wish. Is any
equilibrium achieved? Why or why not? Hint: Since the Leslie matrix is small and has
many zeros, this part can easily be done also by hand.

Exercise 13. Backward projection. The demography of an age-structured population
with maximum age 3 is described with the Leslie matrix

L =

 F1 F2 F3

P1 0 0
0 P2 0


(a) Suppose that F1 = 0, F2 = F3 = 2 and P1 = P2 = 0.6. In year t, the population
vector is

N(t) =

 12
3
2


Find out what was the population vector in the previous year, N(t− 1).

(b) Find parameter values in the Leslie matrix such that N(t− 1) cannot be determined.
Explain in biological terms why this is the case.

Exercise 14. Equilibrium allele frequencies under mutation. Let the vector pt contain
the frequencies of alleles in generation t and the matrix model

pt+1 = Qpt

give the dynamics of allele frequencies from generation to genration. Find the equilibrium
allele frequencies for the transition probability matrices

(a) Q =

 0.8 0.2 0.15
0.06 0.7 0.1
0.14 0.1 0.75

 (b) Q =

 1 0 0
0 0.8 0.1
0 0.2 0.9


Hint: Use also the fact that the allele frequencies must add up to 1.

Exercise 15. The Hawk-Dove game. The Hawk-Dove game is a famous model of evolu-
tionary game theory, and many other game theory models (collectively known as matrix
games) follow the same basic setup. Envisage a population where pairwise interactions
take place between randomly chosen individuals. At each interaction, each player can
choose between a number of actions. The reward or pay-off gained from the interaction
depends on the actions of both players, but one player does not know what action the
other player will choose.

Suppose there are only two actions to choose from (labelled as action 1 and action 2,
respectively) and let aij denote the pay-off I receive if I choose action i and my opponent
chooses action j (where i and j can be 1 or 2). The matrix

A =

[
a11 a12
a21 a22

]
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is called the pay-off matrix of the game. Suppose all individuals other than the focal one
(whom is described here as ”I”) choose action 1 with probability p1 and action 2 with
probability p2, and let

p =

[
p1
p2

]
(a) Show that the vector x = Ap contains the expected payoffs of the focal individual: if
I choose action 1, then on average I receive payoff x1, whereas if I choose action 2, then I
can expect payoff x2.

The Hawk-Dove game envisages two players fighting over a resource of value V . Hawk
players escalate the fight such that if both myself and my opponent choose the action
Hawk, then with probability 1/2 I win the resource and therefore get pay-off V , but
with probability 1/2 I lose and suffer an injury of cost C. In a Hawk-Hawk interaction,
therefore, the payoff is 1

2
V − 1

2
C. The alternative action Dove does not escalate the fight.

If I play Hawk and my opponent plays Dove, then I win and get the pay-off V ; if I play
Dove and my opponent plays Hawk, then my opponent wins but I have no injury, so that
I get zero pay-off. Finally, if both players choose Dove, then each wins with probability
1/2 without an injury and the pay-off is 1

2
V . The pay-off matrix is thus

A =

[
1
2
(V − C) V

0 1
2
V

]
(b) Show that if V > C, then it is always better for me to play Hawk than to play Dove,
no matter what p is.

(c) Suppose now that V < C. Find a vector p such that I get the same payoff whether
I play Hawk or Dove. This particular p represents a so-called Nash-equilibrium. If the
pay-off to Hawk is higher than the pay-off to Dove, then Hawk players will spread in the
population; and vice versa, if the pay-off to Dove is higher, then Dove will spread. If,
however, the two actions get the same pay-off, then neither spreads, i.e., the population
is at equilibrium.

EXERCISES 16-17: DETERMINANTS

Exercise 16. Expansion of determinants. Calculate the determinants of the matrices
used in exercise 14.

Exercise 17. Special determinants. Calculate the determinant of the following special
matrices (hint: expand using a row or a column such that the calculation is the simplest).
The results are worth noting:
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(a) A diagonal matrix:


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4



(b) A triangular matrix:


a11 a12 a13 a14
0 a22 a23 a24
0 0 a33 a34
0 0 0 a44



EXERCISES 18-23: EIGENVALUES AND EIGENVECTORS

Exercise 18. Stable age distribution. Calculate all eigenvalues and eigenvectors of an
age-structured population with Leslie matrix

L =

[
2 5

0.25 0

]
Compare the results with the numerical experiment carried out with the same matrix in
exercise 12a.

Exercise 19. The role of initial conditions. Consider an age-structured population with
maximum age 2 where only 1-year-old females reproduce, and therefore the Leslie matrix
has the form

L =

[
F 0
P 0

]
(a) Show that the eigenvalues and eigenvectors of this matrix are

λ1 = F with u1 = k

[
F
P

]
and λ2 = 0 with u2 =

[
0
u

]
where k and u are arbitrary numbers (cf. the eigenvectors are determined only up to a
constant).

(b) Find all initial vectors N(0) for which
(i) the population grows eventually exponentially with annual growth rate F ;
(ii) the population goes extinct.
Hint: write the initial vector as a linear combination of the eigenvectors (N(0) = α1u1 +
α2u2) and use this to investigate the long-term dynamics given by LtN(0).

(c) Are there any initial conditions from which the population of exercise 18 will go
extinct?
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Exercise 20. Biennial plants. As seen in exercise 4a, the population growth of a strictly
biennial plant population is given by the Leslie matrix

L =

[
0 F
P 0

]
(a) Calculate all eigenvalues. Is there a unique dominant eigenvalue? Why does a popu-
lation of biennials not converge to a stable distribution?

(b) Calculate L2, the matrix that projects the current population vector into the vector
two years later. Calculate the eigenvalues and eigenvectors of this matrix and use these
results to interpret the numerical experiment in exercise 12b.

Exercise 21. Large matrices. Sea turtles have size-structured populations with three
stages: juveniles (< 10 cm), sub-adults (between 10 cm and 85 cm) and adults (> 85 cm).
Only adults reproduce, and all offspring enter the smallest (juvenile) stage. The life cycle
graph (simplified from Crouse et al. 19871) is as follows:

Construct the projection matrix and determine its dominant eigenvalue and the corre-
sponding eigenvector (the other eigenvalues/eigenvectors are not necessary).

Hint: plot the determinant of A−λI as a function of λ and get an estimate of λ1 visually
from the graph. You can obtain the eigenvalue more precisely using the bisection method
or using software like MatLab.

Exercise 22. State transitions in continuous time. Let the vector p contain the fractions
of individuals belonging to states 1, ..., n, and let the system of equations

dp

dt
= Mp

give the dynamics of state transitions. We assume that the total number of individuals
is constant, and the elements of p (fractions) sum to 1. A concrete example for a system
like this appeared in exercise 3, where the ”individuals” were membrane channels with
n = 3 different states. Recall that each column of matrix M sums to zero (why?).

1Crouse D. T., L. B. Crowder & H. Caswell. 1987. A stage-based population model for loggerhead
sea turtles and implications for conservation. Ecology 68: 1412-1423.
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(a) Show that λ1 = 0 is an eigenvalue of M and the equilibrium p is the eigenvector
corresponding to λ1 = 0.

(b) Calculate the equilibrium eigenvector for the matrix

M =

 −α β γ
α −β δ
0 0 −(γ + δ)


and explain why p3 is zero in equilibrium.

Exercise 23. Migration into a sink. A metapopulation consists of two local populations.
In the first population, each individual produces F offspring every year and survives with
probability P to the next year (independently of age). The first population is thus an
unstructured local population where every individual replaces herself in the next year on
average with G = F + P > 1 descendants (F offspring plus, in fraction P of the parents,
herself). In the second population there is no reproduction at all and survival occurs with
probability Q < 1. The second population would thus be not viable in itself. However,
every year a fraction µ of the individuals migrates from the first population to the second,
and fraction ν migrates from the second to the first. Migration takes place after repro-
duction and survival (i.e., migration is the last event before census).

(a) Construct the life cycle graph and the corresponding projection matrix.
(b) Determine the largest value of µ such that the metapopulation does not die out. In-
vestigate how this critical value depends on G, Q and ν. Hint: The metapopulation dies
out if it’s dominant eigenvalue is less than 1. A clever solution is to substitute the critical
value λ = 1 already in the characteristic equation and solve for µ.

EXERCISES 24-27: AGE-STRUCTURED POPULATIONS

Exercise 24. The effect of increasing fecundity. Find the stable age structure and the
growth rate of a baseline population with the Leslie matrix

L =

[
1 1

0.75 0

]
Compare the speed of growth and the stable age structure of this baseline population
with a population where the fecundity of each age class is increased twofold:

L =

[
2 2

0.75 0

]
Does the speed of growth also increase twofold? How does the stable age structure change
if fecundity increases or decreases?
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Exercise 25. Timing of reproduction. Compare the speed of growth and the stable age
structure of the baseline population in the previous exercise with a population where
reproduction is delayed by one year. For simplicity, assume that all individuals survive
the first year such that the delay does not imply extra mortality (in reality, of course, it
would):

L =

 0 1 1
1 0 0
0 0.75 0


Hint: Plot the characteristic polynomial and obtain an approximate value of the domi-
nant eigenvalue visually from the graph.

Exercise 26. Stable age structure. Show that in a Leslie model with two age classes, the
proportion of 2-year-old individuals can exceed the proportion of 1-year-olds in the stable
age distribution only if the population is dying out. (This is true also in general: in the
stable age distribution, the fraction of individuals in a higher age class can exceed the
fraction of individuals in a lower age class only if the population is declining.)

Exercise 27. Reproductive value. Suppose that in an age-structured population, the
maximum age is ω but females of age m and older do not reproduce (m is the age of
menopause). Show that the reproductive value of the post-menopausal age groups is
zero. Hint: use the eigenvector equation vTL = λvT . You may want to try first an
example with a small Leslie matrix.

EXERCISE 28: THE PERRON-FROBENIUS THEORY

Exercise 28. Irreducibility and primitivity. Determine whether the projection matrices
of the following examples are irreducible and primitive, and characterize the long-term
behaviour of the models:

(a) the Leslie matrices in exercises 4, 18, 19 and 25;
(b) the spatially structured population in exercise 1;
(c) the projection matrices of allele frequencies under mutation in exercise 14;
(d) the stage-structured population in exercise 2;
(e) the size-structured population in exercise 21;
(f) biennial plants with a seed bank;
(g) age-structured populations with post-reproductive age classes (as in humans).
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SOLUTIONS

1. (a)

[
N1(t+ 1)
N2(t+ 1)

]
=

[
1−m m
m 1−m

] [
N1(t)
N2(t)

]

(b)

[
N1(t+ 1)
N2(t+ 1)

]
=

[
1−m 0
m 1

] [
N1(t)
N2(t)

]

(c)

[
N1(t+ 1)
N2(t+ 1)

]
=

[
1−m sm
sm 1−m

] [
N1(t)
N2(t)

]

(d)

[
N1(t+ 1)
N2(t+ 1)

]
=

[
1−m s2m
s1m 1−m

] [
N1(t)
N2(t)

]

2. (a) A =

[
(1−∆)(1−M) B(1−∆)

(1−∆)M 1−D

]

(b) The same as in (a) but with M = 1.

(c) One needs to distinguish between 1-year old juveniles and 2-year old juveniles:

The projection matrix is A =

 0 0 B(1−∆)
1−∆ 0 0

0 1−∆ 1−D



3. K =

 −ak21 k12 0
ak21 −(k12 + k32) k23

0 k32 −k23


4. (a)

[
0 F
P 0

]
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(b) Because all 3 year-old and older individuals have the same parameters, it suffices
to distinguish three age classes: 1-year-old, 2-year-old and 3-year-old-and-older. The
corresponding projection matrix  F1 F2 F

P1 0 0
0 P2 P


is not a Leslie matrix because the last group is composite.

(c) Even though the probability of survival is P every year, the age classes cannot be
grouped because we need to know exactly who become 7-year-olds:

0 0 0 0 0 0 F
P 0 0 0 0 0 0
0 P 0 0 0 0 0
0 0 P 0 0 0 0
0 0 0 P 0 0 0
0 0 0 0 P 0 0
0 0 0 0 0 P 0



5. (a)


(1− 3

4
m)F1s1

1
4
mF2s2

1
4
mF3s3

1
4
mF4s4

1
4
mF1s1 (1− 3

4
m)F2s2

1
4
mF3s3

1
4
mF4s4

1
4
mF1s1

1
4
mF2s2 (1− 3

4
m)F3s3

1
4
mF4s4

1
4
mF1s1

1
4
mF2s2

1
4
mF3s3 (1− 3

4
m)F4s4



(b)


(1− 3

4
m)F1s1

1
4
mF2s1

1
4
mF3s1

1
4
mF4s1

1
4
mF1s2 (1− 3

4
m)F2s2

1
4
mF3s2

1
4
mF4s2

1
4
mF1s3

1
4
mF2s3 (1− 3

4
m)F3s3

1
4
mF4s3

1
4
mF1s4

1
4
mF2s4

1
4
mF3s4 (1− 3

4
m)F4s4



6.

 0.1 0 20
0.5 0.1 0
0 0.7 0.8


7. At the beginning of March, only two life stages are present: seeds and surviving rosettes
(with stored nutrients in their roots). The projection matrix is therefore a 2× 2 matrix:[

0.45 32
0.05 0

]
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8. (a)

 154 82 95
82 54 49
95 49 77


(b) 174

(c) x1 + x2 + x3

(d)


a11x1 + a12x2
a21x1 + a22x2
a33x3 + a34x4
a43x3 + a44x4



9. (a) ΛA: each element in the ith row of A is multiplied with λi; AΛ: each element in
the ith column of A is multiplied with λi

(b) Λ =

 λ21 0 0
0 λ22 0
0 0 λ23

 (also higher powers are like this)

10. (a)

[
4 −1
0 2

] [
3
5

]
=

[
7
10

]

(b)

[
4 −1
0 2

] [
2
1

]
=

[
7
2

]

(c)

[
4 −1
0 2

] [
3 2
5 1

]
=

[
7 7
10 2

]
(compare with (a) and (b)!)

(d)

 −3 2 −1
6 0 1
0 5 −2

 7 1 3
6 4 −2
−3 −1 1

 =

 −6 6 −14
39 5 19
36 22 −12


(e)
[
−1 1

] [ 2 4
6 8

]
=
[

4 4
]

(f) this multiplication is not possible
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(g)

[
−2 0
1 8

]2
=

[
4 0
6 64

]

(h)

[
1 2
3 4

] [
5 6
7 8

] [
9 10
11 12

]
=

[
413 454
937 1030

]

11. (a) A =

[
2 0
0 2

]

(b) A =

[
1 0
0 0

]

(c) A =

[
1 0
0 −1

]

(d) A =

 −1 0 0
0 2 0
0 0 0



12. (a) The table shows the numbers of 1- and 2-year-olds in the initial year (first column)
and in six subsequent years:

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
0 5 10 26.25 65 162.8125 406.875
1 0 1.25 2.5 6.5625 16.25 40.70313

The graph of total population size shows approximately exponential growth:

whereas the fraction of 1-year-olds stabilizes in time:
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The stabilization of the population structure, i.e., the fractions of individuals that belong
to various classes is the typical behaviour of matrix models, the case of biennial plants in
(b) is exceptional.

(b) The population structure, i.e., the fraction of 1- and 2-year olds, keeps oscillating.
Individuals born in even years and in odd years form two separate populations.

13. (a) N(t− 1) =

 5
31
3

22
3


(b) If F3 = 0, then N(t−1) cannot be determined. This is because all individuals who

were 3 year old in year t−1 are dead by year t, and if they do not leave any offspring, then
they vanish without any trace, i.e., it is impossible to tell how many 3 year old individuals
were present in year t − 1. (A similar situation arises if P1 or P2 is zero, but then the
maximum age is not 3.)

14. (a) p =

 65/142
29/142
48/142

 ≈
 0.458

0.204
0.338


(b) We have that p3 = 2p2 and p1 + p2 + p3 = 1 such that p2 = (1 − p1)/3 and

p3 = 2(1 − p1)/3. p1 is however arbitrary and therefore there are infinitely many solu-
tions. Biologically, the reason for this is that allele A1 is ”isolated” from the other two
alleles so that the other two alleles do not mutate into A1 and A1 does not mutate into
any other allele. Hence the initial value of p1 is preserved, whatever it was, and only the
other two alleles equilibrate.

15. (a) If I choose action 1, then my pay-off is either a11 or a12, depending on whether
my opponent chose action 1 or action 2. The former happens with probability p1 and the
latter happens with probability p2. Hence the expected pay-off to action 1 is a11p1+a12p2.
The first element of x = Ap is x1 = a11p1 + a12p2, which is indeed the expected pay-off
to action 1. The same logic applies to each element of x, also in games with larger matrices.
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(b) In the Hawk-Dove game, x1 = 1
2
(V − C)p1 + V p2 and x2 = 1

2
V p2. If V − C is

positive, then x1 is certainly greater than x2 because the second term of x1 is the double
of x2 and the first term is positive.

(c) We have to solve [
x
x

]
=

[
1
2
(V − C) V

0 1
2
V

] [
p1
p2

]
Writing out the equations, we have

x = 1
2
(V − C)p1 + V p2

x = 1
2
V p2

x is unknown, all what we know is that it is the same in both equations. It is thus best
to eliminate x and write

1
2
(V − C)p1 + V p2 = 1

2
V p2

This is one equation for p1 and p2, but since p1 and p2 must add up to 1, we can write
p2 = 1− p1 to obtain

1
2
(V − C)p1 + V (1− p1) = 1

2
V (1− p1)

which easily solves to p1 = V/C. Note that this is a probability if V < C, as assumed in
this part. The Nash equilibrium is therefore at p1 = V/C and p2 = 1− p1 = 1− V/C.

16. (a) 0.392; (b) 0.7

17. (a) λ1λ2λ3λ4; (b) a11a22a33a44

18. Eigenvalues: λ1 = 2.5 and λ2 = −0.5; eigenvectors u1 =

[
10
1

]
and u2 =

[
−2
1

]
.

(Recall that eigenvectors are determined only up to a constant, so for example u1 could

also be

[
20
2

]
or any other vector where the ratio of the two elements is 10:1.)

The population grows asymptotically (=after a long enough time) λ1 = 2.5-fold each
year and the age structure converges to the first eigenvector u1. It is convenient to scale

the eigenvector such that its elements sum to 1: we then obtain u1 =

[
10/11
1/11

]
, i.e.,

10/11 of the population is of age 1 and the remaining fraction 1/11 is of age 2.
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19. (b) If N(0) is such that in N(0) = α1u1 + α2u2 the coefficient α1 is zero, then the

population grows at the rate λ2 = 0, i.e., it goes extinct. α1 is zero when N(0) =

[
0
u

]
(where u is any positive number). Hence the population goes extinct when the initial
population contains only 2-year-old individuals, who do not reproduce anymore. From
any other initial population vector, the population grows with λ1 = F .

(c) In exercise 18, no initial population can have α1 = 0 because this would mean a
negative number of individuals in one of the age classes. Hence the population eventually
grows with λ1 = 2.5 from any initial condition.

20. (a) The eigenvalues are λ1,2 = ±
√
FP and they are equal in absolute value. This

is why the population does not converge to a stable age distribution: neither term in
N(t) = LtN(0) = α1λ

t
1u1 + α2λ

t
2u2 dominates for large t.

(b) L2 =

[
FP 0
0 FP

]
= FP I. Because any vector is an eigenvector of the identity

matrix I, any vector is an eigenvector also of L2. For any initial vector N(0) hence we have
L2N(0) = FPN(0). Over 2-year intervals, the population preserves its initial structure
(whatever it was) and grows FP -fold.

21. The projection matrix is  0 0 60
0.6 0.7 0
0 0.001 0.8


which yields the characteristic equation −λ3 + 1.5λ2 − 0.56λ+ 0.036 = 0. The dominant
eigenvalue is λ1 = 0.951 (you may get it with various precision depending on the method
used to solve the characteristic equation) and the dominant eigenvector (scaled such that
its elements add up to 1) is

u1 =

 0.2933
0.7020
0.0046


22. (a) Because the columns of M sum to zero, M is singular and its determinant is
|M| = 0. λ = 0 is an eigenvalue because the characteristic equation |M − λI| = 0 is
satisfied for λ = 0: |M− λI| = |M| = 0. The eigenvector corresponding to λ = 0 satisfies
Mp = λp = 0, and this is the vector that makes dp/dt = Mp = 0 (no change in equilib-
rium).

(b) After scaling such that the elements of p sum to 1, p =

 β/(α + β)
α/(α + β)

0

.
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23. (a) A =

[
(1− µ)G νQ
µQ (1− ν)Q

]
(b) The characteristic equation is

λ2 − λ[(1− µ)G+ (1− ν)Q)] + (1− µ− ν)GQ = 0

Substitute λ = 1:

1− [(1− µ)G+ (1− ν)Q)] + (1− µ− ν)GQ = 0

and solve this equation for µ to obtain

µ =
G− 1

G
· 1− (1− ν)Q

1−Q

If µ is greater than the critical value given by this formula, the metapopulation goes
extinct. As expected, the critical value increases with G (a fast-growing population can
tolerate more loss to emigration), increases with Q (emigration to the sink is not so bad
if survival in the sink is high) and increases with ν (emigration to the sink is not so bad
if one has a high chance of getting back).

24. In the baseline population, the annual growth rate is λ = 1.5 and the stable age

distrubution is u =

[
2/3
1/3

]
. In the population with twofold fecundity, λ = 2.581 and

u =

[
0.775
0.225

]
. The speed of growth increased less than twofold because the twofold

increase in the fecundity at age 2 will be realized only by those who live till age 2. The
stable age distribution is skewed towards the young when fecundity increases, and towards
the old when fecundity decreases (cf. the pension crisis of ageing societies).

25. The 3 × 3 Leslie matrix has the dominant eigenvalue λ = 1.263 and the stable age

distribution u =

 0.442
0.350
0.208

. The comparison to the baseline population of the previous

exercise (λ = 1.5) shows that delayed reproduction slows down population growth even if
survival is 100% during the delay. This is because the offspring produced early in life start
start reproducing quickly; early offspring are like invested money that produces interest.
Late offspring are discounted like money received late and missing the gain of interest.
If survival is less than 100% during the delay, then the speed of growth diminishes further.

26. At the stable age distribution, LN = λN and therefore PN1 = λN2. Rearrange this
into N2/N1 = P/λ. N2/N1 is greater than 1 if λ < P . Since P is less than 1, this implies
that λ must be less than 1 and therefore the population is declining.
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27. From the eigenvector equation vTL = λvT , we get Fωv1 = λvω for the last element
vω of the left eigenvector. If Fω is zero (the last age group does not reproduce), then vω
must be zero. The last but one element of the left eigenvector must satisfy the equation
Fω−1v1 +Pω−1vω = λvω−1. If both Fω and Fω−1 are zero, then vω is zero as above, so that
Fω−1v1 + Pω−1vω is zero and therefore vω−1 must also be zero. By repeating the same
argument, one can see that vi is zero for every post-reproductive age i.

28. (a) Exercise 4a: imprimitive, 4b: primitive, 4c: imprimitive; exercise 18: primitive;
exercise 19: reducible; exercise 25: primitive
(b) Exercise 1a: primitive (assuming 0 < m < 1); 1b: reducible; 1c: primitive (assuming
that s is not zero); 1d: primitive (assuming that s1 and s2 are not zero)
(c) Exercise 14a: primitive; 14b: reducible
(d) Exercise 2: primitive
(e) Exercise 21: primitive
(f) biennial plants with a seed bank: primitive
(g) age-structured populations with post-reproductive age classes: reducible
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