Letter to the Editor

Harri Hemilä, PhD, MD

The effect of nutrition on exercise-induced immunodepression was reviewed by Gleeson.¹ In the vitamin E section of the review, he discussed the findings of Graat et al.² (N = 652) with \geq 60-year-old, non-institutionalized participants and those of Meydani et al.³ (N = 617) with \geq 65-year-old nursing home residents.

Gleeson commented that self-evaluation of the common cold might have been unreliable in Graat's trial²; however, Gwaltney states in a major textbook of infectious diseases that "the manifestations of the common cold are so typical and familiar that self-diagnosis by the patient is usually correct."⁴ Furthermore, even if the outcome may be inaccurate, such inaccuracy cannot explain the increase in the number of participants with fever (P = 0.009) after vitamin E supplementation in a trial that is double-blind.² Irrespective of etiology, the net increase in fever indicates unquestionable harm in those participants.

Statisticians prefer intention-to-treat analysis (ITT), and in their paper, Meydani et al.³ presented their ITT results in tabular format. Meydani calculated 13 different *P* values, only one of which was statistically significant, but very marginally so (P = 0.048), and easily explained by the multiple comparison problem. Furthermore, even if the effect of vitamin E on the number of participants with one or more respiratory tract infection might be real, it is small (risk ratio [RR] = 0.88; 95% confidence interval [CI]: 0.76–1.00).³

Moreover, neither of these trials^{2,3} tested whether vitamin E has effects on people who exercise. A further study, not mentioned in the review, focused on the question of whether 50 mg/d of vitamin E supplementation affects the incidence of the common cold in physically active 50- to 69-year-old male smokers in the ATBC Study cohort.⁵ In participants who performed heavy physical activity on the job (N = 2211), vitamin E had no effect on common cold incidence (RR = 1.08; 95% CI: 0.99–1.18); vitamin E was also ineffective (RR = 1.10; 95% CI: 0.96–1.27) in those who exercised heavily during their leisure time (N = 916).

The effect of vitamin E on the incidence of pneumonia in physically active males was recently analyzed in the ATBC Study cohort.⁶ In participants whose jobs were moderately or very active (N = 7493), vitamin E had no effect on pneumonia risk (RR = 1.29; 95 % CI: 0.79-2.11); however, in those who exercised moderately or heavily in their leisure time (N = 9570), vitamin E reduced pneumonia risk by half (RR = 0.50; 95% CI: 0.30-0.84). These findings may seem inconsistent because both subgroups were selected on the basis of physical activity; however, physical activity at work and at leisure differed such that vitamin E reduced pneumonia risk only in those who carried out exercise in their leisure time and had a physically light job.⁷ This may be explained by the adaptation of the body to physical stress arising from a regular workload, whereas physically light jobs leave people unadapted to oxidative stress caused by occasional exercise at leisure.⁷

A meta-analysis focusing on the effects of vitamin C on the common cold identified six trials with participants under heavy acute physical stress (combined N = 642),⁸ and in this group of studies vitamin C reduced the common cold risk by half (RR = 0.50; 95% CI: 0.38–0.66). Four of these trials had marathon runners as participants, the fifth studied Canadian soldiers in a winter exercise, and the sixth studied Swiss schoolchildren in a skiing camp.^{7,8} The Himmelstein trial mentioned by Gleeson is not in conflict with the pooled RR estimate because it is small and has a wide confidence interval.^{8,9}

Thus, there is evidence that vitamins C and E may affect, under some conditions, the risk of respiratory infections in people who are under physical stress, but assessment of the practical significance of these findings needs further work.

REFERENCES

- Gleeson M. Can nutrition limit exercise-induced immunodepression? Nutr Rev. 2006;64:119–131.
- Graat JM, Schouten EG, Kok FJ. Effect of daily vitamin E and multivitamin-mineral supplementation on acute respiratory tract infections in elderly persons. JAMA. 2002;288:715–721.
- Meydani SN, Leka LS, Fine BC, et al. Vitamin E and respiratory tract infections in elderly nursing home residents. JAMA. 2004;292:828–836.
- Gwaltney JM. The common cold. In: Mandell GL, Bennett JE, Dolin R, eds. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. 6th ed. Philadelphia: Elsevier Churchill Livingstone; 2005:747–752.
- 5. Hemilä H, Virtamo J, Albanes D, Kaprio J. Physical activity and the common cold in men administered vitamin E and β -carotene. Med Sci Sports Exerc. 2003;35:1815–1820.

Dr. Hemilä is with the Department of Public Health, University of Helsinki, Helsinki, Finland.

Please address all correspondence to: Dr. Harri Hemilä, Department of Public Health, POB 41, University of Helsinki, FIN-00014, Finland; Phone: 358-9-191-27573; Fax: 358-9-191-27570; E-mail: harri. hemila@helsinki.fi.

- 6. Hemilä H, Kaprio J, Albanes D, Virtamo J. Physical activity and the risk of pneumonia in male smokers administered vitamin E and β -carotene. Int J Sports Med. 2006;27:336–341.
- Hemilä H. Do vitamins C and E affect respiratory infections? [PhD thesis]. Helsinki, Finland: University of Helsinki;2006:48–50, 56-57, 66–67. Available at: http://ethesis.helsinki.fi/julkaisut/laa/kansa/ vk/hemila/.

The Author's Response

Michael Gleeson, PhD

Although the trial of Graat et al.¹ involved a large cohort and a 2×2 factorial, double-blind treatment design, the health assessment by self-evaluation can be considered to be a limiting factor, particularly in an elderly population whose cognitive function was not described. The recent large trial by Meydani et al.² used a more reliable method (weekly documentation by nurses and physicians, thus justifying greater confidence in the results) and showed protection against upper respiratory infections with vitamin E supplementation. Furthermore, the elderly do not develop an effective fever response to infection and have a lower body temperature than young people. Thus, more fevers in the study by Graat et al.¹ could be considered a beneficial effect of vitamin E supplementation rather than what Hemilä describes as "unquestionable harm." Indeed, the authors reported that the number of medications did not differ between groups, even though severity did.¹

My failure to mention the Hemilä et al.³ study in my review⁴ was an unfortunate omission. However, the reported lack of effect of vitamin E supplementation in 50to 69-year-old men with physically active jobs in this study may have been due to the lower dose of vitamin E (50 mg/d) used in this study compared with other studies that have shown beneficial effects on respiratory infection incidence²; it could also have been due to the fact

- Douglas RM, Hemilä H, D'Souza R, Chalker EB, Treacy B. Vitamin C for preventing and treating the common cold. Cochrane Database Systematic Reviews. 2004:CD000980.
- 9. Himmelstein SA, Robergs RA, Koehler KM, et al. Vitamin C supplementation and upper respiratory tract infections in marathon runners. Journal of Exercise Physiology online. 1998;1(2). Available at: http://faculty.css.edu/tboone2/asep/jan9.htm.

that the subjects were smokers. The higher risk of colds in men taking vitamin E supplements and performing heavy exercise in their leisure time is interesting and worthy of further investigation. In the more recent Hemilä et al.⁵ study, which was not available at the time I wrote the review,⁴ it seems that the effect of vitamin E supplementation in relation to pneumonia incidence in men performing heavy exercise in their leisure time was the opposite to that reported in the Hemilä et al.³ study on cold and flu risk. In the more recent study, vitamin E supplementation reduced the pneumonia risk in leisuretime active male smokers by 50%.⁵ I certainly agree with Hemilä that further work is required on the practical relevance of antioxidant supplements (both vitamins and others such as polyphenols) on infection incidence in physically stressed individuals.

REFERENCES

- Graat JM, Schouten EG, Kok FJ. Effect of daily vitamin E and multivitamin-mineral supplementation on acute respiratory tract infections in elderly persons. JAMA. 2002;288:715–721.
- Meydani SN, Leka LS, Fine BC, et al. Vitamin E and respiratory tract infections in elderly nursing home residents. JAMA. 2004;292:828–836.
- 3. Hemilä H, Virtamo J, Albanes D, Kaprio J. Physical activity and the common cold in men administered vitamin E and β -carotene. Med Sci Sports Exerc. 2003;35:1815–1820.
- 4. Gleeson M. Can nutrition limit exercise-induced immunodepression? Nutr Rev. 2006;64:119–131.
- 5. Hemilä H, Kaprio J, Albanes D, Virtamo J. Physical activity and the risk of pneumonia in male smokers administered vitamin E and β -carotene. Int J Sports Med. 2006;27:336–341.

Dr. Gleeson is with the School of Sport and Exercise Sciences, Loughborough University, Loughborough, Leicestershire, England.

Please address all correspondence to: Dr. Michael Gleeson, School of Sport and Exercise Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, England; Phone: 44-1509-226345; Fax: 44-1509-226301; E-mail: m.gleeson@lboro.ac.uk.