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EXERCISES 1-10: CALCULUS OF PROBABILITIES

1. Genetic risks. A couple is facing the risk that their children may suffer from a
genetic disorder, because both the husband and the wife are known to be heterozygote
(Aa) carriers of the harmful recessive allele a (the homozygote aa individuals are
affected by the disorder, all others are healthy). The couple plans to have two
children, and wants to know the prospects for their health: What is the probability that
both children will be healthy?

2. Marriage of relatives. Close relatives are not allowed to marry but if they do, their
children are very often affected by serious genetic problems. This is because most of
us carry 2-3 recessive lethal genes and some more that are not lethal but harmful. In
unrelated people, these harmful recessive alleles are most likely in different loci so
that their children are healthy heterozygotes. Descendants of a single person may
however carry harmful recessives in the same locus; and if they marry, their children
can be recessive homozygotes.

The figure shows a pedigree with marriage between cousins. A and B are the shared
grandparents; C and D are sisters, who marry unrelated persons; E and F are cousins;
and G is their child. a denotes a harmful recessive allele present in A. Calculate the
probability that G inherits a from both parents and is therefore a recessive
homozygote aa exhibiting the symptoms of the disorder caused by a. Next, calculate
the probability that G is not a recessive homozygote for any of the 3 unlinked harmful
alleles that A carried and also not for another 3 unlinked alleles that were present in
B. (In reality we cannot know that A and B carry exactly 3 harmful alleles each, but
this illustrates the probability of having a healthy child in a cousin marriage with
roughly realistic numbers.)




3. Did Mendel cheat? Mendel found that the seven traits of garden pea he studied
were inherited independently, i.e., in modern terms as if all seven traits were on
separate chromosomes. The garden pea happens to have seven chromosomes.
Assuming that the chromosomes are equally long, calculate the probability that seven
randomly picked loci are all on different chromosomes.

Actually, this is not the case. The seven traits are seed shape (smooth/wrinkled); seed colour
(yellow/green); seed coat colour (white/coloured); pod shape (smooth/constricted); pod colour
(yellow/green); flower position (terminal/along stem); plant height (long/short). Of these, seed
colour and seed coat colour are on chromosome 1, pod shape, flower position and plant height
are on chromosome 4, and only the other traits are on separate chromosomes. The loci on the
same chromosome are however far apart, so that they are inherited independently, except pod
shape and plant height. Mendel did not perform all possible dihybrid crosses and so he
happened not to investigate the pod shape - plant height dihybrid cross. (How many pairs of
traits are there to test independent inheritance for?)

4. Population genetics of sex-linked traits. Drosophila males have a single X
chromosome whereas females have two. White eye is a recessive X-linked trait of
Drosophila. Suppose that we cross white-eyed females with wild (red-eyed) males.

Calculate the frequency of genotypes and the frequency of the white allele (p) in the
females and in the males of the next generation. Next, suppose that we let the females
and males born from the previous cross mate randomly among themselves. Plot the
frequency of the white allele in females and in males for several generations, and
calculate the equilibrium frequency of phenotypes.

5. Test of independence. An ecologist collects presence-absence data of two different
species of plants in sample quadrats, and wants to know whether the plants occur
independently. The data are

(a) Both plants: 25% of quadrats, plant A only: 25%, plant B only: 5%
(b) Both plants: 15% of quadrats, plant A only: 35%, plant B only: 15%

6. Total probability. About 33% of African American people develop high blood
pressure during their lives, whereas in people of Caucasian origin, this occurs only
with probability 25%. In a town where 40% of people are African Americans and the
rest are Caucasians, what percentage of people will need care for high blood pressure?

7. Blood transfusion. Current medical protocols of blood transfusion require matching
blood types of the ABO, Rh+/-, and also other minor blood groups, but before blood
groups were discovered, transfusion was risky due to the blood group
incompatibilities: If the donor has an antigen (A or B in the ABO system) that the
recipient does not have, then the recipient's body produces an immune reaction that is
easily fatal. In the ABO system, people with blood group 0 or A do not have antigen B
and therefore may not receive B or AB blood; similarly people with blood group 0 or
B may not receive A or AB blood. Blood of type 0 can be given to anyone and people
of blood group AB may receive any blood.



In Finland, the frequencies of blood groups are

A 44.2%
B 16.6%
AB 8.1%
0 31.2%

Calculate what would be the probability that a blood transfusion is fatal if the ABO
blood groups were not known.

8. If a rare mutation is present with frequency q in a large population, how many
individuals does one need to sample in order to be 99% sure that the sample contains
at least one mutant for investigation?

9. Eigen's paradox. In prebiotic conditions, where polynucleotides replicated without
enzymes, the probability of mutation per nucleotide could not be less than 102. A
sequence must produce at least one mutation-free copy out of ca 5 copies if it is to be
maintained. What is the maximum length of a sequence (primitive "genome") that can
be copied faithfully enough?

The answer is a number much less than the length of the smallest genome.
This is known as Eigen's paradox: The primitive genome is not long enough
to code for an enzymatic replication system, but without enzymatic
replication, the genome cannot be longer!

10. The Luria-Delbrtick fluctuation test. This test is a simple method to estimate
mutation rates in bacteria. Suppose we want to measure the rate of mutation that gives
resistance against some toxic material. First, we inoculate 20 test tubes with a small
number of non-resistant (wild type) bacteria, and grow the cultures in normal medium
to 108 cells/ml. Then we take a 0.1 ml sample of each of the 20 cultures. The samples
are spread on plates that contain the toxic substance, hence only resistant bacteria can
grow. Out of the 20 samples, we find that 11 samples did not contain any mutant (no
resistant bacteria found). Calculate the mutation rate.

Hints: figure out the number of bacteria in the sample. Because each tube started with
a small number of bacteria but ended with a large number of them, almost every
bacterium in the sample is the product of a cell division: hence the number of
divisions is approximately the same as the number of cells. If 4 is the probability of
mutation in one division, you can calculate the probability that no mutation has
occurred in any of the divisions leading to the cells in the sample; and this must match
the fraction of samples found to be mutation-free.



EXERCISES 11-13: BAYES' THEOREM

11. Rare disease screening. A medical test picks out a disease in 100% of the cases
when it really occurs, but also produces positive results in 5% of healthy people (false
positives). The disease is known to affect 0.1% of the population. Your test comes
back positive. What is the probability that you really have the disease?

12. Prior vs posterior probabilities. The frequency of identical (monozygotic) twin
births among all human births is about 0.3% and is fairly constant over time and
across populations. The frequency of fraternal (dizygotic) twins was about 1.7% a
generation ago in the US.

(a) Calculate the prior probability that a pair of twins is monozygotic and the posterior
probability that they are monozygotic if we know that they are of the same sex.

(b) The frequency of fraternal twins is increasing (the present value in the US is
around 3%). How does this modify the prior probability of twins being identical?
How does the posterior probability change if the prior decreases?

13. Bayesian statistics. In this problem, we consider a simple coin-tossing experiment
for clarity. However, the same kind of statistics is now used widely from
phylogenetics to artificial intelligence. In principle, it can be used any time when we
want to estimate parameters from experimental data.

Let g be the probability that when tossing a coin, we get a tail, and let 1-q be the
remaining probability of getting a head. The coin may be fair (which gives tails and
heads equally often, i.e., g=0.5) but may also be loaded either in favour of tails
(g>0.5) or in favour of heads (q<0.5). We want to estimate parameter q of a given
coin. To this end, we toss our coin 6 times. Suppose that we get 6 tails in a row. The
traditional estimate would then be q=6/6=1, predicting that this coin will always give
a tail. But we are not happy with this point estimate, because we had a pretty strong
belief that our coin is fair (q=0.5). The Bayesian way of formalizing our prior "belief"
is to specify a prior probability of the coin being fair and also the probability of
deviating from fairness to different degrees.

For simplicity, here we assume that there are only three types of possible coins:
fair coins (g=0.5)
tail coins (g=1), and
head coins (g=0)

[This simplifying assumption is of course unrealistic for the coin experiment; we can
relax this assumption later.]



(@) Our confidence in having a fair coin is formalized in the prior probabilities

P(fair coin) = 0.98
P(tail coin) =0.01
P(head coin) = 0.01

Calculate the posterior probability of having a fair coin given that we have tossed 6
tails out of 6 trials. Calculate the posterior probabilities of head and tail coins, too.

(b) Repeat (a) with the uniform distribution as prior,

P(fair coin) = 1/3
P(tail coin) =1/3
P(head coin) = 1/3

Observe how the posterior probabilities change due to changing the prior when you
go from the uniform prior to the prior in (a).

The uniform prior is often called the "uninformative prior", which does not
"bias" the resulting posterior probabilities, and is often used for this reason.
This view is however questionable; knowing that all coin types are equally
likely is information just as knowing it otherwise. Typical coins in our purses
are much closer to fair than to "tail" or to "head", so in this particular example,
the "uninformative™ prior is not a very sensible choice. Sometimes the prior is
evident from the context (for example, if the prior has to specify the
probability that a randomly chosen person is male or female, then 50-50% will
be taken as prior) whereas at other times the prior is fully ad hoc - but it does
matter.

(c) What happens to the posterior probabilities if we exclude a possibility in the prior,
e.g. we assume P(tail coin)=0? What happens if we have unshakeable faith in the coin
being fair, i.e., we use the prior P(fair coin) = 1?

EXERCISES 14-21: BINOMIAL AND POISSON DISTRIBUTIONS

14. Cohort survival. n = 5 birds are born in the same year. Each bird survives one year
with probability 0.7, and they are independent of one another.

(a) Plot the distribution (P(k) against k) of the number of birds alive after 1 year; 3
years; and 10 years.

(b) How long do we have to wait to be 95% sure that none of the birds is alive?
Hint: use Excel or similar software for the calculations in (a). In Excel, the

factorial n! is computed by FACT(n). If working with a calculator, compute
P(k) after 1 year and outline how the rest could be done.



15. Offspring number of highly fecund organisms. A tree may produce tens to
hundreds of thousands of seeds during its life, but in an expanding (!) population, on
average only 1.1 of its seeds survives to become an established mature tree. The
probability of survival is therefore very small, and the number of surviving seeds per
tree follows a Poisson distribution with expectation 4 =1.1.

Calculate the probabilities that a tree has 0, 1, 2, 3, ..., k surviving seeds. Plot the data
as a histogram. Take k high enough such that the probability of having more than k
seeds is less than 1%.

16. Compare the binomial and Poisson distributions. Use Excel or similar software to
make a histogram of the binomial probabilities (i.e., plot P(k) against k) using the
parameters n = 10 and p = 0.25. Then increase n and decrease p such that you keep
the expectation A =np = 2.5 constant. Prepare a series of histograms of the binomial

distribution with increasing n, and compare them to the histogram of the Poisson
distribution with parameter A =2.5.

17. Stochastic behaviour of membrane channels. A membrane channel, when open,
goes closed at a rate o, and when closed, it goes open at a rate . Consider first a

very large number N of channels. Let x(t) be the probability that a channel is open at
time t, such that the number of open channels is Nx(t).

(a) Verify that the number of open channels changes according to the differential
equation

%: —oxN + f(1-x)N

and since N is a constant, the probability of being open changes according to
dx
—=—oXx+ pL-x
pra BA-X)

Find the equilibrium probability of the channel being open (this is the equilibrium
fraction of open channels), and evaluate it assuming g = 2a (opening is twice as fast

as closing).

(b) Suppose a cell has only n = 18 channels. Calculate the probability that at
equilibrium, k = 12 of these are open.

18. Genetic mapping. To establish the distance between two genes on a chromosome,

one performs a testcross of double heterozygote and recessive homozygote parents:

AB_ ab
ab ab



The offspring obtained from this cross are partly non-recombinant (having either both
dominant alleles A and B or neither dominant allele) or recombinant (having only A or
only B). Recombinant offspring are produced when there is a crossover between the
loci during the meiosis of the double heterozygote parent.

Crossover can occur at any base pair, and therefore the potential number of crossovers
is very large. However, the probability of a crossover at any given base pair is small,
so that the actual number of crossovers is only a few, and the number of crossovers
follows a Poisson distribution. The expectation of the Poisson distribution, A, is
proportional to the physical distance between the two loci.

If the double heterozygote parent had no crossover at all between loci A and B, all

offspring will be non-recombinant. Somewhat surprisingly, any nonzero number of

crossovers results in 50% recombinant offspring (see
http://www.ncbi.nlm.nih.gov/books/NBK21819/figure/A1116/

for a figure demonstrating this fact).

(a) Derive the fraction of recombinant offspring, RF = # of recombinant offspring / #
of all offspring x 100%, and plot it as a function of the physical distance measured by
A.

(b) Traditionally, a map unit is defined such that 1 map unit corresponds to 1%
recombinant offspring. Argue that this definition cannot be extended to large map
distances associated with high percentages of recombinant offspring; in other words,
finding 30% recombinant offspring does not imply that the two loci are 30 times
farther apart than two loci that exhibit 1% recombinant offspring.

(c) Based on (a), calculate A from the measured fraction of recombinant offspring,
RF. Show that a distance of (1/2)-100 map units is consistent with the traditional

definition for small distances.

(A/2)-100 is called the distance in corrected map units. Calculating A from
RF and using the formula (4/2)-100 yields the true map distance also for

large distances, and eliminates the problem that several crossovers can happen
between genes far apart yet these do not increase the fraction of recombinant
offspring compared to a single crossover (cf the result in (a)).

For part (c), use the approximation e ~1—x or In(1-x) ~ —x, which holds

as long as x is small; you can prove this approximation by simple
differentiation. Alternatively, you can demonstrate (c) just with numerical
examples: show that (1/2)-100 gives roughly the % value of RF if RF was

low, but not if RF was high.

19. Generalizing the Skellam model to perennial plants. In the lecture, we constructed
the model

X, =1—exp(-ax,) (1)



for the fraction of living sites x occupied by an annual plant species with per capita
seed number o .

(a) Construct an analogous model for a perennial species, which matures at age 1 and
survives each subsequent year with probability p (the model above is the special case
p = 0). Adult plants are competitively superior to seedlings, i.e., a seed cannot survive
in a site occupied by a surviving plant.

(b) Find the equilibrium fraction of occupied sites and using Excel, plot it as a
function of fecundity (o ) for several different values of p.

Hint: it is not possible to solve the equilibrium equation explicitly. Instead,
solve the equation for o and plot o as a function of the equilibrium fraction
of occupied sites; and then swap the axes to plot the equilibrium fraction of
occupied sites as a fraction of « .

20. Coexistence by the competition-colonisation trade-off. Generalise the Skellam
model in equation (1) above to the case of two species. Both species are annual.
Species 1 with fecundity « is competitively superior to species 2 with fecundity S,

I.e., if a site contains seed(s) of both species, it will be occupied by species 1.

(a) Construct the model equations for the fraction of sites occupied by the superior
and by the inferior species ( X;,1 and y,,;), respectively.

(b) As in the original Skellam model, the superior species has a positive equilibrium
and therefore is said to be viable if « >1. Find the condition for the inferior species to
be viable in the presence of the superior species, i.e., find the parameter region («, )

where the two species coexist.

21. The Nicholson-Bailey model of host-parasitoid systems. For a parasitoid, a host
individual is analogous to a living site for a seed in the Skellam model. Assume that
each parasitised host can support the development of B parasitoid larvae, and
parasitoid mothers deposit at least B eggs such that each attacked host will indeed
release B parasitoids. Parasitised hosts die without reproduction, whereas non-
parasitised hosts produce F offspring each. Both hosts and parasitoids are annual.

(a) Calculate the probability that a host individual avoids attack assuming that both
the number of hosts (H, ) and the number of parasitoids ( P,) are large, and are of the

same order of magnitude (i.e., the ratio of H, and P, is neither very large nor very
small).

(b) Construct the model of population dynamics, i.e., write down the equations for
H,.,and P, intermsof H, and P,.

No one has been able prove what is the long-term behaviour of this model: it
has an equilibrium which is always unstable, and periodic (or quasi-periodic)



solutions are not known. You may want to investigate the model numerically,
by iterating the host and parasitoid densities from year to year and plotting P,

against H, .

EXERCISES 22-25: MEAN AND VARIANCE

22. n is the average of 10 random numbers that we generate by casting a die. What is
the expectation and the variance of n ?

23. Let 1 and #2 denote the body weight we measure on a randomly chosen pair of
identical twins. The body weight is the sum of a baseline weight, the effects of genes,
and the effect of the environment. Identical twins have the same genes but have
(partly) different environmental effects. Their phenotypes are therefore given by

m=c+<&+ég

ny,=C+&+¢y

where c is the constant baseline weight, £ is the genetic value (same for both) and &1,
&2 are the environmental deviations. &, 1, and &2 are independent, &1 and &2 are
identically distributed, and the mean of ¢1 and &2 have been scaled to zero (see
lecture).

(a) Calculate the covariance and the correlation coefficient between 71 and #2.

(b) The quotient V(&) /V (n) is called the (broad-sense) heritability, which tells what
fraction of the observable phenotypic variance (V (1)) is due to genetic effects. Based

on (a), suggest a practical way to measure the heritability of body weight; and
comment on whether this measurement is correct for the entire (non-twin) population.

24. Variance vs the "accuracy" of measurement. Suppose we would like to measure
the frequency p of a certain trait (genotype, disorder, etc.) in a population. To this end,
we take a sample of n individuals and count the number ¢ of those in the sample who
have the trait.

(a) Describe the conditions under which & is a binomially distributed random variable.

(b) One has the intuitive feeling that with larger sample size n, variation should
somehow dampen and our measurement should become more accurate. Does the
variance of &£ become smaller as n increases? Or the standard deviation,

D() = W (&) ? Or the coefficient of variation, ¢ = D(&)/E(&) ? Or the variance of
the estimated frequency, V(£/n)?

25. Chemical reactions: how many molecules are "infinitely many"? Suppose that
there are N enzyme molecules and a large number M inhibitor molecules present in a
well-mixed system. The corresponding concentrations are x for the free enzyme, y for
the enzyme-inhibitor complex and z for the free inhibitor. The enzyme binds the
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inhibitor at rate o and the inhibitor dissociates from the enzyme-inhibitor complex at
rate f3.

If N is sufficiently large, we can model this system with the differential equations

dx

— = —ozx +
!
dy

— = gZX —
at "

We assume throughout that z is constant; if M is very much larger than N, then the
change in the number of free inhibitor molecules is negligible even if all N enzyme
molecules happen to bind an inhibitor.

Consider now the (realistic) case that N is not very large, and denote the number of
free enzyme molecules (a random variable) with & . The number of enzyme-inhibitor

complexes isthen N —¢& .

(@) Show that & is binomially distributed and calculate its mean and variance in
equilibrium.

(b) Say that the variation in & and in N —¢ is negligible and the deterministic ODE
model is applicable if the coefficient of variation of both £ and of N —¢& are less than
0.01. How large should N be to achieve this? (Recall that the coefficient of variation

is c(&) =V (€)/E©).)

EXERCISE 26: EXPONENTIAL DISTRIBUTION

26*. How do stupid animals forage optimally? (Based on Adler & Kotar (1999),
Evolutionary Ecology Research 1:411-421.)

Assume that an animal arrives in a fresh patch of resource at time t=0, and the
function g(t) =1-e”" gives the amount of resource it has consumed by time t (the
total resource content of a patch is scaled to 1). The animal leaves the patch at a
constant rate « , such that the time spent in the patch t is exponentially distributed
with probability density function f(t) = ae . (It is of course stupid to leave the
patch too early when it still has a lot to consume; it is also stupid to stay too long
when the patch is depleted. But a simple organism may be unable to judge time or
resource level, and may leave at a constant rate.)

(a) Calculate the expected amount of resource eaten before leaving. (This is given by
an integral that you can calculate explicitly.)

(b) Denote the expected amount of resources eaten (calculated above) by A. The long-

term energy intake over many rounds of foraging in a patch and travelling to a new
patch is A/ (S + T), where S is the expected time spent in the patch and T is the

11



expected travel time to a new patch. S depends on the leaving rate « ; as we discussed
in Part 1 of the course, S =1/« . T is independent of what the animal does within the
patch and we assume it to be known.

Find the optimal value of «, i.e., the value for which A/ (S + T) is the greatest.

EXERCISES 27-31: NORMAL DISTRIBUTION

27. To be a pilot-astronaut, NASA requires that the candidate's height is between 163
cmand 193 cm. The height of people is normally distributed, the mean height of men
in the US is 175 cm with variance 35 cm?. What is the probability that a randomly
chosen male US citizen meets NASA's height requirement?

28. A random variable & follows the standard normal distribution N(0,1). Find the
number u such that & falls between -u and u with probability 95%.

29. Truncation selection in animal breeding. The distribution of body weight is
normal. An animal breeder wants to select the heaviest animals for reproduction in a
population where the mean weight is 10 units and the variance is 5 unit?. This is
commonly done by truncation selection: All animals above a threshold T of weight
are bred, whereas those below T are not allowed to reproduce (see figure). The
breeder, however, must reproduce a certain fraction of the population in order to
maintain the number of animals. This fraction depends on fecundity (if one animal has
a lot of offspring, then a few parents are enough to produce the next generation;
otherwise more parents are needed to produce as many offspring as many animals the
breeder had in the initial population).

fraction
reproduced

probability density

T trait

Calculate T if the breeder has to select for reproduction

(a) 5% of the animals
(b) 60% of the animals

30. Confidence interval of an average. We measure a certain random variable & ina
sample and calculate the sample average & . Clearly, if we calculated the average in
another sample, we would obtain a somewhat different result for & , i.e., & itselfis a

random variable. The question is, how reliable the sample average & is as an estimate
of the true mean.

12



Denote the true mean with x and the variance of & with V (here we assume that V is

known). Let n denote the number of individuals in the sample. We assume that the
sample is relatively large (n is not too small).

S—Hu
WV /n

(a) Show that the transformed random variable follows the standard normal

distribution N(0,1).

(b) Find the number u such that P(—u <z <u)=0.95 (use the result of exercise 26
above).

(c) Find numbers c1 and ¢z such that P(c, < u <c,)=0.95, if the sample average is
& =164, the known variance of £ is V =62 and the size of the sample is n=30.
The interval [c,,c,] is said to be the confidence interval for the unknown true mean
4, with confidence level 95%.

There are two important points to mention here. First, can we say that "with
95% probability, the true mean is in the confidence interval™? It is a fact

whether 4 is in the calculated interval [c,,c,] or not; only we do not know

this fact. Strictly speaking, what we can say is this: if we repeated sampling
and calculated [c,,c,] from each sample, then 95% of these intervals will

contain the true mean. This is illustrated with the figure below (from
Wikipedia). Each sampling yields a confidence interval (vertical lines), which
depend on the sample average and are thus generally different. Most of them
cover the true mean, but an expected 5% does not.

-t

Second, in this example we assumed that the variance V is known, whereas in
practice, we must estimate V also from the sample we have. The estimated
variance is however a random variable, not a constant (just the same way as
the sample average is a random variable). If we substitute the estimated

S—Hu
AVin
contains division by a random variable) but follows the so-called Student's t-
distribution when ¢ is normally distributed. The t-distribution is however very
similar to the normal distribution if the sample size n is sufficiently large. For
small samples, the calculation of the confidence interval goes similarly to this
exercise but one has to use tables of the t-distribution (in part (b)) rather than
the standard normal distribution.

variance for V in , then it is not normally distributed (because it

13



31. Hypothesis testing. Suppose that in a large and well-known population, a normally
distributed quantitative trait has mean m = 143 and variance V = 441. One culture
derived from this population, however, appears to be different, because its average

trait value is only & =134. This deviating average was calculated from measuring 25
individuals. Could the difference between the sample average & and the known

population mean m be due to statistical fluctuations, or is there reason to suspect that
something unusual happened to this culture?

Start with the null hypothesis that the 25 individuals represent a random sample from
the population, and calculate the probability that the average trait value & of 25

randomly selected individuals differs from m by ‘5 - m‘ =143-134=9 or more. If

this probability is small (e.g. less than 5%), then we reject the null hypothesis and say
that the difference between the measured average of the 25 individuals and the known
mean trait value of the population is statistically significant, so that the culture is
(probably) not just a random sample from the population.

(@) Argue that & is a normally distributed random variable. (Recall that the average is
calculated as the sum of trait values divided with n = 25.)

(b) Determine the mean and the variance of & under the null hypothesis that the 25
individuals are a random sample from the large population.

(¢) Calculate the probability P(& —m|)=9) = P(E <134) + P(€ >152) under the nul
hypothesis and decide if we should reject the null hypothesis.

14



SOLUTIONS

1. The probability that a child is aa and therefore has the disorder is 1/4. One child is
healthy with probability 1-1/4 = 3/4; the two children are independent and therefore
both are healthy with probability 3/4 x 3/4 = 9/16.

2. ais inherited from A to C with probability 1/2; if so, then it is inherited from C to E
with probability 1/2; and if so, then G inherits it from E with probability 1/2. The
probability that the paternally derived allele of G is a is therefore 1/8. The maternally
derived allele of G is a also with probability 1/8, and the maternal line is independent
of the paternal line. G is thus aa with probability 1/64, and healthy, concerning only
the harmful allele a, with probability 63/64. The same calculation applies to any of the
6 harmful alleles in A and B, and the unlinked alleles are inherited independently. G
is not a homozygote for any of the 6 harmful recessives with probability (63/64)° or
90.98%. Cousins are the closest relatives allowed to marry in most Western societies,
but even these marriages carry a fairly high risk of conceiving a disordered child.

3. To have 7 loci on 7 different chromosomes, the first of the 7 loci can be on any
chromosome; the next locus can be on any of the remaining 6 chromosomes, which
has probability 6/7; the next locus can be on 5 chromosomes, which has probability
5/7; etc. The probability of having all 7 loci on different chromosomes is therefore

which is a very small probability. This simple argument started the rumour that
Mendel might have cheated. More detailed analysis (taking into account that the
chromosomes are not equally long, that loci on the same chromosome but far apart are
inherited ca independently; and that Mendel did not perform every single cross) has
however showed that the real probability of getting Mendel's data is not this low, and
there is no ground of accusing Mendel of cheating.

4. Let pr and pm denote the frequency of the recessive "white" allele w in females and
in males, respectively; at the beginning, pr = 1 and pm = 0. In the next generation,
p,, = P; because males inherit all their X chromosomes from females; and

+
p; = Pr 2 P because females inherit half their X chromosomes from females and

half from males. The allele frequencies oscillate as shown below.

15



—=—female

—=— male

The overall frequency of allele w is % P, +% p,, , because 2/3 of the X chromosomes

are in females and 1/3 are in males. It is easy to see that % P’ +% P, :g P, +% Py

I.e., this quantity remains the same in each generation and so remains the same as it

was in the beginning, %-1+%-0=§. In equilibrium, p; = p, (frequencies do not

change) and therefore p,, = p; , i.e., females and males will have the same allele

. .2
frequency. Because we still have that the overall allele frequency is 3’ both female

and male allele frequencies must converge to this value. In equilibrium, therefore, the
phenotypic frequencies are

white males: 2/3 of males
red males: 1/3 of males

white females: of females

2
3

wlnN
|~

red females (all non-white): 5/9 of females

5. (a) The frequency of quadrats where plant A is present (either with B or alone) is
P(A)=0.25+0.25=0.5; similarly, P(B)=0.25+0.05=0.3. If the two plants are present or
absent independently of each other, then P(A and B) should equal P(A) times P(B).
But this is not the case: the product of P(A) and P(B) is 0.15, whereas P(A and
B)=0.25. Therefore, the plants occur together more often than they would if their
spatial distribution is independent. (They might need the same type of environmental
conditions, e.g. may both occur in wet sites; or may depend on each other as
mutualists.)
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(b) The same calculation shows that with these numbers, the plants occur
independently of each other.

6. Denote the event of having high blood pressure with HB; African American with A
and Caucasian with C. Then the data are

P(HB|A) =033
P(HB|C)=0.25
P(A)=04, P(C)=06

The total probability of HB is P(HB‘A)P(A) + P(HB|C)P(C) =0.282.

7. If the recipient is of blood group A, than it receives the wrong blood with
probability P(B)+P(AB)=0.247. By the analogous calculation for each blood group,
we obtain the conditional probabilities

P(fatal|A) = P(B) + P(AB) = 0.247

P(fatal|B) = P(A) + P(AB) = 0.523

P(fatal|AB) =0

P(fatal/0) = P(A) + P(B) + P(AB) =1-P(0) = 0.688

The total probability of a fatal transfusion is
P( fatal) = P( fatal| A)P(A) + P( fatal|B)P(B) + P( fatal|[AB)P(AB) + P( fatal/0)P(0),

which yields P(fatal) = 0.4106.

8. In0.01/Inl-q) ~4.6/q

9. 160

10. u=5.9810"°

11. The probability of disease after the positive test is only 1.96%.

12. (@) prior probability: 0.15; posterior probability: 0.2609
(b) the posterior probability decreases when the prior decreases

17



13. (@)

(b)

(©)

14.

15.

P(q=0.5| data) = 0.60494
P(q=0| data)=0
P(q=1 data)=0.39506

P(q=0.5| data) =0.015385
P(q=0| data)=0
P(q=1| data)=0.984615

If we exclude a possibility in the prior, the corresponding posterior probability

will be zero. (For example, if we use P(tail coin)=0 then P(q=1| data)=0

even if there are many tails in the data.)

If we assume P(fair coin)=1 and hence P(tail coin)=P(head coin)=0, then all
posterior probabilities other than the fair coin's probability will be zero.

€Y
# alive t=1 t=3 t=10
0 0.00243 0.12241 0.86652
1 0.02835 0.31954 0.12594
2 0.1323 0.33365 0.00732
3 0.3087 0.17419 0.00021
4 0.36015 0.04547 3.09-10°
5 0.16807 0.00475 1.8-10°®

(b) 13 years

0.4 4
0.35 A
0.3 4
0.25 A
0.2 4
0.15 ~
0.1+
0.05 +

0.366158192
0.332871084

0.201387006
0.073841902
. 0.020306523
0 1 3

2 4
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16.

17.

The black columns of the following three charts show the histogram of the
binomial distribution for n = 10, 20 and 150, and p such that np = 2.5. The
white columns are the histogram of the Poisson distribution for A = 2.5
for comparison. For large n, the two distributions are very similar.

03
0.25
0.2 B Binomial
0.15 n=10
0.1 N [0 Poisson
1 |
0 [
01 2 3 45 6 7 8 9 10
03
0.25
0 W Binomial
0.15 n=20
0.1 H [ Poisson
< I
0 M- -
0 1 2 3 4 5 6 7 8 9 10
0.3
0.25 7
02 W Binomial
0.15 n=150
0.1 ‘H O Poisson
0.05 ” I{
o N . - _ _
o 1 2 3 4 5 6 7 8 9 10
20

= 3 Notice that the

(@) X:L;With S =2a , this yields X =
a+p a+2a

equilibrium does not depend on the absolute speed of opening and closing
(i.e., on the values of B and « ), only on their ratio. When opening is twice
as fast as closing, the number of open channels is twice as high as the number
of closed channels (2/3 vs 1/3) so that the number of all closing events is the
same as the number of all opening events ((2/3)a = (1/3)).

(b) The channels are independent of each other and each channel is open with
probability X =2/3. The number of open channels is therefore binomially
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18 12 6
distributed. P(k =12) =( J(EJ [EJ =0.19627
12\ 3) (3

18. (@ RF=1(1-e™)

0.5 1
0.4 A1
0.3 1
0.2 A1

0.1 A

(¢) A=—In(1-2RF) and therefore RF ~ (1/2)-100% as long as RF is
small. Hence for short distances, (1/2)-100 gives the distance in traditional
map units.

19. (@) Xu1 = PX + Q= px )(L—exp(—ax,)) .

(b) At equilibrium, o = —iln( - XAJ
X (1-px

The chart below shows X as a function of « for p=10.8, 0.5, 0.2, 0 (from left
to right). The rightmost curve (p = 0) corresponds to the original Skellam
model for annual plants. The positive equilibrium exists when the population
is viable, i.e., for annual plants, when o >1.

20. @)
X =1-exp(—ax,)

Ve = exp(—ax,)(L—exp(-By,))

(b) The equilibrium equations

20



X =1—exp(—ax)
y = exp(—ax)(L—exp(-By))

cannot be solved for x and y directly. Solving for the parameters («, ) yields

_In(1-Xx)
- X

_ Yoy
P= yln[l 1—xj

One can vary x and y between 0 and 1 and calculate the corresponding range
of (a, ) numerically.

1-x 1-x

In particular, ify is close to zero, then In(l— 1 y J ~-—Y_ and b= 1 SO

1 . . . . .
that g > T x is necessary for the inferior species to be viable. Vary x
- X

between 0 and 1 and calculate the corresponding pairs of parameter values
a=-In(1-x)/x and S =1/(1-x). Plot the resulting f's against the a 's to

arrive at the curve in the figure below.

beta
(6)]

alpha

a <1 implies that the superior species is not viable, and therefore the inferior
species is viable if and only if g >1. When « >1, the superior species is
present and the inferior species is viable when it's fecundity is sufficiently
large to compensate for the loss of seeds to unsuccessful competition with the
superior species; i.e., the inferior species is present and the two species coexist
when a >1 and g is above the curve.
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21.

22,

23.

24,

25.

(a) The expected number of attacks on a given host is proportional to the
parasitoid density, i.e., A = aP,. The number of attacks is Poisson distributed,

and therefore the probability of avoiding attack is e *%.

(b)
H.., =H, exp(-aP)F

P.. =H,(1-exp(-aP,))B

E(n) =35, V() = 0.29167

Vie)

(@ COV (n,mp)=V(E), 1 =V(77)

(b) The correlation coefficient can be measured from the twin data. From (a),
this equals the heritability.

A problem with this measurement is that twins share more than their genes;
part of the environmental effects (important childhood effects, for example)
are also the same, which means that we underestimate the variance of
environmental effects. This can be corrected if we consider also fraternal
twins, who share the environment ca to the same extent as identical twins but
share less of their genes.

(b) As n increases,

V(&) =np(l- p) increases

D(&) =4/np(@— p) increases
c=D(&)/E(&) = /1—_p decreases (c is a measure of variability
np

relative to "typical™ values, such as the mean; with increasing
n, variation indeed decreases on the scale of typical values)

V(E/n)=(1/n)*V (&) = p(L— p)/n decreases (with large n, we are
getting the frequency more precisely)

(@) In equilibrium, By = azx and therefore the fraction of free enzymes is

X X B
X+y X+(az/p)x Pp+oz
each other (as long as the number of inhibitor molecules is much higher than
the number of enzyme molecules). Therefore & is binomial with parameters N

B

p+oz

. The enzyme molecules are independent of

and p=

(note that z is considered constant).
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26.

27.

28.

29.

E@)=Np=N—L E(N-&)=N@-p)=N_-*
p+az p+oz
Poz

V() =VIN-8)=Np(-p) =N 7%

10000az

(b) N should be at least to have the coefficient of variation of & to

1000073
(074

be at most 0.01; and N should be at least to have the same for N -¢&.

Hence N >10000 max a—z,ﬁ )
B oz

(a) A=Tg(t)f(t)dt __B_

a+p
(b) a:\/g

Let 1 denote the transformed random variable n = 5\73%75 . n follows the

standard normal distribution, so that we can use the table of the standard
normal distribution to obtain the probability that 7 is less than a given value.

193-175
P( <193):P( <—J=P( <3.04) = 0.9988
¢ LN n

P(¢ <163) = P(n < 163%} =P(n <-2.03)

P(n <—2.03) is not listed in the table. Because the normal distribution is
symmetric, P(n <-z)=P(n >1z)=1-P(n < z). Look up

P(n < 2.03) =0.9788 from the table, and obtain P(n <-2.03) as

P(n <-2.03) =1-0.9788 = 0.0212

P(163 < & <193) = P(¢ <193) — P(& <163) = 0.9988 — 0.0212 = 0.9776

1.96

(a) T=13.6895, (b) T=9.4186 (your result may be somewhat different due to
different precision of the calculation)

23



30.

31.

(c) ¢, =& -1.96\V /n =161.18, ¢, =& +1.96\V /n =166.82

(@) The sum of 25 independent, identically distributed random variables is
approximately normal.

(b) E(£) =m=143;

V(5)=V(mj=%-n-v(§)=m=ﬂ=17.64
n n n 25

(c) If & is indeed normally distributed with mean 143 and variance 17.64, then

S

_s 143 follows the standard normal distribution.

V17.64
134 —143}

P(& <134)=P|n < —F———
¢ (77 V17.64
P(¢ <134) + P(¢ >152) = 2-0.0162 = 0.0324 , and because this is less than
5%, we reject the null hypothesis.

= P( <-2.14)=1-P(y < 2.14) = 0.0162
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