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Abstract. Given a diffeomorphism which is homotopic to the identity from

the 2-torus to itself, we construct an isotopy whose norm is controlled by that

of the diffeomorphism in question.

1. Introduction

Given a diffeomorphism which is homotopic to the identity from a closed surface

to itself, it is known that one can improve the homotopy to an isotopy in a topo-

logical way ([5]) and further improve the differentiability of the isotopy ([3]), but

the known procedures are subtle, causing the norms of the isotopy being difficult

to control. In this paper, we introduce a concrete procedure to construct a new

isotopy on the 2-torus generated by a time-dependent vector field, and the norms

of the isotopy are controlled in terms of the norms of the initial diffeomorphism.

This problem of finding a canonically defined isotopy between diffeomorphisms

with controlled norms, seemingly naive, is non-trivial even for a 2-torus. Given a

sequence of diffeomorphisms of, say a 2-torus, they may be all conjugate to each

other, or their conjugates converge (meaning they are the same or almost the same

in some coordinate systems). This is one of the main motivations for the above

mentioned problem. One method of detecting this is to find a conjugation-invariant

norm which grows to infinity on the diffeomorphims in question. Another approach

is finding a canonical (normal) form, which is what we are trying in our paper.

Given a horizontal geodesic on the standard torus S1×S1, the initial diffeomor-

phism can send it to a complicated embedded closed curve if the diffeomorphism

has large norms. One of the most efficient ways to straighten this complicated

curve is to apply the curve shortening flow along which every point moves with

the velocity that is the geodesic curvature. This geometric flow behaves like a heat

equation keeping all the evolving curves embedded, and singularity does not occur

unless the flow shrinks to a point ([6][7][8]). The latter case does not happen, since

our diffeomorphism is homotopic to the identity and hence the curve in question

is not contractible. The flow at first straightens the curve rapidly, though possibly

introducing points with very large but finite curvature, and slows down once the
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curvature becomes small. When the curvature is sufficiently small the curve be-

comes simply a graph, in which case straightening the curve is a simple task.

Consider the whole family of horizontal geodesics on the standard torus S1×S1.

Then apply the curve shortening flow to their images∗ via the diffeomorphism F

all at once up to an explicit time T0 = (||F ||C1 + 1)2. By a compactness argument

(Proposition 2.2), the curvatures are uniformly bounded for all such flows up to

time T0. Denote the uniform curvature bound by K.

Main Theorem. Suppose F is a Cm,α (m > 3, α ∈ (0, 1)) diffeomorphism of the

2-torus and it is homotopic to the identity. Then there is a C [m−1
2 ],α isotopy (gen-

erated by a time-dependent vector field) between F and the identity, and the isotopy

restricted to each fixed time is a Cm−2,α diffeomorphism. Furthermore the norms of

the isotopy are explicitly controlled depending only on ||F ||Cm,α , ||F−1||C1 ,K,m, α,

where K is the uniform curvature bound depending only on ||F ||C3,α , ||F−1||C1 .

Remark. It turns out to be difficult to explicitly estimate the uniform curvature

bound K only in terms of the initial diffeomorphism. Consider a closed curve which

winds many times within a small region. In a short time part of the curve can shrink

rapidly causing large curvature to appear. However once the curvature becomes too

large, it cannot keep growing much more otherwise a singularity will form. The

curve shortening flow is one of the fastest way to decrease large curvatures, but it

appears to be too fast as far as we are concerned.

We believe that the right characteristic which can be explicitly controlled along

a curve shortening procedure is the largest radius r(γ) such that one can touch a

curve γ by a ball of radius r at every point and either side so that the interior of

the ball does not intersect the curve, historically named the reach. We think we can

prove the following fact: On the space of homotopically non-trivial curves γ with

r(γ) > r0 on a 2-torus, the length functional has no critical points other than closed

geodesics. (In the plane, the critical points are circles of radius r0.) This allows

us to construct a curve shortening procedure with explicitly controlled curvature

k 6 1/r(γ0), where γ0 is the inital curve. The problem is that the procedure we

have in mind is only C1,1.

The problem came from a discussion between D. Burago and L. Polterovich. We

apply the curve shortening flow to all the embedded closed curves which are the

images of the horizontal geodesics via the diffeomorphism F at once, and they be-

come a family of horizontal geodesics as time goes to infinity by Grayson’s Theorem

(Theorem 2.1). We stop the curve shortening flow at some time after which all the

curves become graphs. Then we can simply move them back to the original family

of horizontal geodesics via the “ height function”, up to a reparametrization. The

details can be found in Section 3.

The Main Theorem provides a control on the isotopy between two homotopically

trivial diffeomorphisms on the standard 2-torus S1×S1. Without loss of generality,

∗By image we mean the curve with parametrization coming from the composition of the dif-

feomorphism and the natural parametrization of the horizontal geodesic.
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we assume that one of the diffeomorphisms is the identity. The theorem also ap-

plies to homotopically non-trivial orientation-preserving diffeomorphisms because

of the classical fundamental theorem of Dehn that the group of isotopy classes of

orientation-preserving diffeomorphisms of S1×S1 is isometric to SL(2,Z) which is

generated by two Dehn twists ([5]), in which case similar control can be obtained in

the same way. We prove the Main Theorem for the standard 2-torus S1 × S1. For

a general 2-torus, there exists a diffeomorphism from it to the standard 2-torus. So

all the distortions to the isotopy caused by the non-standard metric are controlled

by the norms of that diffeomorphism. Our isotopy exists if the initial diffeomor-

phism has lower regularity and one can expect a Lipschitz estimate on the isotopy.

We do not know if similar control on the isotopy can be obtained for S2. Moti-

vated by works of A. Nabutovsky and S. Weinberger ([10][11][12]), we have serious

doubts if it is possible for n-tori for n > 5. The main result of [10] implies that dif-

feomorphisms of Sn (n > 5) embedded in Rn+1 cannot be extended to the ambient

space with algorithmly controllable norms, and we think our work is closely related

to the possible extendability for the base dimension.

Acknowledgement. We are grateful to S. Angenent, M. Levi, A. Novikov and L.

Polterovich for many helpful discussions and remarks.

2. Preliminaries

Let’s review a few things about the standard curve shortening flow on a smooth

Riemannian surface. The curve shortening flow is a family of closed curves γ(y, t) :

S1 × [0, Tmax)→M evolving according to the equation

(2.1) ∂tγ(y, t) = k(y, t)N(y, t)

with initial condition γ(y, 0) = γ0(y), where N(y, t) is unit normal vector with

respect to the time t curve γ(·, t) at the point γ(y, t). The length of time t curve

γ(·, t) (or γt) is denoted by L(γt) and satisfies the formula

(2.2)
d

dt
L(γt) = −

∫
γt

k2(s, t)ds,

where s is the arc-length parameter. This shows the length of a family of evolving

curves is monotone decreasing in time.

The finiteness of the maximum time of existence Tmax completely determines the

geometric behavior near the maximum time by the following Grayson’s Theorem.

Theorem 2.1 ([8]). If the initial closed curve is smooth and embedded, the curve

shortening flow either converges to a point in finite time, or converges to a closed

geodesic in C∞ norm in infinite time and never develops singularities.

From now on, consider the Riemannian surface to be the standard 2-torus T2 =

S1 × S1. The diffeomorphism F in question is of Cm,α (m > 3, α ∈ (0, 1)). We

only consider the initial curve γ0 being the image of a horizontal geodesic via the

diffeomorphism F which is homotopic to the identity, and we know that this family

of evolving curves γt does not shrink to a point and instead it must converge to
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a horizontal geodesic in infinite time by Theorem 2.1. Since our family of initial

curves are uniformly bounded in certain norms by the norms of the diffeomorphism,

we can ask for a uniform curvature bound under the evolution within any finite fixed

time T .

Proposition 2.2. Up to any finite fixed time T , the curvatures are uniformly

bounded for all families of evolving curves with the initial curves being the images

of horizontal geodesics via the Cm,α diffeomorphism F , and the bound depends only

on ||F ||C3,α , ||F−1||C1 , T . Denote the uniform curvature bound by K.

Proof. For a fixed diffeomorphism F , the boundedness is due to a trivial compact-

ness argument. Indeed, the space of the images of all horizontal geodesics via the

fixed diffeomorphism is compact, and by the continuous dependence of the curve

shortening flow on the initial condition, the curvatures are uniformly bounded up

to time T .

However, proving the dependence of the bound requires a little stronger argu-

ment. We range the diffeomorphism over all Cm,α diffeomorphisms with fixed C3,α

norm and C1 norm of the inverse, and consider all the curve shortening flows with

initial curves being the image of horizontal geodesics via all diffeomorphisms in this

class. We need to prove that the curvatures are uniformly bounded for all such

flows up to any finite fixed time T .

We argue by contradiction. Suppose unbounded, so there exists a sequence of

curve shortening flows whose curvatures can get arbitrarily large. Take the sequence

of their initial curves and by compactness there exists a subsequence converging to

a limit curve in C3. Our choice of the class of diffeomorphisms along with a simple

compactness reasoning are sufficient to guarantee that the limit curve is embedded,

regular, and not homotopic to a point. So the limit curve under the evolution ex-

ists for all times and has bounded curvature by Theorem 2.1. By the continuous

dependence of the curve shortening flow on the initial condition([4]), if the initial

curve is close to the limit curve in C3, their curvatures stay close to each other

under the evolution in finite time. This is a contradiction to the assumption that

the curvatures in the assumptive sequence of flows can get arbitrarily large. �

3. Regularity

In this section, we prove the main regularity result and consequently the main

theorem. First, we need the following lemma which uniformly determines an explicit

time after which the curves become graphs. We restrict our attention to the evolving

curves γt with the initial curve γ0 being the image of some horizontal geodesic via

the diffeomorphism F .

Lemma 3.1. Starting from T0 = (||F ||C1 + 1)2, all the curves under the evolution

are graphs.
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Proof. Suppose T0 is the earliest time when γt becomes a graph. So for any t < T0,

γt has a segment βt which has integral of curvature at least π/2. By Cauchy-

Schwartz inequality,

L(γt)

∫
γt

k2ds > (

∫
βt

kds)2 >
π2

4
.

Since the length of γt is decreasing in time, L(γt) 6 L(γ0) 6 ||F ||C1 + 1. By

equation (2.2) for t < T0,

d

dt
L(t) = −

∫
γt

k2ds < − π2

4L(γt)
< − 1

||F ||C1 + 1
.

This implies at time T0, L(γT0
) < L(γ0)− 1

||F ||C1+1T0. Therefore

T0 < L(γ0)(||F ||C1 + 1) 6 (||F ||C1 + 1)2.

Once a curve becomes a graph, its vertical translations do not intersect. Thus their

images under the evolution do not intersect either due to the maximum principle.

Hence the curves remain graphs forever. �

Denote by Φ(x, t) : T2×R+ → T2 the flow generated by the evolution, namely by

the time-dependent vector field kN. The flow is well defined due to the maximum

principle. In the end we are going to stop the flow at the time T0 which is determined

in Lemma 3.1, while for the moment we state the following regularity result within

any finite fixed time T .

Proposition 3.2. For each t ∈ [0, T ], Φ(·, t) is a Cm−2,α diffeomorphism, and

Φ(x, t) is a C [m−1
2 ],α map on T2 × [0, T ]. The norms are explicitly controlled de-

pending only on ||F ||Cm,α , ||F−1||C1 ,K, T,m, α, where K is the uniform curvature

bound described in Proposition 2.2.

Proof. First for any fixed time t ∈ [0, T ], Φ(·, t) is a homeomorphism. Indeed, the

map Φ(·, t) is injective by the maximum principle and continuous by the continuous

dependence of the curve shortening flow on the initial condition. Due to the Invari-

ance of Domain Theorem, the image of Φ(t) is open and Φ(t) is a homeomorphism

from T2 to its image. The image is on the other hand compact, hence closed. Thus

Φ(t) is surjective and is a homeomorphism of T2.

Now we discuss the differentiability of the flow. There are three directions to

consider: two spatial directions and one time direction. Two of them, tangential

direction of the curves and time direction, are smooth among themselves due to the

analyticity of the solution of parabolic equation at positive times, and their norms

are uniformly bounded since all derivatives of curvatures grow at most exponen-

tially in finite time with the exponent depending on the uniform curvature bound

K.

The only problem is the other spatial direction, namely across different families of

flows. This is essentially the smooth dependence on the initial condition. It is known

that the solution of the curve shortening flow exhibits Cr-smooth dependence on

any parameter if the equation depends Cr smoothly on that parameter([1]). In

our case, we can absorb the initial condition into a parameter, carry out a similar
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argument as the proof of the smooth dependence on parameters, and obtain an

explicit estimate of the regularity.

Consider the equation of the curve shortening flow

(3.1)
∂γε(y, t)

∂t
= k(γε)N(γε),

with varying initial conditions γε(0) = F (γ̃0+εh) for sufficiently small ε, where F is

the initial Cm,α diffeomorphism, γ̃0 is a fixed horizontal geodesic and h is the unit

vertical vector. Here ε is the parameter representing the unclear spatial direction

in question. We aim for the differentiabiliy with respect to the parameter ε.

First, we reduce the equation for curves (3.1) to equation for functions. For

sufficiently small ε, all the initial curves γε(0) lie in the normal coordinate system

determined by equidistant curves around the fixed curve γ0(0) = F (γ̃0). Hence

the local solutions in sufficiently small time also lie in the same coordinate system.

We define a Cm function u for a Cm curve γ within the coordinate system to

be the distance function of the curve γ from the fixed curve F (γ̃0). In this way

the local solution curves γε(y, t) are represented by functions u(y, t, ε), so are their

curvatures and unit normal vectors. Thus the equation for curves (3.1) is reduced to

an equation for functions u(y, t, ε). By straightforward calculations mostly identical

to the ones in [1], one can obtain the following evolution equation satisfied by

u = u(y, t, ε) for sufficiently small ε, t :

(3.2) ut = G(y, u, uy, uyy),

where G is a nonlinear function of the four arguments, with the initial condition

u(y, 0, ε) = dist(γε(y, 0), γ0(y, 0)) within the said normal coordinate system. We

denote uy by p and uyy by q. The function G satisfies the following properties:

(1) ∂G
∂q is positive, which implies the equation is parabolic;

(2) The function G is a Cm−2,α function with respect to all arguments;

(3) More precisely, the Cm−3,α norms of all the partial derivatives of G are uni-

formly bounded explicitly depending only on ||F ||Cm,α , ||F−1||C1 ,K, T,m.

Now we absorb the varying initial conditions into the equation (3.2) by subtract-

ing u(y, 0, ε), and we obtain the equation of ũ(y, t, ε) = u(y, t, ε) − u(y, 0, ε) with

vanishing initial condition, represented by another nonlinear function G̃:

ũt = G̃(y, ε, ũ, p̃, q̃),

where p̃, q̃ denote the first and second derivative of ũ with respect to y respectively.

The parameter ε appears in terms of the initial condition u(y, 0, ε) and its deriva-

tives with respect to y up to the second order, which implies G̃ is Cm−2,α-smooth

with respect to ε. It follows that all the properties of G hold for G̃.

Denote the Fréchet derivative of G̃ at ũ of any v by
(
dG̃(ũ)

)
v = G̃q̃vyy + G̃p̃vy +

G̃ũv. Thanks to the properties of G̃, by a standard argument (e.g. [2]), the equa-

tion at ũ:
(
∂t − dG̃(ũ)

)
v = f has a solution v ∈ Cm−1,α with the initial condition

v(0) = 0 for every f ∈ Cm−3,α, which means ∂t − dG̃(ũ) is invertible. The Implicit

Function Theorem in Banach spaces implies that ũ is Cm−2-smooth with respect

to y and ε, so is u. Equipped with the differentiability of u, we can estimate its
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derivatives directly from the equation (3.2).

Differentiate the equation (3.2) with respect to ε, and we get the equation satis-

fied by uε:

uεt =
∂G

∂q
uεyy +

∂G

∂p
uεy +

∂G

∂u
uε,

with the initial condition to be uε(y, 0, ε) which is Cm−1,α-smooth with respect to

y. By the regularity estimate of the linear parabolic equation (Theorem 5.1.9 in

[9]), up to a sufficiently small time t0,

||∂u
∂ε

(y, t, ε)||Cm−1,α(S1×[0,t0]) 6 eC1t0 ||∂u
∂ε

(y, 0, ε)||Cm−1,α(S1×[0,t0])

6 C(||F ||Cm,α , ||F−1||C1 ,K, T,m, α)eC1t0 ,

where C1 = C1(||F ||Cm,α , ||F−1||C1 ,K, T,m, α). Here we freeze the parameter ε

and consider differentiation only with respect to y. Similar estimate also holds for

||∂u∂y ||Cm−1,α . By a standard bootstrapping argument, we arrive at the following

estimate for higher order derivatives with respect to ε up to the order m− 2 :

(3.3)

||∂
(i+j)u

∂yi∂εj
||C0,α 6 C(||F ||Cm,α , ||F−1||C1 ,K, T, t0,m, α), for i+j 6 m and j 6 m−2.

Since we know in advance that our flow exists for all times, it is not difficult to

check the same procedure can be continued from t0, primarily because the regularity

estimate (3.3) gives sufficient regularity at time t0 to repeat the procedure. Thus

with some care in tracing time-involved terms at each step, one can extend the

regularity estimate to any finite fixed time T . The estimate on u implies the

estimate on the original curve γε:

(3.4)

||∂
(i+j)γε

∂yi∂εj
||C0,α 6 C(||F ||Cm,α , ||F−1||C1 ,K, T,m, α), for i+j 6 m and j 6 m−2.

As a consequence, we also get the Cm−2,α differentiability of the unit tangent vector

and unit normal vector of the original curve γε with respect to ε.

The flow is Cm−2,α in spatial directions with respect to the parameters y, ε due

to (3.4), consequently with respect to the original spatial parameter x ∈ T2 at time

0 determined by the initial diffeomorphism F . The only issue is the continuity

of time derivatives in the ε direction. Since we are dealing with a second order

equation (3.2), the regularity in the time direction is given by the regularity of

the second derivative with respect to the tangential direction. It follows that every

time taking a time derivative decreases the regularity in the ε direction by 2 in view

of the regularity estimate (3.4). Thus one can only take time derivatives at most

[m−12 ] times before losing the differentiability in the ε direction. Therefore the total

regularity of the flow will be reduced to [m−12 ].

Up to this point we have proved that for each fixed time t ∈ [0, T ], Φ(·, t) is a

Cm−2,α homeomorphism. To argue it is a diffeomorphism, by the Inverse Function

Theorem it suffices to prove that the differential dΦ(·, t) is nonsingular everywhere.

Again we look at the two spatial directions. Along the tangential direction of the



8 DMITRI BURAGO, JINPENG LU, AND TRISTAN OZUCH

curve, the length of the velocity is uniformly bounded away from 0 in finite time,

due to the evolution equation satisfied by the velocity ∂t|γy| = −k2|γy| along with

the uniform curvature bound K. The non-singularity of the differential dΦ(·, t)
across different families of flows follows from the fact that the distance between two

curves is nondecreasing in time via the curve shortening flow ([6]). Furthermore

one can show that the length of the differential dΦ(·, t) acting on any unit vector is

bounded away from 0 depending only on ||F ||C1 , ||F−1||C1 ,K, T , which implies the

differential is nonsingular. By the Inverse Function Theorem, the inverse Φ(·, t)−1
is a Cm−2 homeomorphism and hence Φ(·, t) is a diffeomorphism. �

Now we prove the main theorem. First let us closely examine what happens

to one single curve. Take a horizontal geodesic, and after applying the initial dif-

feomorphism F and the curve shortening flow up to time T0 = (||F ||C1 + 1)2, we

get a closed curve which is a graph with respect to the original horizontal geodesic

by Lemma 3.1. However the parametrization of the curve is distorted, and we

apply a second procedure of reparametrization to make it align with the natural

parametrization of the horizontal geodesic. Then we apply a third procedure to

move the curve back to the horizontal geodesic via the “ height function”. The de-

tails are discussed below. Although it is straightforward to handle one single curve,

in our case we need to apply these procedures to all the curves at once, and to

recover the regularity we need some consistencies when applying these procedures

across different curves, which is provided by Proposition 3.2 specifically the regu-

larity estimate (3.4).

We discuss the second procedure of reparametrizations here. The composition

Φ1 = Φ(·, T0) ◦ F is a Cm−2,α diffeomorphism of T2 by Proposition 3.2 and it is

homotopic to the identity. This diffeomorphism Φ1 maps the family of horizontal

geodesics to a family of graphs. For a fixed horizontal geodesic, we consider a map

f which sends the fixed horizontal geodesic to the vertical projection of its image

(graph) via the diffemorphism Φ1 onto itself. This map f is a diffeomorphism of S1

and it is homotopically trivial. Hence the lift f̃ of the diffeomorphism f of S1 on

the universal cover R/Z of S1 has degree 1, i.e. f̃(z+1) = f̃(z)+1 for z ∈ R. Thus

the isotopy on the universal cover φ̃(z, t) = (1 − t)f̃(z) + tz on R × [0, 1] between

f̃ and the identity (of R) descends to an isotopy on S1 between f and the identity

(of S1). This isotopy on S1 gives a reparametrization for a graph. Apply this

construction to all the horizontal geodesics, and we obtain a reparametrization for

the whole family of graphs, denoted by Φ2(x, t) on T2 × [0, 1]. Due to Proposition

3.2, this flow of reparametrization Φ2 is Cm−2,α. To glue the flow Φ2 and the curve

shortening flow together, we need modifications to both flows in order to preserve

the regularity. Take a suitable smooth function f1 : [T0, 4T0]→ [T0, 4T0] satisfying

that f1(t) = t on [T0, 2T0], f1 = 4T0 on [3T0, 4T0] and f1 is strictly increasing on

[2T0, 3T0]. Extend the curve shortening flow up to time 4T0, and within [T0, 4T0]

modify the flow as Φ̃(t) = Φ(f1(t)). The norm of such modified flow is enlarged

by a scale factor of a constant depending only on m. One can glue this modified

curve shortening flow with a similarly modified flow of reparametrization without

affecting the regularity. On the level of vector fields, this is simply the standard
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procedure to glue two time-dependent vector fields together along time by multi-

plying smooth functions of time vanishing in the gluing region.

Then we apply a third procedure to move the curves (graphs) back to the hori-

zontal geodesics. The composition of the first two procedures Φ2(·, 1)◦Φ1 (properly

glued) is a homotopically trivial Cm−2,α diffeomorphism of T2, and its restriction

onto a fixed vertical geodesic defines a homotopically trivial diffeomorphism of S1.

We can simply repeat the construction of the second procedure to find an isotopy

between this diffeomorphism of S1 and the identity. Apply the construction to

the whole family of vertical geodesics, and we obtain an isotopy on T2 between

Φ2(1) ◦ Φ1 and the identity. Again this isotopy is Cm−2,α. One can similarly glue

this isotopy with the first two procedures while preserving the regularity. The main

theorem is proved.
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