The Cochrane review vitamin C for asthma (2009 version) has errors in the extraction of data and in the analysis. Schachter 1982 carried out a trial with participants who had exercise-induced bronchoconstriction (EIB) so that each of the 12 participants was administered placebo and vitamin C at different times. Thus, each participant served as his or her own control (cross-over). In Table III Schachter reported pre-post-exercise change of FEV1, so that the later FEV1 was measured 5 minutes after the exercise. Because two observations are measured from the same participant, the placebo period and vitamin C period difference in FEV1 change should be analysed using the paired t-test. The FEV1 data in Schachter’s Table III gives the mean difference between the vitamin C and placebo periods as 0.20 (SD 0.33) litres/s. Schachter 1982 calculated $t = 2.13$ in their paper, corresponding to $P[1\text{-tail}] = 0.028$.

The review presents Schachter’s FEV1 changes in Analysis 1.2. However, data in Analysis 1.2 were extracted from Schachter’s Table II, which presents post-exercise FEV1 value measured immediately after the exercise. In EIB the fall in FEV1 occurs 5 to 20 minutes after the end of exercise (Rundell 2009), and even Schachter reported that, on the screening day, there was no fall in FEV1 immediately after exercise, but a significant fall 5 minutes after the exercise (Schachter 1982 Fig. 2). Therefore, extracting the FEV1 changes from Schachter’s Table II (FEV1 immediately after the exercise) is not reasonable if the purpose is to examine the effect of vitamin C on EIB. Cohen 1997 carried out an EIB trial with 20 participants who were administered placebo and vitamin C at different times (cross-over). Post-exercise FEV1 was measured 8 minutes after the end of the exercise. The observations are paired also in this case and the results should be analysed using a paired test. 9 participants had FEV1 decrease >15% on both vitamin C and placebo treatments. 11 participants had >15% FEV1 decrease on placebo but <15% FEV1 decrease on vitamin C (Cohen 1997 Fig. 2). None of the participants had the opposite effect: <15% FEV1 decrease on placebo and >15% FEV1 decrease on vitamin C. In the paired 2x2 table analysis, the question is whether the difference between the corners (here 11 and 0) is statistically significant. This difference gives $z = (11-0)/\sqrt{(11+0)} = 3.31$, corresponding to $P[1\text{-tail}] = 0.0005$.

A basic principle in controlled trial analysis requires that all randomized participants should be included in the analysis (the ITT principle). However, the review does not give the results for all of Cohen’s 20 participants (Cohen 1997 Fig. 2); Analysis 1.2 gives the results for only the 11 participants who had benefit of vitamin C (Cohen 1997 Table 2).

Furthermore, the review presents the average of post-exercise FEV1 values and not the pre-post-exercise difference in FEV1 in analysis 1.2. The post-exercise averages for Cohen’s Table 2 are 1.66 (SD 0.80) litres/s in the placebo period and 1.93 (SD 0.78) litres/s in the vitamin C period (P = 0.42). However, given that the EIB is defined by the post-change in FEV1, the measurement of the effect on EIB should be based on the pre-post-exercise difference in FEV1 (Rundell 2009). Furthermore, the relative effect calculated by Cohen (Table 2; in %units) is a better measure than the absolute value (in litres/s) because the relative effect adjusts for the great variation in baseline FEV1; the relative decrease in FEV1 is also used in guidelines (Rundell 2009). Cohen reports that the average relative fall in FEV1 is 25% in the placebo period and 5% in the vitamin C period (Cohen 1997 table 2). Because the observations are paired, the paired t-test should be used. The average of the differences is 20% (SD 12%, SE 3.7%), which gives $t = 5.57$, corresponding to $P[1\text{-tail}] = 0.00012$. Thus, although the review presented only the 11 participants in which vitamin C was beneficial, the calculation suggests that even in this subgroup vitamin C was without effect (P = 0.42), whereas a correct calculation gives a much smaller P-value.

In their EIB trial, Tecklenburg 2007 studied 8 participants who were administered vitamin C and placebo at different times. They measured post-exercise FEV1 at 1, 5, 10, 15, 20, and 30 min after the exercise. Tecklenburg 2007 reported that the decrease in FEV1 in the vitamin C period was 6.4% (SE 2.4%) and decrease in the placebo period was 12.9% (SE 2.4%). Tecklenburg did not publish the paired comparison, nor original data so that the paired t-test could be calculated. Nevertheless, these averages give unpaired $t = 1.91$, corresponding to $P[1\text{-tail}] = 0.038$, which is conservative, the paired test P-value would be smaller.

Thus, three trials included in the review found benefit of vitamin C supplementation against EIB at 5 and 8 minutes after the exercise (Cohen 1997; Schachter 1982), or at the time of maximum fall in FEV1 (Tecklenburg 2007). The three P-values calculated above (0.028, 0.0005, 0.038) can be combined by using the Fisher method (Fisher 1948). The combined $P[1\text{-tail}] = 0.00007$ provides evidence that the effects of vitamin C on EIB in these three trials are not explained by random fluctuations.

Analyses 1.1, 1.3 and 1.5 present baseline data of two EIB trials discussed above (Cohen 1997; Schachter 1982). However, when a trial specifically examines the effect of vitamin C on EIB, the relevant outcome is the difference between the baseline and the 5-10 minutes post-exercise FEV1 values (the pre-post change), and not the baseline FEV1 value alone.

Finally, a meta-analysis of EIB by the change in FEV1 is well established (Rundell 2009) and the authors should have considered whether there is any benefit for readers from making additional analyses of the FVC and PEFR values of the oldest trial by Schachter 1982. The more recent trials by Cohen 1997 and Tecklenburg 2007 did not report changes in FVC and PEFR."
Table of Contents

- **Table of Contents**

Header

- **Abstract**

Plain Language Summary

- **Background**

Objectives

- **Methods**

Results

- **Figure 1.**
- **Figure 2.**

Discussion

Authors' Conclusions

Acknowledgements

Characteristics of Studies

References

Data and Analyses

- **Analysis 1.1.** Comparison 1 Oral vitamin C vs placebo (single-dose studies), Outcome 1 FEV1 (L) - pre-exercise challenge.
- **Analysis 1.2.** Comparison 1 Oral vitamin C vs placebo (single-dose studies), Outcome 2 FEV1 (L) - post-exercise challenge.
- **Analysis 1.3.** Comparison 1 Oral vitamin C vs placebo (single-dose studies), Outcome 3 FVC (L) - pre-exercise challenge.
- **Analysis 1.4.** Comparison 1 Oral vitamin C vs placebo (single-dose studies), Outcome 4 FVC (L) - post-exercise challenge.
- **Analysis 1.5.** Comparison 1 Oral vitamin C vs placebo (single-dose studies), Outcome 5 PEFR (L/min) - pre-exercise challenge.
- **Analysis 1.6.** Comparison 1 Oral vitamin C vs placebo (single-dose studies), Outcome 6 PEFR (L/min) - post-exercise challenge.
- **Analysis 2.1.** Comparison 2 Oral vitamin C vs placebo (short term studies), Outcome 1 FEV1 (% drop) post-exercise.
- **Analysis 2.2.** Comparison 2 Oral vitamin C vs placebo (short term studies), Outcome 2 Symptom scores (Asthma Quality of Life Questionnaire).
- **Analysis 3.1.** Comparison 3 Oral vitamin C vs placebo (long-term studies), Outcome 1 IgE (IU/ml serum) - absolute values.
- **Analysis 3.2.** Comparison 3 Oral vitamin C vs placebo (long-term studies), Outcome 2 FEV1 mL 4 months.
- **Analysis 3.3.** Comparison 3 Oral vitamin C vs placebo (long-term studies), Outcome 3 Peak Flow (L/min) 4 months.
- **Analysis 3.4.** Comparison 3 Oral vitamin C vs placebo (long-term studies), Outcome 4 Geometric mean decrease in inhaled corticosteroid use (µg).

Feedback

What's New

History

Contributions of Authors

Declarations of Interest

Sources of Support

Index Terms
Vitamin C supplementation for asthma

Balvinder Kaur2, Brian H Rowe3, Elizabeth Arnold1

1Population Health Sciences & Education, St George’s, University of London, London, UK. 2Primary Care & Social Medicine, Faculty of Medicine, London, UK. 3Department of Emergency Medicine, University of Alberta, Edmonton, Canada

Contact address: Elizabeth Arnold, Population Health Sciences & Education, St George’s, University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK. earnold@sgul.ac.uk.

Editorial group: Cochrane Airways Group.
Publication status and date: Edited (no change to conclusions), published in Issue 12, 2010.
Review content assessed as up-to-date: 28 October 2008.

Citation: Kaur B, Rowe BH, Arnold E. Vitamin C supplementation for asthma. Cochrane Database of Systematic Reviews 2009, Issue 1. Art. No.: CD000993. DOI: 10.1002/14651858.CD000993.pub3.

Copyright © 2010 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

Background

Vitamin C is one of the key antioxidant vitamins which is abundant in the extracellular fluid lining the lung and low vitamin C intake has been associated with pulmonary dysfunction.

Objectives

To evaluate the evidence for the efficacy of vitamin C in the treatment of asthma.

Search strategy

The Cochrane Airways Review Group asthma register was searched and bibliographies of studies identified were also checked for further trials. This review has been updated by searches to August 2008.

Selection criteria

Only randomised controlled trials were eligible for inclusion. Studies were considered for inclusion if they dealt with the treatment of asthma using vitamin C supplementation. Two independent reviewers identified potentially relevant studies using pre-defined criteria and selected studies for inclusion.

Data collection and analysis

Data were abstracted independently by two reviewers. Information on patients, methods, interventions, outcomes and results was extracted using standard forms.

Main results

Nine studies met the review entry criteria, randomising a total of 330 participants. Study design varied and the reporting was generally poor. Five trials contributed numerical data to the review. They provided outcome data on lung function, symptom scores, IgE levels and inhaled steroid use. One small study showed a significant difference in % drop in FEV1 post-exercise.