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Lectures in this series
Changes in statistics: 1975–2014

This lecture is the third in a series of four related lectures.

1 Computing capacity has dramatically increased and
programming languages have evolved.

2 New statistical methods have been developed.

3 Statistical software is dramatically more powerful and varied.

4 Accountability and reproducibility have become requirements
in scientific research.
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The realm of statistics

Design of experiments.

Data acquisition protocols.

Data quality control and exploration.

Data analysis proper.
1 Tests of significance.
2 Model fitting.

Interpretation of results.
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Today’s roadmap

A very brief introduction to R.

Practical examples, using R, of the methods presented in
Lecture 2.

Pedro J. Aphalo Statistics: Changes since I was an undergrad



Introduction
New ways for old problems

Fitting models
Conclusions

R

R is both a programming and scripting language and a
computer program.

It is sometimes called Gnu-S, as it started as a free
implementation of the S language, used in S-Plus.

Why the name ‘R’?
R comes before S.
Both developers’ first name is Robert.
Robert Ihaka and Robert Gentleman, created R as a teaching
tool, in New Zealand.
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R advantages

R is extensible.

The R language is syntactically complete.

Routines written in other languages such as C, C++, and
FORTRAN can be called from R.

It is portable and stable.

It is free.

User and developer community support is great.
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Why scripting?

It is easy to describe what one has done

It is easy to explain concisely what needs to be done

It is easy to exactly repeat the same analysis
at a later time
on a different data set
by a different person
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Saying ‘Hello’ and a bit more in R

print("Hello")

## [1] "Hello"

2 + 3

## [1] 5

rep("ab", 5)

## [1] "ab" "ab" "ab" "ab" "ab"

x <- c(3,4,3,2.5,4)
mean(x)

## [1] 3.3

var(x)

## [1] 0.45
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Adjusting P -values
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Outliers and noisy data

Multiple tests/comparisons

Per-test- vs. per-experiment risk levels.

Two approaches:
1 Use especial methods like Tukey’s HSD (honestly significant

difference)
2 Use usual contrast methods and then adjust the P -values with

methods like Bonferroni’s.

Bonferroni’s great popularity is based on easy of calculation.

Better methods are currently available.
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Adjusting P -values

my.p.values <- c(0.013, 0.05, 0.045, 0.001)
p.adjust(my.p.values, "none")

## [1] 0.013 0.050 0.045 0.001

p.adjust(my.p.values, "bonferroni")

## [1] 0.052 0.200 0.180 0.004

p.adjust(my.p.values, "holm")

## [1] 0.039 0.090 0.090 0.004

Method “none” is equivalent to using LSD, no correction for
multiple tests.
Bonferroni’s method
Holm’s (1979) method
There are other good methods available.
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Adjusting P -values

my.p.values <- c(0.013, 0.05, 0.045, 0.001)
p.adjust(my.p.values, "none")

## [1] 0.013 0.050 0.045 0.001

p.adjust(my.p.values, "bonferroni")

## [1] 0.052 0.200 0.180 0.004

p.adjust(my.p.values, "holm")

## [1] 0.039 0.090 0.090 0.004

Method “none” is equivalent to using LSD: avoid.
Bonferroni’s method
Holm’s (1979) method
There are other good methods available.
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Adjusting P -values

my.p.values <- c(0.013, 0.05, 0.045, 0.001)
p.adjust(my.p.values, "none")

## [1] 0.013 0.050 0.045 0.001

p.adjust(my.p.values, "bonferroni")

## [1] 0.052 0.200 0.180 0.004

p.adjust(my.p.values, "holm")

## [1] 0.039 0.090 0.090 0.004

Method “none” is equivalent to using LSD: avoid.
Bonferroni’s method is very easy to calculate (α · 1/n), this made
it popular, but is very conservative.
Holm’s (1979) method
There are other good methods available.
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Adjusting P -values

my.p.values <- c(0.013, 0.05, 0.045, 0.001)
p.adjust(my.p.values, "none")

## [1] 0.013 0.050 0.045 0.001

p.adjust(my.p.values, "bonferroni")

## [1] 0.052 0.200 0.180 0.004

p.adjust(my.p.values, "holm")

## [1] 0.039 0.090 0.090 0.004

Method “none” is equivalent to using LSD: avoid.
Bonferroni’s method: avoid.
Holm’s (1979) method is more difficult to calculate, gives strong
control of family-wise error rate and is valid under arbitrary
assumptions.
There are other good methods available.
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Adjusting P -values

my.p.values <- c(0.013, 0.05, 0.045, 0.001)
p.adjust(my.p.values, "none")
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p.adjust(my.p.values, "bonferroni")

## [1] 0.052 0.200 0.180 0.004

p.adjust(my.p.values, "holm")

## [1] 0.039 0.090 0.090 0.004

Method “none” is equivalent to using LSD: avoid.
Bonferroni’s method: avoid.
Holm’s (1979) method: usually good.
There are other good methods available.
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Transformations

Applying a transformation to response data alters the
functional relationship between dependent and independent
variables.

Transformations may help to fulfil the assumptions of an
analysis method, but transformations drastically alter the
interpretation of tests of significance and model selection.

Two approaches:
1 Old: use a simple and easy to calculate statistical procedure

and transform the data to force it to agree with the
expectations of the method used.

2 Modern: use a more complex and difficult to calculate
statistical procedure whose assumptions match the properties
of the data.

We start with a simple example of a factorial experiment. . .
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Data transformations
In factorial experiments

Using a transformation changes the interpretation of interactions!

summary(aov(y ~ x * group, data=my.data))

## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 1398.9 1398.9 304.391 < 2e-16 ***
## group 1 368.4 368.4 80.167 6.71e-11 ***
## x:group 1 0.0 0.0 0.008 0.931
## Residuals 38 174.6 4.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(aov(log(y) ~ x * group, data=my.data))

## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 6.626 6.626 184.43 3.69e-16 ***
## group 1 1.998 1.998 55.60 5.98e-09 ***
## x:group 1 0.450 0.450 12.51 0.00108 **
## Residuals 38 1.365 0.036
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Data transformations
In factorial experiments

summary(aov(y ~ x * group, data=my.data))

## Df Sum Sq Mean Sq F value Pr(>F)
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## group 1 368.4 368.4 80.167 6.71e-11 ***
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Data transformations
Plots

10

20

30

0 5 10 15 20
x

y

group

A

B
10

0 5 10 15 20
x

y

group

A

B

Pedro J. Aphalo Statistics: Changes since I was an undergrad



Introduction
New ways for old problems

Fitting models
Conclusions

Adjusting P -values
Transformations and interactions: a dangerous cocktail
Outliers and noisy data

Dealing with outliers

The basic question is: are these ‘unusual’ observations part of
the statistical population of interest or are they accidental
events that we are not interested in?

What can be considered an outlier depends on the objectives
of the research. Under some circumstances the ‘unusual’
observations may be the most interesting ones.

In small data sets it is best to locate and then analyse the
reasons for the existence of each individual outlier.

In large data sets we need automated methods.

Two approaches:
1 Distribution-free methods
2 Methods that assume a given distribution, and use this

assumption to discard observations that are unlikely to belong
to the assumed distribution.
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Dealing with outliers (cont.)

Two approaches:
1 Distribution-free methods
2 Methods that assume a given distribution, and use this

assumption to discard observations that are unlikely to belong
to the assumed distribution.

Simple summaries like median and mode are distribution free.
Also many re-sampling methods estimate the distribution of
random variation from the data.

There are also methods, which down-weight the influence of
the observations unlikely to belong to a population with the
assumed distribution (e.g. Normal).

Pedro J. Aphalo Statistics: Changes since I was an undergrad



Introduction
New ways for old problems

Fitting models
Conclusions

Adjusting P -values
Transformations and interactions: a dangerous cocktail
Outliers and noisy data

Dealing with outliers (cont.)

Two approaches:
1 Distribution-free methods
2 Methods that assume a given distribution, and use this

assumption to discard observations that are unlikely to belong
to the assumed distribution.

Simple summaries like median and mode are distribution free.
Also many re-sampling methods estimate the distribution of
random variation from the data.

There are also methods, which down-weight the influence of
the observations unlikely to belong to a population with the
assumed distribution (e.g. Normal).
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Dealing with outliers (cont.)

Two approaches:
1 Distribution-free methods
2 Methods that assume a given distribution, and use this

assumption to discard observations that are unlikely to belong
to the assumed distribution.

Simple summaries like median and mode are distribution free.
Also many re-sampling methods estimate the distribution of
random variation from the data.

There are also methods, which down-weight the influence of
the observations unlikely to belong to a population with the
assumed distribution (e.g. Normal).
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Data without outliers
Linear model fit, ANOVA

summary(lm(y ~ x * group, data=my.data))

##
## Call:
## lm(formula = y ~ x * group, data = my.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2439 -1.6541 0.0208 1.4860 3.9528
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.347641 0.903149 4.814 2.37e-05 ***
## x 0.957835 0.077255 12.398 6.31e-15 ***
## groupB 6.018602 1.277246 4.712 3.25e-05 ***
## x:groupB -0.009511 0.109255 -0.087 0.931
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.144 on 38 degrees of freedom
## Multiple R-squared: 0.9101, Adjusted R-squared: 0.903
## F-statistic: 128.2 on 3 and 38 DF, p-value: < 2.2e-16
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Data with outliers
Linear model fit, ANOVA

summary(lm(y ~ x * group, data=my.dirty.data))

##
## Call:
## lm(formula = y ~ x * group, data = my.dirty.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.9375 -2.9306 -0.4991 2.4249 27.3806
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.6732 3.0100 2.549 0.0150 *
## x 0.6454 0.2575 2.506 0.0166 *
## groupB 7.5161 4.2568 1.766 0.0855 .
## x:groupB -0.1594 0.3641 -0.438 0.6641
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.145 on 38 degrees of freedom
## Multiple R-squared: 0.3098, Adjusted R-squared: 0.2554
## F-statistic: 5.687 on 3 and 38 DF, p-value: 0.00256
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Data with outliers
Robust linear model fit, ANOVA

summary(rlm(y ~ x * group, data=my.dirty.data))

##
## Call: rlm(formula = y ~ x * group, data = my.dirty.data)
## Residuals:
## Min 1Q Median 3Q Max
## -27.2840 -1.8183 -0.2331 1.6357 29.5062
##
## Coefficients:
## Value Std. Error t value
## (Intercept) 5.4953 1.1889 4.6222
## x 0.8630 0.1017 8.4859
## groupB 5.4638 1.6813 3.2496
## x:groupB 0.0440 0.1438 0.3056
##
## Residual standard error: 2.571 on 38 degrees of freedom
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Data with outliers
WLE linear model fit, ANOVA

summary(wle.lm(y ~ x * group, data=my.dirty.data))

##
## Call:
## wle.lm(formula = y ~ x * group, data = my.dirty.data)
##
## Root 1
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -4.9464 -1.5237 0.1414 1.3024 3.7502
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.502350 1.007289 4.470 8.57e-05 ***
## x 0.964654 0.088456 10.905 1.56e-12 ***
## groupB 5.788672 1.396705 4.145 0.00022 ***
## x:groupB 0.006348 0.121998 0.052 0.95881
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.165 on 33.32042 degrees of freedom
## Multiple R-Squared: 0.9055, Adjusted R-squared: 0.897
## F-statistic: 106.5 on 3 and 33.32042 degrees of freedom, p-value: 0
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Data with outliers
Plots

Before and after adding outliers: Linear model fit using lm
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Data with outliers
Plots

Before and after adding outliers: Robust linear model fit using rlm

no outliers with 2 outliers
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Data with outliers
Plots

Before and after adding outliers: Both fits in the same plot

no outliers with 2 outliers
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GLS

GLS are basically LM (linear models) in which we can fit
parameters describing the random variation in a more flexible
way.

Variance covariate: we can describe changes in error variance
as a function of continuous variables (e.g. fitted values, or a
covariate like time or age)

We can define the ‘structure’ of the error variation. (e.g.
separate estimates of error variance for different treatments,
or a certain correlation, or auto-correlation structure for the
errors).
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GLS
Fit

# AR(1) errors within each Mare
fm1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), Ovary,

correlation = corAR1(form = ~ 1 | Mare))
anova(fm1)

## Denom. DF: 305
## numDF F-value p-value
## (Intercept) 1 354.7332 <.0001
## sin(2 * pi * Time) 1 18.5034 <.0001
## cos(2 * pi * Time) 1 1.6633 0.1981

Note: This is a model linear in the parameters.
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GLS
Plots
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LME

Linear Mixed Effects models, can be thought as a GLS, in
which we include in addition of fixed effects (i.e. the applied
treatments), random effects (e.g. years in a field experiment).

The basic idea is that for fixed effects, we are interested in the
individual levels (e.g. control vs. treated), while for random
effects we are not.

Mixed models allow also the description of the nesting of
treatments in factorial experiments (e.g. split-unit and
repeated measures experimental designs).
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LME
Fitting a 2nd degree polynomial

fm1 <- lme(height ~ age + I(age^2),
data = Loblolly,
random = ~ 1 | Seed)

summary(fm1)

## Linear mixed-effects model fit by REML
## Data: Loblolly
## AIC BIC logLik
## 300.9795 312.9517 -145.4897
##
## Random effects:
## Formula: ~1 | Seed
## (Intercept) Residual
## StdDev: 1.387033 1.022571
##
## Fixed effects: height ~ age + I(age^2)
## Value Std.Error DF t-value p-value
## (Intercept) -7.607232 0.5203803 68 -14.61860 0
## age 3.959044 0.0656130 68 60.33931 0
## I(age^2) -0.049838 0.0023328 68 -21.36436 0
## Correlation:
## (Intr) age
## age -0.630
## I(age^2) 0.566 -0.976
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.04794270 -0.58771042 0.07584935 0.63550743 1.94543736
##
## Number of Observations: 84
## Number of Groups: 14
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LME
Plots
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NLME

The difference with LME, is that instead of fitting a function
that is linear in the parameters, we fit a function that is
non-linear in the parameters.

This is useful when theory suggests a certain mathematical
relationship, and obtaining estimates of values for biologically
meaningful parameters, requires the use of such functions.

Compared to separate fits to data for each experimental unit
it has advantages of making better use of the information in
the data set, and of taking into account correlations among
parameter estimates in a more ‘integrated’ manner.
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NLME
Fitting y = Φ1 + (Φ1 − Φ2) · e−Φ3x

SSasymp is a predefined function for this ‘asymptotic’ function.
The SS in the name means self-starting, which means that in many
cases it would be able to find good starting values for the iterative
calculations. However, in this example we are explicitly supplying
the starting values for the parameters.
In the code listed below Φ1,Φ2,Φ3 are called Asym, R0, lrc,
respectively.

fm1 <- nlme(height ~ SSasymp(age, Asym, R0, lrc),
data = Loblolly,
fixed = Asym + R0 + lrc ~ 1,
random = Asym ~ 1,
start = c(Asym = 103, R0 = -8.5, lrc = -3.3))
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NLME
Fitting y = Φ1 + (Φ1 − Φ2) · e−Φ3x

## Nonlinear mixed-effects model fit by maximum likelihood
## Model: height ~ SSasymp(age, Asym, R0, lrc)
## Data: Loblolly
## AIC BIC logLik
## 239.4856 251.6397 -114.7428
##
## Random effects:
## Formula: Asym ~ 1 | Seed
## Asym Residual
## StdDev: 3.650642 0.7188625
##
## Fixed effects: Asym + R0 + lrc ~ 1
## Value Std.Error DF t-value p-value
## Asym 101.44960 2.4616951 68 41.21128 0
## R0 -8.62733 0.3179505 68 -27.13420 0
## lrc -3.23375 0.0342702 68 -94.36052 0
## Correlation:
## Asym R0
## R0 0.704
## lrc -0.908 -0.827
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.23601930 -0.62380854 0.05917466 0.65727206 1.95794425
##
## Number of Observations: 84
## Number of Groups: 14
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NLME
Plots
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GLM

GLMs remove the assumption of normally distributed
residuals from LMs, and allows the explicit specification of an
error distribution function.

Examples of distributions available are: binomial, Poisson,
exponential, etc.

Examples of link functions are: logarithms, powers, etc.
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GLM
Generation of artificial binomial data

x <- 1 + rnorm(1000,1)
xbeta <- -1 + (x* 1)
proba <- exp(xbeta)/(1 + exp(xbeta))
y <- ifelse(runif(1000,0,1) < proba,1,0)
table(y)

## y
## 0 1
## 275 725

df <- data.frame(x,y)
head(df, 8)

## x y
## 1 1.163160 1
## 2 2.600422 0
## 3 1.754065 1
## 4 1.815335 1
## 5 2.023157 1
## 6 1.515348 1
## 7 1.262094 0
## 8 3.302508 1
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GLM
Fitting a model to binomial data

res <- glm(y ~ x , family = binomial(link=logit), data = df)
summary(res)

##
## Call:
## glm(formula = y ~ x, family = binomial(link = logit), data = df)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4326 -0.9934 0.5911 0.7965 1.6258
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.58768 0.16347 -3.595 0.000324 ***
## x 0.84543 0.08474 9.977 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1176.3 on 999 degrees of freedom
## Residual deviance: 1057.6 on 998 degrees of freedom
## AIC: 1061.6
##
## Number of Fisher Scoring iterations: 4
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GLM
Plots
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GLMM

GLMMs remove the assumption of normally distributed
residuals from LME models, and allow the explicit
specification of an error distribution function.

No example will be given for this type of model.

Pedro J. Aphalo Statistics: Changes since I was an undergrad



Introduction
New ways for old problems

Fitting models
Conclusions

General linear models
Linear and non-linear mixed effects models
Generalized linear models
Additive models
Mixture models

Additive models, AM

Sometimes we need to fit a continuous response function, but
either we do not want to make any assumptions about the
underlying functional relationship, or we need a very ‘flexible’
function.

If we combine in the same model continuous responses
described by splines and a grouping factor we have what is
commonly called and additive model.

This approach can be extended in two ways that can also be
combined:

1 Extend additive models to include mixed effects, variance
covariates, and other distributions for random variation in
addition to the Normal. AMM, GAM, GAMM.

2 Extend the use of splines to the description of how the
parameters of the error distribution change as function of a
covariate. GAMMLSS.
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GAM
Fitting a time series

We use loess (lo) smooth terms of solar irradiance, wind speed,
and temperature to predict ozone concentration from a time
series of daily measurements of air quality. We accept the default
of assuming a Normal distribution.

fgam1 <- gam(Ozone^(1/3) ~ lo(Solar.R) + lo(Wind, Temp), data=airquality, na=na.gam.replace)

## Warning in (function (frame) : 37 observations omitted due to missing values in the response

anova(fgam1)

## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## lo(Solar.R) 2.6 1.7924 0.1614
## lo(Wind, Temp) 6.8 7.1107 8.621e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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GAM
Summary

##
## Call: gam(formula = Ozone^(1/3) ~ lo(Solar.R) + lo(Wind, Temp), data = airquality,
## na.action = na.gam.replace)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.24948 -0.27358 -0.01743 0.31587 0.96546
##
## (Dispersion Parameter for gaussian family taken to be 0.1997)
##
## Null Deviance: 90.7149 on 115 degrees of freedom
## Residual Deviance: 20.503 on 102.6761 degrees of freedom
## AIC: 156.8112
##
## Number of Local Scoring Iterations: 2
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## lo(Solar.R) 1.00 15.562 15.5622 77.933 3.024e-14 ***
## lo(Wind, Temp) 2.00 40.452 20.2261 101.289 < 2.2e-16 ***
## Residuals 102.68 20.503 0.1997
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## lo(Solar.R) 2.6 1.7924 0.1614
## lo(Wind, Temp) 6.8 7.1107 8.621e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Unknown groups

Sometimes we know that our data set is composed of a mix of
observations from two (or a few) populations, say males and
females.

However, we have not recorded the gender of the subjects
studied at the time of data collection.

We may still be interested in estimating how many
observations belong to each of these groups, and what are
the estimated mean and variance for each of these groups.

This information can be ‘recovered’ by fitting a mixture
model.

As most statistical methods, we need to make assumptions
about the populations. For example, that each sub-population
follows a Normal distribution.
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Unknown groups (cont.)

Some methods do not require an a priori assumption on the
number of sub-populations, or whether they have the same
variance or same mean.
However, such restrictions can be imposed if relevant to the
research problem at hand.
As opposed to classification methods the fitting of mixture
models is best suited to situations where the number of
groups of sub-populations is small, and the number of
observations in each sub-populations is relatively high.
Furthermore, a mixture model estimates the parameters of
the distributions of the different groups, but does not ‘assign’
individual observations to the groups.
The advantage is the flexibility, and that estimates of the
values of parameters (and estimates of the confidence of
these estimates) can be obtained for each of the
sub-populations/groups.
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Mixture model example
Plot

We start with two theoretical Normal distributions

0.0

0.1

0.2

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11
x

0.
5 

* 
de

ns
ity

Pedro J. Aphalo Statistics: Changes since I was an undergrad



Introduction
New ways for old problems

Fitting models
Conclusions

General linear models
Linear and non-linear mixed effects models
Generalized linear models
Additive models
Mixture models

Mixture model example
Plot

We generate 101 artificial observations for each distribution
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Mixture model example
Plot

We calculate a histogram for each of the groups
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Mixture model example
Plot

We overlay the theoretical distributions on the histograms
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Mixture model example
Plot

We overlay a fitted density curve on top of each histogram
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Mixture model example
Plot

We ‘mix’ the data into a single group
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Mixture model example
Plot

We fit a Normal-mixture model

n: 121 (19)

n: 79 (19)
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Conclusions

Nowadays large data sets can be analysed on a PC.

Nowadays the range of methods that can be used on a PC is
huge.

Choosing methods to use, and models to fit has become
much more complex.

But in the end, we can extract more reliable information from
data.

We can also use experimental designs that either have fewer
restrictions, and/or can better answer the scientific questions
of interest.

We should keep up-to-date, and also teach our students
up-to-date ways of doing data analysis and designing
experiments.
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The End

I prepared this slide presentation with LATEX and R, on the
RStudio IDE. I used Beamer and knitr, ggplot2 and other
packages. This is all free open-source software, available for
MS-Windows, OS-X, Linux, and Unix.

This whole presentation (including examples) is coded in a
single text file (except for the logos).

To be continued. . . Part 4: Reproducible research.

Thanks for listening!
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