ventilation has profound hemodynamic consequences. The expiratory airflow obstruction in the ventilator circuit leads to excessive positive pressure during exhalation called the auto-PEEP effect (2). Therefore, the intrinsic PEEP likely greatly exceeded the extrinsic PEEP set on the ventilator. The mechanisms of the hemodynamic consequences of the auto-PEEP effect include reduced cardiac output from diminished venous return and markedly increased pulmonary vascular resistance due to compression of intra-alveolar vessels. Acute cor pulmonale is a consequence of this last phenomenon. Fluid loading in the setting of diminished left ventricular compliance from acute cor pulmonale can lead to pulmonary edema (3).

Occult auto-PEEP can have significant cardiopulmonary effects. It is an important cause of death among patients treated with mechanical positive pressure ventilation (4).

Author Disclosure: The author does not have a financial relationship with a commercial entity that has an interest in the subject of this manuscript.

Weill Cornell Medical College
New York, New York

References

From the Author:

Berlin proposes an alternative mechanism to explain refractory shock and pulmonary edema about the patient we have reported in the Journal (1). The patient was on mechanical ventilation with an obstruction of the expiratory ventilator limb. We agree that hemodynamic consequences of PEEPi with dynamic hyperinflation due to an increase of expiratory impedance can cause acute cor pulmonale. PEEPi increases right ventricular outflow impedance by increasing vascular pulmonary resistance, which can decrease the left ventricular compliance due to leftward shift and thus decrease cardiac output (2, 3). Also, its effect on intra-abdominal pressure may collapse inferior vena cava and impair the venous return to right heart and decrease cardiac output (2).

During the severe complication developed by our patient, airway pressures were high (peak pressure of 60 cm H2O, and plateau pressure of 55 cm H2O) (1). In this scenario, it is likely that PEEPi could have been increased and exceeded the extrinsic PEEP set on the ventilator, which was of 16 cm H2O. Although the mechanism proposed by Berlin and colleagues could have caused acute cor pulmonale, we found that transthoracic echocardiography revealed a mean pulmonary arterial pressure of 12 mm Hg, right atrium and ventricle were of normal size and the ejection fraction was 65%. Furthermore, the intra-abdominal pressure was 8 mm Hg. These findings are not compatible with PEEPi as a cause of shock in this patient.

After changing the ventilator tubing set in our patient and correcting the severe acute hypercapnic acidosis, the patient improved, hemodynamic status stabilized, and the patient recovered from pulmonary failure (1). Therefore, we believe that our case represents an unusual example of acute severe hypercapnia with extreme acidemia, where hypercapnic acidosis is associated with development of severe shock and pulmonary edema. Because of the temporal relationship between hemodynamic parameters and values of CO2, we believe that severe hypercapnia with extreme acidemia was the cause of shock and respiratory failure in our patient.

Author Disclosure: None of the authors has a financial relationship with a commercial entity that has an interest in the subject of this manuscript.

Universidad de la República
Montevideo, Uruguay
and
Asociación Española de Socorros Mutuos
Montevideo, Uruguay

Universidad de la República
Montevideo, Uruguay

Vitamin C and Community-acquired Pneumonia

To the Editor:

Waterer and colleagues considered that nutrition may affect the severity of community-acquired pneumonia, and suggested that further studies are needed to find out which patients with pneumonia are at highest risk of delayed mortality (1). I would like to point out that the possible role of vitamin C on pneumonia should be studied.

Several studies have documented reduced levels of vitamin C in patients with pneumonia (2, 3). Dozens of animal studies found that vitamin C protected against bacterial and viral infections, including pneumonia, indicating that the physiological effects of this vitamin are not limited to preventing overt deficiency (2). Therefore, we performed a systematic review on the effect of vitamin C in the prevention and treatment of pneumonia (4) and found three prophylactic trials and two treatment trials, reporting significant benefit of vitamin C against pneumonia. The randomized double-blind, placebo-controlled treatment trial by Hunt and coworkers (3) is particularly interesting.

Hunt and colleagues studied the effect of 0.2 g/day vitamin C on 66- to 94-year-old patients who were taken into the hospital because of pneumonia or acute exacerbation of chronic bronchitis (3). Vitamin C or placebo was administered in addition to the normal medication. Vitamin C significantly improved the “total respiratory score” in the most severely ill patients, but had no effect on the less ill patients (3). Moreover, there were six deaths during the trial—all among the most severely ill patients.

REFERENCES
Five of the deaths occurred in the placebo group, but only one in the vitamin C group.

In a study using a combination of vitamins C and E, Nathens and coworkers (5) found no effect on the incidence of nosocomial pneumonia in critically ill surgical patients, but days of mechanical ventilation (−0.9; −0.6 to −1.2) were significantly reduced in the antioxidant group. Although this study is not specific to vitamin C, it suggests that antioxidants may affect pulmonary morbidity. More research on vitamin C and other antioxidants seems to be warranted.

Author Disclosure: The author does not have a financial relationship with a commercial entity that has an interest in the subject of this manuscript.

HARRI HEMILÄ, M.D., PH.D.
University of Helsinki
Helsinki, Finland

References


Erratum: Sleepiness, Quality of Life, and Sleep Maintenance in REM versus NREM Sleep-Disordered Breathing

To the Editor:

In our article published last year in the Journal (1), we omitted the following acknowledgments and sources of funding. The authors apologize for the omission.

Sources of funding: This work was supported by National Heart, Lung, and Blood Institute (NHLBI) cooperative agreements U01HL53940 (University of Washington), U01HL53941 (Boston University), U01HL53938 (University of Arizona), U01HL53916 (University of California, Davis), U01HL53934 (University of Minnesota), U01HL53931 (New York University), U01HL5397 and U01HL64360 (Johns Hopkins University), U01HL63463 (Case Western Reserve University), and U01HL63429 (Missouri Breaks Research), which supported the SHHS.

Author Disclosure: H.A.C. does not have a financial relationship with a commercial entity that has an interest in the subject of this manuscript. C.M.B. has received sponsored grants from NIH NICHD. A.S. has received industry-sponsored grants from Novartis; she has received sponsored grants from NHLBI and Washington, DC Department of Health. Y.Z. has received sponsored grants from NIH/NHLBI. D.R. has received consultancy fees from Fisher and Paykel Healthcare, Invacare, and Ventus Medical; advisory board fees from Mannkind; expert witness fees from Invacare; and industry-sponsored grants from Ventus Medical, Fisher and Paykel Healthcare, and Restore Medical (Medtronic); he owns patents along with Fisher and Paykel Healthcare, Covidian, Health C’Aire, and Watermark; he has received royalties from Fisher and Paykel Healthcare and Covidian; he has received sponsored grants from NIH. N.P. has received sponsored grants from NIH; his institution has received grants from Resmed. D.J.G. has received sponsored grants from NIH/NHLBI and the VA.

Acknowledgment: The Sleep Heart Health Study (SHHS) acknowledges the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, the Framingham Heart Study, the Cornell/Mt. Sinai Worksite and Hypertension Studies, the Strong Heart Study, the Tucson Epidemiologic Study of Airways Obstructive Diseases, and the Tucson Health and Environment Study for allowing their cohort members to be part of the SHHS and for permitting data acquired by them to be used in the study. The SHHS is particularly grateful to the members of these cohorts who agreed to participate in SHHS as well. SHHS further recognizes all of the investigators and staff who have contributed to its success. A list of SHHS investigators, staff, and their participating institutions is available on the SHHS Web site (www.jhuccct.com/shhs).

HASSAN A. CHAMI, M.D., M.Sc.
Boston University School of Medicine
Boston, Massachusetts

CAROL M. BALDWIN, PH.D., R.N.
VA Boston Health Care System
West Roxbury, Massachusetts

ANGELA SILVERMAN, M.S.N., C.N.P.
Arizona State University College of Nursing and Health Innovation
Phoenix, Arizona

YING ZHANG, M.D., PH.D.
MedStar Research Institute
Hyattsville, Maryland

DAVID M. RAPORT, M.D.
University of Oklahoma Health Sciences Center
Norman, Oklahoma

NARESH PUNJABI, M.D., PH.D.
New York University School of Medicine
New York, New York

DANIEL J. GOTTLIEB, M.D., M.P.H.
Johns Hopkins University School of Medicine
Baltimore, Maryland

Reference