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The Evolution of Virulence  II

A population of hosts grows, in absence of the disease, according to the simple ODE

( )dN b N d N
dt

where N is population density, ( )b N  is the density-dependent birth rate, and d is the
death rate. We consider a disease that causes lifelong infection (no recovery). Infected
individuals die at a rate d , where , the extra mortality caused by the disease, is
called the virulence. All individuals are born free of the disease. The disease is
transmitted between infected and susceptible individuals at rate , such that the
dynamics of susceptible (S) and infected (I) individuals are given by

( )

( )

dS b N N SI dS
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dI SI d I
dt

with N S I .

The disease increases the rate of mortality because the pathogen is using resources to
multiply in the body of the host and because it produces symptoms (such as coughing,
bleeding, etc.) which enhance its transmission to other host individuals. Faster
replication in the body and more symptoms ensure a higher transmission rate but
cause higher mortality as well. We thus assume that  is an increasing function of
virulence. Note however that  cannot exceed the contact rate between individuals,
hence the function ( )  will saturate for large values of . Different strains of the
pathogen differ in their virulence, , and in the associated transmission rate, ( ) .
We say that a strain is viable if it can spread in a disease-free population.

In this project, we study the consequences of superinfection. When superinfection
occurs, a second strain of the pathogen infects an already infected host. Because more
virulent strains replicate better in the body, it is expected that more virulent strains
generally replace the less virulent strain within the host. We assume that the within-
host dynamics is fast such that this replacement can be considered instantaneous.
Upon superinfection, strain 2  takes over a host infected by strain 1  with probability

2 1( ) , where  is an increasing function of its argument.



There are very interesting results on different evolutionary scenarios depending on whether
is continuous or not and whether it is continuously differentiable or not. For example, a
discontinuous function results if we take the within-host dynamics to be fully deterministic,
such that even a slightly more virulent strain always wins.  In this project however we make
the mathematically most straightforward assumption that  is analytic. With this assumption,
less virulent strains may win against more virulent ones with some small probability (
cannot be identically zero for negative arguments). This may be justified by stochastic effects
within the host body.

With n strains i  (i=1,...,n), the dynamics of the disease is given by
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where iI  is the density of hosts infected with strain i  and
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The aim of this project is to explore the adaptive dynamics of virulence. For
numerical work, assume that the disease-free population grows logistically, i.e.,

( )b N a cN , and use ( ) 1 1 exp( )v k  for the superinfection function with
parameters such that (0)  is small (equally and less virulent strains do not take the
host over too often). For the transmission rate, start with ( ) 1 exp( )
(you can explore other functions later). A good starting set of parameter values is

10a , 0.03c , 1d , 10v , 2k , 0.3 , 20  and 0.06 . When
exploring the parameter space, make sure to study the effect of the shape (convexity)
of ( ) . Remember to study only viable strains (and hence populations at positive
densities) only.


