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Computer practical 1 

 

Download the Excel file pathogen_dynamics.xls. In this file, the basic SIR model (without 

births and deaths) is already programmed. 

 

Explore the basic SIR model 

 

  

 

 

 

 

 

 

The yellow-coloured cells at the top of the worksheet contain the transmission rate  and the 

recovery rate  (the peach-coloured cells are empty and will be used later to extend the SIR 

model with births and deaths). The yellow cell at the bottom of the list is the length of the 

small time-step dt used for solving the differential equations numerically. 

 

 

 

 

 

In the main part of the worksheet, the first column (A) shows the time (t, increases with steps 

dt). The next three columns are the variables of the model (S, I, R) at various times. The last 

column shows the total population size (N=S+I+R). Note that these numbers represent units 

of population size (e.g. N=1 can represent 1 million individuals if the unit is a million 

individuals). 

 

At time t=0, the values of S, I and R must be given (initial values). The worksheet is 

programmed such that at the beginning, 99% of the population is susceptible, 1% is infected 

SIR model

alpha =
beta = 1
gamma = 0.5
b0 =
mu =
dt = 0.1

t S(t) I(t) R(t) N=S+I+R
0 0.99 0.01 0 1

0.1 0.98901 0.01049 0.0005 1
0.2 0.987973 0.011003 0.001025 1
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and no one is recovered (check the formulas in cells B11, C11 and D11). The initial 

population size can be set in the yellow cell of the last column. 

 

 

 

 

 

 

 

The first figure shows the number of susceptibles (S(t), blue), infected (I(t), red), recovered 

(R(t), green), and the total population size (N(t), black) against time. Without births and 

deaths, the total population size is constant. Explain why S(t) is only decreasing and why, 

after the peak of the outbreak, I(t) declines to zero (the epidemic ends). 

 

 

 

 

 

 

 

The second figure shows I(t) against S(t), i.e., the trajectory. The epidemic starts at the 

rightmost point of the curve (where S is the highest) and moves along the curve until the 

infected disappear (I becomes zero at the leftmost point).  

 

Exercise 1. Experiment with decreasing the total population size. Observe that 

(i) the smaller the population is, the more susceptibles remain at the end 

(ii) if N is less than / , then there is no epidemic outbreak. Explain why this is the 

threshold for an outbreak. 

 

Exercise 2. Try different values for the parameters  and , and record at which value of S 

the epidemic reaches the highest I in each case. Verify that this always occurs when S equals 

/ . Explain why I starts to decrease once S is below this threshold. 
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Extend the model to incorporate births and deaths 
 

The following figure shows how the consecutive values of S(t) are calculated (the other 

variables are analogous). This is what you see if you click on cell B12 (the first value of S 

calculated from the model) and press F2: 

 

 

 

 

 

 

 

 

 

 

 

The value of S at time t=0.1 (i.e., in cell B12) is the previous value of S (in B11) plus the 

change. According to the model SIdtdS / , which means that the change in time dt is 

dtSIdS . This is spelled out starting with the minus sign in the formula in cell B12: 

cell B4 contains the value of , B11 contains the previous value of S and C11 contains the 

previous value of I. Important: the $ sign fixes the coordinates of the cell. $B$4 means that 

it is always B4 what is to be used. B11 and C11 are not fixed, because when we copy the 

formula to the next rows, we want to use the values in the previous row (i.e., when we 

calculate S at time t=0.2 in B13, we want to use the values in B12 and C12). This is not the 

case for B4 (we don't want to use B5 etc instead), therefore it has to be fixed with the $ signs. 

 

Exercise 3. Enter values for the disease virulence , the population birth rate b0, and the per 

capita death rate  into cells B3, B6 and B7, respectively (peach-coloured). Modify the 

formulas in B12, C12 and D12 to include birth and death according to the equations 

 

dtRIdR

dtISIdI

dtSISbdS

)(
0
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You can edit the formula after clicking on the cell and pressing F2. When the cells B12, C12 

and D12 are ready, copy-paste them to the rows below (the last row is 511); this will create 

the right formulas in the entire table (check some cells). 

 

With the values 5.0 ,6  and 2 , 1.00b , 1.0 , you should see this result: 
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This figure shows that after some oscillations, the population equilibrates at the innermost 

point of the spiral. At this equilibrium, the disease is endemic, i.e., there are always infected 

individuals present. This is because new susceptibles enter continuously via birth, so that the 

disease always has new hosts to infect. The S and I coordinates of the endemic equilibrium 

point correspond to the values S and I attain towards the right end of the other figure in the 

worksheet, 
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Notice also that N is no longer constant (it changes by births, natural deaths and disease-

induced deaths).   

 

Experiment with changing the parameter values and observe the behaviour of the model:  

(i) Verify that as long as the disease is endemic, the equilibrium value of S always 

equals /)( ; use the equations to explain why. Compare with exercise 2 

(where  and  are zero so that //)( ). 

(ii) With  00b  and 0 , we recover the basic SIR model (but with  instead 

of ). Increase 0b  and  gradually from zero and investigate how S and I converge 

to the endemic equilibrium. 


