THE RECOMMENDED DIETARY ALLOWANCE FOR
ASCORBIC ACID

Despite the potentially devastating consequences of
the disease, scurvy is easily prevented. The recom-

mended daily dietary allowance (RDA) for ascorbate
was determined by the Food and Nutrition Board of
the National Research Council on the basis of several
estimates that are directly relevant to scurvy.' The
human requirement is based on the amount necessary
to cure or prevent scurvy while allowing for adequate
reserves of ascorbate and on the amount of ascorbate
metabolized daily.>*"*>™ In the  United States the
RDA is 60 mg per day for adults," and in the United
Kingdom it is less.

It is worthwhile to review some of the estimates on
which the RDA is based. Clinical scurvy occurs when
the body pool of ascorbic acid is less than 300 mg. It
has been demonstrated in human volunteers that as
little as 10 mg of ascorbic acid per day can cure or
prevent scurvy. However, daily ingestion of only 10
mg of ascorbate for several weeks results in a body
pool of ascorbate that is still not substantially above
300 mg.”"® Therefore, ascorbate metabolism, turn-
over rates, and the size of the body pool have been
estimated in volunteers who have ingested radio-
labeled ascorbate. When 77.5 mg of ascorbate is in-
gested dally, a gool of approximately 1500 mg can be
maintained.” This amount of reserve can pre-
vent clinical scurvy from developing for I to I
months in volunteers given a scorbutic diet. Ascorbate
catabolism has been estimated by giving subjects
radiolabeled ascorbate immediately before scurvy
was induced and measuring the urinary excretion of
radiolabeled catabolic products. In these experiments,
ascorbate catabolism was determined to be 2.2 to 4.1
percent of the existing body pool.>"%®"® On the basis of
these data, ascorbate catabolism was estimated to be
34 to 61.5 mg per day for a body pool of 1500 mg. It is
important to remember, however, that these estimates
were made in a study of subjects with scurvy rather
than normal, healthy subjects.

In subjects with scurvy who were given *H-labeled

YC-labeled ascorbic acid, excretion of the radio-
Iabel as ascorbic acid itself did not occur until the
bodé/ Qool of ascorbate was approximately 1500

Since constant dose of approximately 60 mg
of ascorbate per day is necessary to create and main-
tain a body pool of 1500 mg, this daily intake will
theoretically maintain the body pool, replenish ca-
tabolized ascorbate, and protect against scurvy for at
least 30 days if ascorbate ingestion ceases abruptly.
Thus, on the basis of all these estimates, the RDA for
adults has been set at 60 mg per day.

IMPLICATIONS OF THE RDA FOR ASCORBIC ACID:
PREVENTION OF SCURVY VERSUS OPTIMAL
REQUIREMENTS

The simplest question to pose and yet the most dif-
ficult one to answer is whether the RDA for ascorbic
acid is correct. The data clearly show that a daily
intake of 60 mg will prevent scurvy with a margin
of reserve; therefore, this allowance is clearly correct
insofar as prevention of this deficiency disease is con-
cerned. However, the question whether the amount of



ascorbic acid needed to prevent scurvy is equivalent
to the optimal amount for human health remains
unanswered.?®®

There is no clear relation between the biochemical
roles of ascorbic acid and the deficiency disease
scurvy.’® Thus, the amount of ascorbate necessary to
prevent scurvy may not be equivalent to the amount
that satisfies diverse enzymatic needs for ascorbic
acid. For example, in two studies of animals that did
not have scurvy but were not receiving "optimal”
amounts of dietary ascorbate, ascorbate-dependent
enzyme function was still decreased.**° Unfortunate-
ly, there have been few experiments in which various
ascorbate contents of cells or animals have been rigor-
ously correlated with enzyme activity.39%2"7% |n
biochemical terms, there have been few demonstra-
tions in cells or tissue of the apparent Michaelis con-
stant or the apparent maximal reaction velocity of
ascorbate using enzyme systems that in g)urified form
depend on ascorbic acid for full activity.*>*® Measure-
ments of these and other biochemical determinants,
such as cofactor transport into tissue, intracellular
compartmentalization, and cofactor- -enzyme accessi-
bility, might reflect ascorbate needs in vivo more pre-
cisely than measurements indicative of scurvy.®®%74%
However, it has not yet been established which bio-
chemical function or functions would best mirror the
optimal dietary level of ascorbate.”

The need for ascorbate can also be examined from a
metabolic standpoint. Although a body pool of 1500
mg of ascorbic acid will prevent scurvy, this pool size
may not be sufficient for optimal human health. Larg-
er pools of ascorbate can be attained if intake is in-
creased. Studies in male volunteers who ingested 200
mg of ascorbate daily (140 mg per day more than the
RDA) have shown that the body pool can be expanded
to 2300 to 2800 mg.®” In addition, studies in rats and
guinea pigs whose ascorbate dosage per kilogram of
body weight exceeded the RDA have shown that it
may be possible to expand the body pool even more
markedly.**®2 In human beings, however, it has been
suggested that the ingestion of ascorbate in quantities
sufﬂment to maintain a larger body pool is unwarrant-
ed.! The larger ascorbate pool is believed to be ob-
tained at the expense of decreased gastrointestinal ab-
sorption and increased excretion of unmetabolized
ascorbate. Yet, there is no evidence that these patterns
of absorption and excretion are an indication of exces-
sive ascorbate ingestion. Rather, they may be an un-
important consequence of maintaining higher body
stores of ascorbate or of generating plasma-tissue gra-
dients. Until the optimal size of the body pool of
ascorbate is determined, these problems will remain
unresolved.

Another approach to the problem of ascorbate re-
quirements has been to study urinary excretion of
ascorbic acid in humans. As discussed earlier, ascor-
bic acid does not appear to be excreted in the urine
until the body pool of ascorbate reaches 1500 mg or
more. However, these data may have no bearing on

optimal ascorbate requirements, since there may be
no relation between the threshold of ascorbate excre-
tion and optimal tissue concentrations.

The requirement for ascorbate is also based in part
on measurements of ascorbate catabolism, which gen-
erate estimates of daily ascorbate turnover. However,
the most direct measurements of ascorbate catabolism
have again been obtamed in subjects who were deplet-
ed of ascorbic acid,*"®®® as opposed to the |nd|rect
values obtained with the use of pharmacokinetics.”
In the depleted subjects, one would expect the catabo-
lism of ascorbate to be minimal, given the limited
supply. Indeed, catabolism seems to vary as a function
of the amount of available ascorbate, as the Studies in
animals discussed below indicate. Thus, it is not clear
that the rate of ascorbic acid use would remain at 2.2
to 4.1 percent of body stores in subjects who were not
ascorbate-poor. Measurements of ascorbate catabo-
lism would be more meaningful if they were made
in persons with an optimal body pool of ascorbate,
but we do not yet know what the size of that optimal
pool may be.



SOLVING THE PROBLEM OF THE RDA VERSUS THE
OPTIMAL AMOUNT OF ASCORBATE

The data in animals suggest even more strongly
than the data in humans that the RDA of ascorbate
for the prevention of scurvy and the RDA for other
measures of health are not similar. The resolution of
this problem has been complicated by several factors.
Although the assays for prevention of scurvy are
straightforward, methods of determining optimal
ascorbate ingestion are not. In animals as well as in
human beings, many of these assays lack specificity

and are difficult to quantitate. Because we do not
know what clinical or biochemical measure best re-
flects optimal ascorbate ingestion, the assays have
been chosen empirically, and as a result, many of the
data conflict. Furthermore, in animals as well as hu-
mans, it is worthwhile but very difficult to measure the
additional effect of "stress," or perturbation of homeo-
stasis. Although these issues are clearly important,
they have not been subjected to intense critical investi-
gation. In addition, the problem of optimal intake is
sometimes approached emotionally, to the extent that
scientific issues are not addressed.

Because no clear relation has been seen between
scurvy and the biochemical behavior of ascorbate,
there have been few attempts to use biochemistry to
address the problem of ascorbate requirements. Yet,
herein is the key to the problem. Ascorbate require-
ments must be examined both by studies in whole
animals and by studies of ascorbate cell biology
and biochemistry. The role of ascorbic acid in several
enzyme systems is becoming known, and what re-
mains to be studied is how those enzymes are regulat-
ed by ascorbic acid in cells, tissues, and animals.
When the ways in which various enzymatic functions
depend on ascorbic acid are characterized, these
measurements can be brought to tissue and animal
studies in a precise fashion with use of specific as-
says. In this way, variations in ascorbic acid concen-
trations can have measurable and meaningful biologic
implications.



OPTIMAL DIETARY LEVELS: A SUMMARY

Our knowledge of the amount of cofactor required
to prevent deficiency disease may or may not shed
light on the problem of optimal dietary levels, which is
a related but distinctly separate issue. | have proposed
that the optimal dietary level of ascorbic acid may be
diiferent from the RDA, and that it is important to
determine this level. Although biochemical, enzymat-
ic, and functional principles suggest that there are op-
timal ingestion levels for many cofactors, it is not en-
tirely certain that there is such a level for ascorbate or
for any other cofactor in human beings. It is also un-
clear whether optimal concentration is equivalent to
tissue saturation. These issues can and will be resolved
by biochemical and cellular studies in conjunction
with investigations in animals.

Nearly half a century ago, the pioneers David Perla
and Jesse Marmorston and their collaborators ad-
vanced one hypothesis concerning optimal intakes of
the cofactor thiamine.*® The fact that there have been
no recent efforts to determine such intakes for thia-
mine or other cofactors does not mean that the issue
should be left dormant. Indeed, the principles dis-
cussed above in connection with ascorbic acid can and
should be applied to other vitamins. It is only through
rigorous scientific investigation with open and unbi-
ased minds that we will learn the optimal dietary lev-
els of such cofactors as ascorbic acid. Knowledge of
the optimal levels of cofactors will have profound im-
plications for the practice of medicine and the health
of ali of us.
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NEW CONCEPTS IN THE BIOLOGY AND
BIOCHEMISTRY OF ASCORBIC ACID
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ASCORBIC acid, originallly called vitamin C, is re-
quired for human health.” In human beings de-
prived of ascorbic acid, the deficiency disease scurvy
develops and can be life threatening. Although a dis-
ease remarkably similar to scurvy was described by
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the ancient Egyptians,** it was not until 1753 that a
Scottish physician, James Lind, systematically de-
scribed scurvy and its prevention by dietary means.*
Even then, the dietary requirements were controver-
sial. For four decades the British navy refused to ac-
cept Lind's findings, and countless sailors continued
to die unnecessarily from scurvy until lemon juice was
finally included in sailors' rations.

Research since Lind's time has established that the
dietary substances that prevent scurvy are those that
contain ascorbic acid.>® What has remained unclear is
whether the amount of ascorbate necessary to prevent
scurvy is similar to the amount necessary for optimal
health. The issue of optimal dietary levels of ascorbic
acid and other vitamins inevitably provokes contro-
versy. In this article I will address the many issues
that contribute to the debates about ascorbic acid and
suggest new approaches to their resolution.
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