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Conflict between resource use and adaptation
to a mutualist

Suppose two mutualistic species help each other best if their (scaled) trait values are
the same. The same traits are, however, also involved in adaptation to resource use,
and the resources of the two species are best utilised with different trait values. There
is thus a conflict between resource use (which is best if the two species have two
different, externally determined trait values) and mutualism (which is maximal when
the two species' traits match).

We model adaptation to the optimal use of different resources by assuming that the
carrying capacity of the species, K1(x1) and K2(x2), reach their maxima at different
trait values; without loss of generality, we may assume that the maxima are at

1 0x x  and 2 0x x , respectively, where x0 is a constant. For numerical work,
assume a Gaussian function with some constant "background" resource added,
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(note that by scaling the trait values, 1K  may be assumed without loss of
generality).

For mutualism, we define the total "amount" of help given by one individual of
species 2 to all individuals of species 1 as the total number of offspring produced by
species 1 which could not be produced without the helping individual of species 2.
Since the number of offspring must be proportional to the density of species 1 (N1),
the total amount of help equals 1aN . If there are different strategies within species 1,
however, then those with trait values nearer to the species 2 individual receive more
help. Assume that there are two strategies within species 1, (1)

1x  and (2)
1x , with

frequencies p1 and p2, respectively. The amount of help given to all individuals (1)
1x  by

one individual of species 2 is then
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where 1 2( )x x  is maximal when the traits match; we assume the Gaussian function
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We embed the above assumptions into a simple Lotka-Volterra model where the
population dynamics of the two species are given by
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where N1 and N2 denote the population densities of the two species, x1 and x2 are the
corresponding trait values, and a measures the strength of mutualism. As follows from
formula (2), as long as each species has only one strategy, function 1 2( )x x  does
not play a role. When a mutant y1 (y2) enters species 1 (species 2), however, its
dynamics are
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where M1 and M2 denote the (small) density of the mutant of species 1 and of species
2, respectively. At any one time, there is only one mutant (either M1 or M2). The
resident densities 1N̂ and 2N̂  are determined from the equilibrium of equations (4).

(a) In the full model, two traits (one for each species) are evolving even in a
monomorphic resident population. Therefore, we need to construct an isocline plot to
find the monomorphic evolutionary singularity. Convergence stability is also more
difficult than for a single trait: If necessary, use the canonical equation assuming
equal and constant mutation rates and mutational variances to see whether the
singularity is convergence stable. Establish whether the singularity is a fitness
maximum or fitness minimum for each species.

(b) As one extreme case, assume that one of the two species evolves much slower
than the other. Fix the second species at an arbitrary trait value OR at its singular trait
value as determined in (a), and assume that only the first species evolves. (By
symmetry, fixing the first species and letting the second species evolve yields
analogous results.) Construct PIPs for species 1. Can you find evolutionary
branching? Explore evolution of species 1 after branching while keeping species 2
fixed.



(c) If time permits, consider the case when both species mutate at similar speeds. Due
to symmetry, one can expect if one species branches then both branches
simultaneously. Further, symmetry suggests that the trait values of the two dimorphic
populations will be close to the symmetric arrangement (1) (2)

1 2x x , (2) (1)
1 2x x

(deviations from this symmetric arrangement are due to small variations in the
emerging mutations). In this case, one has to track only two evolving variables; for
example, (1)

2x  and (2)
2x  fully characterise the four strategies present.  Explore the

coevolution of two strategies in each of the two species assuming this symmetry
constraint.


